

Desperately Seeking SUSY?

by

Ben Allanach (University of Cambridge)

Talk outline

- Weak scale SUSY
- Fits and 2011 LHC searches
- mAMSB interpretation
- 2012 searches

Please ask questions while I'm talking

Technical Hierarchy Problem

A problem with light, fundamental scalars. Their mass receives quantum corrections from heavy particles in the theory:

$$\begin{array}{c} -h & \lambda \\ F \end{array} \overset{F}{\longrightarrow} \begin{array}{c} \lambda & -h \\ F \end{array} \sim -\frac{c\lambda^2}{16\pi^2} \int \frac{d^n k}{k^2 - m_F^2} + \dots \end{array}$$

Quantum correction to Higgs mass:

$$m_h^{phys} = m_h^{tree} + \mathcal{O}(m_F/100).$$

ence & Technology

 $m_F \sim 10^{19} \text{ GeV}/c^2$ is heaviest mass scale present. Higgs is eaten by W, Z to give $O(M_{W,Z}) \sim 90$ $\text{GeV}/c^2 \Rightarrow m_h^{tot} \lesssim 1 \text{ TeV}/c^2$.

Symmetry

Standard model gauge symmetry is *internal*, but supersymmetry (SUSY) is a space-time symmetry. We call extra SUSY generators Q, \overline{Q} .

In the simplest form of SUSY, we have multiplets

 $\left(\begin{array}{c} \text{spin 0} \\ \text{spin 1/2} \end{array}\right), \qquad \left(\begin{array}{c} \text{spin 1/2} \\ \text{spin 1} \end{array}\right),$

where each spin component in the multiplet should have identical quantum numbers (except spin).

Supersymmetric Solution

Exact supersymmetry adds 2 scalars $f_{L,R}$ for every massive fermion with

$$m_{\tilde{f}_{L,R}} = m_F$$

Q: Where are the selectrons?

Supersymmetric Solution

Exact supersymmetry adds 2 scalars $f_{L,R}$ for every massive fermion with

$$m_{\tilde{f}_{L,R}} = m_F$$

Q: Where are the selectrons?*A*: SUSY must be softly broken.

ambridge

Ofking groun

Supersymmetric Solution

Exact supersymmetry adds 2 scalars $f_{L,R}$ for every massive fermion with

$$m_{\tilde{f}_{L,R}} = m_F$$

When we break SUSY, we must make sure that we don't reintroduce the naturalness problem: "soft breaking".

Soft breaking

Make scalar partners heavier than fermions:

$$m_{\tilde{f}_{L,R}}^2 = m_F^2 + \delta^2$$

Then we find a quantum correction to m_h of (Drees)

$$\Delta m_h^2 \sim \frac{\lambda^2}{16\pi^2} \left(4\delta^2 + 2\delta^2 \ln \frac{m_F^2}{\mu^2} \right) + O(\delta^4)$$

So, if $\delta \sim O(1)$ TeV/ c^2 , there's no fine tuning in m_h .

Soft breaking

Make scalar partners heavier than fermions:

$$m_{\tilde{f}_{L,R}}^2 = m_F^2 + \delta^2$$

Then we find a quantum correction to m_h of (Drees)

$$\Delta m_h^2 \sim \frac{\lambda^2}{16\pi^2} \left(4\delta^2 + 2\delta^2 \ln \frac{m_F^2}{\mu^2} \right) + O(\delta^4).$$

So, if $\delta \sim O(1)$ TeV/ c^2 , there's no fine tuning in m_h . We should see supersymmetric particles in the Large Hadron Collider.

Supersymmetric Copies

Supersymmetric Copies

3 components of the Higgs particles are eaten by W^{\pm}, Z^{0} , leaving us with 5 physical states:

 $h^0, H^0(CP+), \qquad A^0(CP-), \qquad H^{\pm}$

SUSY breaking and electroweak breaking imply particles with identical quantum numbers mix:

ience & Technology

 $\overline{1}$

ambridge

Ofking grout

Universality

Reduces number of SUSY breaking parameters from 100 to 3:

- $\tan\beta \equiv v_2/v_1$
- m_0 , the common scalar mass (flavour).
- $M_{1/2}$, the common gaugino mass (GUT/string).

• A_0 , the common trilinear coupling (flavour). **These conditions** should be imposed at $M_X \sim O(10^{16-18})$ GeV and receive radiative corrections $\propto 1/(16\pi^2) \ln(M_X/M_Z)$.

Also, Higgs potential parameter $sgn(\mu)=\pm 1$.

Implementation

We use

- 95% C.L. direct search constraints
- $\Omega_{DM}h^2 = 0.1143 \pm 0.02$ micromegas
- $\delta(g-2)_{\mu}/2 = (29.5 \pm 8.8) \times 10^{-10}$ Stöckinger et al
- B-physics observables including SusyBSG $BR[b \rightarrow s\gamma]_{E_{\gamma} > 1.6} \text{ GeV} = (3.52 \pm 0.38) \times 10^{-4},$ $BR(B_s \rightarrow \mu\mu) < 1.1 \times 10^{-8} \text{ micromegas}$
- Electroweak data W Hollik, A Weber et al

$$2\ln \mathcal{L} = -\sum_{i} \chi_i^2 + c = \sum_{i} \frac{(p_i - e_i)^2}{\sigma_i^2} + c$$

Working grow

Additional observables

$$\delta \frac{(g-2)_{\mu}}{2} \sim 13 \times 10^{-10} \left(\frac{100 \text{ GeV}}{M_{SUSY}}\right)^2 \tan\beta$$

 $BR[b \to s\gamma] \propto \tan\beta (M_W/M_{SUSY})^2$

ATLAS Weighted Fits

Again, we assume A_0 -tan β independence and interpolate across m_0 and $m_{1/2}$. CMS 35 pb⁻¹, ATLAS 35 pb⁻¹, CMS 1 fb⁻¹

B.C. Allanach – p. 11

0.08

0.07

0.06

0.05

0.04 0.03

0.02

Allanach, Khoo, Lester and Williams, Mar 2011

Incl. ATLAS

Excl. ATLAS

Incl. CMS

CMS/ATLAS Weighted Fits

Allanach, Khoo, Lester and Williams, Mar 2011

Excl. CMS/ATLAS

Incl. ATLAS

Incl. CMS

0.12

0.1

0.08

0.06

0.04

0.02

0.09

0.08

0.07

0.06

0.05 0.04

0.03

0.02

0.01

0

0

0

supersymmetry

Cambridge

30

Science & Technology Facilities Council

 $\begin{smallmatrix} I & I \\ I$

pMSSM Fits

25 pMSSM input parameters are: $M_{1,2,3}$, $A_{t,b,\tau,\mu}$, $m_{H_{1,2}}$, $\tan \beta$, $m_{\tilde{d}_{R,L}} = m_{\tilde{s}_{R,L}}$, $m_{\tilde{u}_{R,L}} = m_{\tilde{c}_{R,L}}$, $m_{\tilde{e}_{R,L}} = m_{\tilde{\mu}_{R,L}}$, $m_{\tilde{t},\tilde{b},\tilde{\tau}_{R,L}}$ m_t , $m_b(m_b) \alpha_s(M_Z)^{\overline{MS}}$, $\alpha^{-1}(M_Z)^{\overline{MS}}$, M_Z . Combined Bayesian fit^a:

			O ^{meas} - O ^{fit} / σ ^{mea}		
Observable	Measurement	Fit(Log)	0 1 2 3		
m _w [GeV]	80.399 ± 0.025	80.402			
Г _z [GeV]	$\textbf{2.4952} \pm \textbf{0.0025}$	2.4964			
$\sin^2 \theta_{lep}^{eff}$	$\textbf{0.2324} \pm \textbf{0.0012}$	0.2314			
δ (g-2)_μ × 10¹⁰	$\textbf{30.20} \pm \textbf{9.02}$	26.74			
R ⁰	$\textbf{20.767} \pm \textbf{0.025}$	20.760			
र _ь	$\textbf{0.21629} \pm \textbf{0.00066}$	0.21962			
₹ _c	0.1721 ± 0.0030	0.1723			
A _e	0.1513 ± 0.0021	0.1483			
А _ь	$\textbf{0.923} \pm \textbf{0.020}$	0.935			
А _с	$\textbf{0.670} \pm \textbf{0.027}$	0.685			
A ^b FB	0.0992 ± 0.0016	0.1040			
4 ^c FB	$\textbf{0.071} \pm \textbf{0.035}$	0.074			
$BR(B\toX_{s}\gamma)\times10^{4}$	$\textbf{3.55} \pm \textbf{0.42}$	3.42			
R _{BR(B_µ→τν)}	1.11± 0.32	1.00			
R _{A MB.}	$\textbf{1.15} \pm \textbf{0.40}$	1.00			
Δ ₀₋	0.0375 ± 0.0289	0.0748			
Ω _{cDM} h²	0.11± 0.02	0.13			

^aS.S. AbdusSalam, BCA, F. Quevedo, F. Feroz, M. Hobson, PRD81 (2010) 985012, arXiv:0904.2548

Edinburgh seminar: 2012

Science & Technology Facilities Counci

supersymmetry

Working grout

Cambridge

Obtained with MultiNest^{*a*} algorithm in 16 CPU years. Prior dependence is *useful*: which predictions are robust?

^{*a*}Feroz, Hobson arxiv:0704.3704

Cambridge

Working grow

CMSSM at 1fb⁻¹ is Getting Heavier

Collider SUSY Dark Matter Production

Strong sparticle production and decay to dark matter particles.

Science & Technology

acilities Counci

Any (light enough) dark matter candidate that couples to hadrons can be produced at the LHC

Searches and the CMSSM

Edinburgh seminar: 2012

Science & Technology Facilities Council

Supersymmetry

Cambridge

Working grow

B.C. Allanach – p. 17

Figure 2. CMSSM CMS avaluations

SPS Points Savaged at 165 pb^{-1}

Benchmark point	Model scenario	σ/pb				status
		А	В	С	D	ATLAS 35, 165/pb
ATLAS Limits		1.3	0.35	1.1	0.11	
SPS 1a [52]	CMSSM	2.031	0.933	1.731	0.418	A,B,C,D
SPS 1b [52]	CMSSM	0.120	0.089	0.098	0.067	165/pb
SPS 2 [52]	CMSSM	0.674	0.388	0.584	0.243	B,D
SPS 3 [52]	CMSSM	0.123	0.093	0.097	0.067	165/pb
SPS 4 [52]	CMSSM	0.334	0.199	0.309	0.144	D
SPS 5 [52]	CMSSM	0.606	0.328	0.541	0.190	D
SPS 6 [52]	CMSSM (non-universal $m_{1/2}$)	0.721	0.416	0.584	0.226	B,D
SPS 7 [52]	mGMSB ($\tilde{\tau}_1$ NLSP)	0.022	0.016	0.023	0.015	allowed
SPS 8 [52]	mGMSB ($\tilde{\chi}_1^0$ NLSP)	0.021	0.011	0.022	0.009	allowed
SPS 9 [52]	mAMSB	0.019^{*}	0.004^{*}	0.006^{*}	0.002^{*}	allowed

Figure 3: Dolan, Grellscheid, Jaeckel, Khoze, Richardson, arXiv:1104.0585

Science & Technology Facilities Council

Benchmarks

Currently we^{*a*} have devised SUSY benchmark models. 1109.3859

- CMSSM, NUHM, mAMSB, mGMSB, RPV and some simplified models (via pMSSM) are defined.
- Defining interesting *parameter planes*: identifying important parameters which control the masses of sparticles in each case.
- Discrete set of points along monotonic lines: next point for the experiments to study is defined as the lightest one that is not ruled out to 95% CL.

ence & Technolog

^aS.S. AbdusSalam, BCA H. Dreiner, J. Ellis, S. Heinemeyer, M. Krämer, M. Mangano, K.A. Olive, S. Rogerson, L. Roszkowski, ^{Edinburgh seminar: 2012} M. Schlaffer G. Weiglein

Benchmarks Example: mAMSB

Plane: (m_{aux}, m_0) with $\tan \beta = 10, \mu > 0$. Line: $m_0 = 0.0075m_{aux}$, $\tan \beta = 10, \mu > 0$. Points:

Point	$m_{\rm aux}$	m_0	$m_{\tilde{g}}$	$\langle m_{\tilde{q}} \rangle$	$m_{\tilde{t}_1}$	$m_{\tilde{b}_1}$	$BR(\tilde{g} \rightarrow \tilde{t}t)$	$BR(\tilde{g} \rightarrow \tilde{b}b)$
mAMSB1.1	4×10^4	300	890	880	630	765	69	29
mAMSB1.2	5×10^4	375	1085	1080	780	940	74	25
mAMSB1.3	6×10^4	450	1280	1280	925	1110	76	24
mAMSB1.N								

Figure 4: mAMSB benchmark points arXiv:1109.3859. Next point for consideration is *the next one that hasn't been yet ruled out to 95*%

ence & Technology

AILAS U-lepton, jets and p_T search

ATLAS use cuts on different variables to search for SUSY:

• jet p_T s

Science & Technolog Facilities Council • $m_{eff} = \sum p_T^{(j)} + |\not p_T|$ • $m_T^{(i)^2}(\mathbf{p}_T^{(i)}, \not q_T^{(i)}) \equiv$ $2 |\mathbf{p}_T^{(i)}| |\not q_T^{(i)}| - 2\mathbf{p}_T^{(i)} \cdot \not q_T^{(i)}$ where $\not q_T^{(i)}$ is the transverse momentum of particle (i). For each event, it is a lower bound on m(NLSP). $M_{T2}(\mathbf{p}_T^{(1)}, \mathbf{p}_T^{(2)}, \not p_T) \equiv \min_{\sum \not q_T} \left\{ \max \left(m_T^{(1)}, m_T^{(2)} \right) \right\}$

ATLAS 1 fb⁻¹ 0-lepton Search Results

	≥ 2 jets	\geq 3 jets	≥ 4 jets	≥ 4 jets'	High mass
$p_T(j_1)$	> 130 GeV	> 130 GeV	> 130 GeV	> 130 GeV	> 130 GeV
$P_T(J_2)$	> 40 GeV	> 40 GeV	> 40 GeV	> 40 GeV	> 80 GeV
$p_T(j_3)$	T - PC	> 40 GeV	> 40 GeV	> 40 GeV	> 80 GeV
$p_{\Gamma}(j_4)$	543 (> 40 GeV	> 40 GeV	> 80 GeV
p ^{mise}	> 130 GeV	$> 130 { m ~GeV}$	> 130 GeV	> 130 GeV	> 130 GeV
$\Delta \phi$	> 0.4	> 0.4	> 0.4	> 0.4	> 0.4
$p_{\rm T}^{\rm mins}/m_{\rm eff}$	> 0.3	> 0.25	> 0.25	> 0.25	> 0.2
mett	> 1000 GeV	$> 1000 { m GeV}$	> 500 GeV	> 1000 GeV	$> 1100 { m ~GeV}$
Observed	58	59	1118	40	18
Background	$62.4 \pm 4.4 \pm 9.3$	$54.9 \pm 3.9 \pm 7.1$	$1015 \pm 41 \pm 144$	$33.9{\pm}2.9{\pm}6.2$	$13.1{\pm}1.9{\pm}2.5$
$\sigma \times A \times \epsilon/\text{fb}$	22	25	429	27	17

At any point in parameter space, one chooses the set of cuts with the greatest expected sensitivity^a.

^{*a*}ATLAS, arxiv:1109.6572

CL, observed 95% C.L. limit

2010 data PCL 95% C.L. limit

CL, modian accession itml

Expected limit ±1-a

Subrance point

Supersymmetry Cambridge

Science & Technology Facilities Council

MSSM Exclusion: Simplified Model

. Allanach – p. 24

Edinburgh seminar: 2012

Science & Technology Facilities Council

Cambridge

Working grout

cience & Technology

Intepretation

The results give a lower limit of 1020 GeV for $m_{\tilde{a}} = m_{\tilde{a}}$ in the CMSSM. We wish to *reinterpret* the search in mAMSB, to find the exclusion there (and study if mAMSB evades the search). We simulate *signal* only, with HERWIG++-2.5.1, and use ATLAS' upper limits on $\sigma \times A \times \epsilon$. However we have to fit the signal systematics. This becomes more involved when you want to do a fit and reconstruct the likelihood. To validate then, you need also details on the statistics.

ATLAS Validation

↓ ↓ ↓ 1

supersymmetry

Cambridge Working grow

mAMSB Exclusion

Interpret ATLAS exclusion in a different model: mAMSB.

Natural SUSY

The particles coupling the most strongly to the higgs are the $stops^a$. Minimising the MSSM Higgs potential,

 $-\frac{M_Z^2}{2} = |\mu|^2 + m_{H_2}^2,$ $\delta m_{H_2}^2 = \frac{-3h_t^2}{4\pi^2} m_{\tilde{t}}^2 \ln\left(\frac{\Lambda_{UV}}{m_{\tilde{t}}}\right)$

Applying that there should be no cancellation implies that

 $m_{\tilde{t}} \stackrel{<}{\sim} 700 \text{ GeV}, \qquad m_{\tilde{g}} \stackrel{<}{\sim} 1000 \text{ GeV}.$

^aM. Papucci, J. T. Ruderman and A. Weiler, arXiv:1110.6926; Edinburgh seminar: 2012 C. D. M. A. Weit, J. T. Ruderman and A. Weiler, arXiv:1110.6926; B.C. Allanach - p. 20

Natural SUSY

The particles coupling the most strongly to the higgs are the $stops^a$. Minimising the MSSM Higgs potential,

 $-\frac{M_Z^2}{2} = |\mu|^2 + m_{H_2}^2,$ $\delta m_{H_2}^2 = \frac{-3h_t^2}{4\pi^2} m_{\tilde{t}}^2 \ln\left(\frac{\Lambda_{UV}}{m_{\tilde{t}}}\right)$

Experimental E_T searches currently rule out

 $m_{\tilde{t}} \stackrel{<}{\sim} 500 \text{ GeV}, \qquad m_{\tilde{g}} \stackrel{<}{\sim} 800 \text{ GeV}.$

^aM. Papucci, J. T. Ruderman and A. Weiler, arXiv:1110.6926; C. Brust, A. Katz, S. Lawrence and R. Sundrum, arXiv:1110.6670

Definition of R-Parity

Q: How is $W_{\mathcal{R}_P}$ normally banned? A: By defining discrete symmetry R_p

 $R_p = (-\mathbf{1})^{3B+L+2S}.$

 \rightarrow SM fields have $R_p = +1$ and superpartners have $R_p = -1$. There are two important consequences:

- Because initial states in colliders are R_p EVEN, we can only pair produce SUSY particles
- The lightest superpartner is stable

ence & Technology

Baryon Number Violation

S

b

 $\tilde{g}\tilde{g}$ production dominates: we have some ideas on how to reinterpret current *non-SUSY* searches in terms of this model.

^aBCA and Ben Gripaios, coming soon

 $-\Delta$

ience & Technolog
Shopping List

Things that the CMS/ATLAS always provide that we need:

- Cuts and numbers of events observed past them
- Expected background numbers with systematic errors

We could really do with:

• Keeping in mind: we can't combine analyses that use the same events: much better to keep the events disjoint. Doesn't preclude fully inclusive analysis, but make the others as disjoint as possible.

ience & Technology

Edinburgh seminar: 2012

• Likelihood versus predicted number of events past cuts (before efficiency correction). Ideally, sanitized RooStats

B.C. Allanach – p. 31

Shopping List II

Failing that, then we must calculate the likelihood:

- Systematic errors on signals: perhaps at least a range over parameter space in one model. Ideally, it would be parameterised in terms of important quantities.
- Other contours (eg 1/5 sigma exclusion contours) so we can check our likelihood away from 95% excluded region.
- Numbers in histogram plots attached to arXiv publication

ence & Technology

Summary

- LHC has ruled out a significant portion of the most natural part of SUSY parameter space, but will require *nothing* at 14 TeV to dissuade most fans.
- Constrained models are now getting even more squeezed. Experiments are inviting theorists to do the interpretation in terms of their favourite SUSY breaking model.
- Current *missing energy type* searches reach squark and gluino masses of 1020 GeV (CMSSM), 900 GeV (mAMSB). Too early to give up on SUSY though.

ence & Technolog

• Another possibility: we haven't seen SUSY yet because R-parity is violated

Supplementary Material

Supersymmety, Cambridge

Edinburgh seminar: 2012

B.C. Allanach – p. 34

Before (left) and after (right) ATLAS 0-lepton exclusion limits.

Supersymmetry

Cambridge

Working grout

p. 36

Supersymmetry

Cambridge

Working grout

Edinburgh semina

Killer Inference for Susy METeorologyBCA, Cranmer, Weber, Lester, arXiv:0705.0487

- p. 37

Markov-Chain Monte Carlo

Metropolis-Hastings Markov chain sampling consists of list of parameter points $x^{(t)}$ and associated posterior probabilities $p^{(t)}$.

Final density of x points $\propto p$. Required number of points goes *linearly* with number of dimensions.

ience & Technology

Ice Cube

Neutralinos can become trapped in the sun $\tilde{h}^0 - Z$ coupling $\sigma_{\chi^0 p, SD} \propto [|N_{1d}|^2 - |N_{1u}|^2]^2$ dominates. $A^{\odot} \equiv \sigma v/V$:

Science & Technology

 $\dot{N} = C^{\odot} - A^{\odot} N^2$ $\Gamma = \frac{1}{2}A^{\odot}N^2 = \frac{1}{2}C^{\odot} \tanh^2\left(\sqrt{C^{\odot}A^{\odot}}t_{\odot}\right)$ $\frac{dN_{\nu_{\mu}}}{dE_{\nu_{\mu}}} = \frac{C_{\odot}F_{\mathrm{Eq}}}{4\pi D_{\mathrm{ES}}^2} \left(\frac{dN_{\nu}}{dE_{\nu}}\right)^{\mathrm{Inj}}$ $N_{\rm ev} \approx \int \int \frac{dN_{\nu_{\mu}}}{dE_{\nu_{\mu}}} \frac{d\sigma_{\nu}}{dy} R_{\mu}((1-y)E_{\nu}) A_{\rm eff} dE_{\nu_{\mu}} dy$

Naturalness priors

Edinburgh seminar: 2012

Ofking grout

Potential Problem

Often, people use a flat Q(x). The trouble with this *"blind drunk"* sampling is the following situation:

Bank Sampling

Figure 5: Bank points determined from previous runs: want to have at least one point in each maximum. *Knowledgeable drunk*

Proposal Distribution

$$Q_{bank}(\mathbf{x};\mathbf{x}^{(t)}) = (1-\lambda)K(\mathbf{x};\mathbf{x}^{(t)}) + \lambda \sum_{i=1}^{N} w_i K(\mathbf{x};\mathbf{y}^{(i)})$$

 w_i are a set of N weights: $\sum_{i=1}^{N} w_i = 1, 0 < \lambda < 1$, while K is the proposal distribution.

With probability $(1 - \lambda)$ propose a local Metropolis step of the usual kind, i.e. "close" to the last point in the chain. With probability λ , teleport to the vicinity of one of the number of "banked" points, chosen with weight w_i from within the bank.

Example Distribution

$$f_{2D}(\mathbf{x}) = \operatorname{circ}(\mathbf{x}; c_1, r_1, w_1) + \operatorname{circ}(\mathbf{x}; c_2, r_2, w_2)$$

here $c_1 = (-2, 0), r_1 = 1, w_1 = 0, 1, c_2(+4, 0)$

where $c_1 = (-2, 0), r_1 = 1, w_1 = 0.1, c_2(+4, 0), r_2 = 2, w_2 = 0.1$ and

Bank vs Metropolis

10 000 samples for MCMC and bank sampling:

Cambridge

Cambridge

Orking grow

Safety with respect to λ

10 bank samplers, with 10 bank points generated in each circle: 10 000 samples. All started from x = -2. Correct $\langle x \rangle = 2$. $\lambda \approx 1$ is importance sampling limit.

Q: What values of λ are "safe"? \mathcal{A} : [0.001, 0.9]

LHC Cross-sections

Science & Technology

Collider Check

Need corroboration with *direct detection*. If we can pin particle physics down, a comparison between the predicted relic density and that observed is a test of the cosmological assumptions used in the prediction.^{*a*} Thus, if it doesn't fit, you change the cosmology until it does.

^{*a*}BCA, G. Belanger, F. Boudjema, A. Pukhov, JHEP 0412 (2004) 20.; M. Nojiri, D. Tovey, JHEP 0603 (2006) 063

CMSSM Regions

After WMAP+LEP2, bulk region diminished. Need specific mechanism to reduce overabundance:

- *τ* coannihilation: small m₀, m_{τ̃1} ≈ m_{χ1}⁰.

 Boltzmann factor exp(-ΔM/T_f) controls ratio of species. *τ*₁χ₁⁰ → τγ, *τ*₁*τ*₁ → τ*τ*.
- Higgs Funnel: $\chi_1^0 \chi_1^0 \to A \to b\bar{b}/\tau\bar{\tau}$ at large $\tan \beta$. Also via^{*a*} *h* at large m_0 small $M_{1/2}$.
- Focus region: Higgsino LSP at large m_0 : $\chi_1^0 \chi_1^0 \rightarrow WW/ZZ/Zh/t\bar{t}.$
- \tilde{t} coannihilation: high $-A_0$, $m_{\tilde{t}_1} \approx m_{\chi_1^0}$. $\tilde{t}_1 \chi_1^0 \to gt$, $\tilde{t}\tilde{t} \to tt$

ence & Technolog

Comparison

- LHS: allowing non thermal- χ_1^0 contribution
- RHS: only χ_1^0 dark matter
- (flat priors)

Annihilation Mechanism

Define stau co-annihilation when $m_{\tilde{\tau}}$ is within 10% of $m_{\chi_1^0}$ and Higgs pole when $m_{h,A}$ is within 10% of $2m_{\chi_1^0}$.

	mechanism	flat prior	natural prior	
	h^0 -pole	0.025	0.07	
	A^0 -pole	0.41	0.14	
	$\tilde{\tau}-$ co-annihilation	0.26	0.18	
	rest	0.31	0.61	
$\chi_1^0 \qquad \overline{b}, \overline{\tau} \qquad \widetilde{\tau} \qquad \tau \qquad$				
χ_1^0		$ au \chi_1^0$	Zy	

 $\mathbf{1}$

Science & Technology Facilities Council

supersymmeth

Cambridge

Cambridge

- Fix $\tan \beta = 10$ and all SM inputs
- Restrict $m_0, M_{1/2} < 1$ TeV.
- *Same* fits!

No Dark Matter Fits

Huge χ^2 from the dark matter relic density.

Edinburgh seminar: 2012

Volume Effects

Can't rely on a good χ^2 in non-Gaussian situation

Likelihood and Posterior

Q: What's the chance of observing someone to be pregnant, given that they are female?

Likelihood p(pregnant | female, human) = 0.01Posterior p(female | pregnant, human) = 1.00

cience & Technology acilities Council

Sanity Check

LHC vs LC in SUSY Measurement

• LHC (start date 2007) produces strongly interacting particles up to a few TeV. Precision measurements of mass *differences* possible if the decay chains exist: possibly per mille for leptons, several percent for jets.

• ILC has several energy options: 500-1000 GeV, CLIC up to 3 TeV. Linear colliders produce less strong particles but much easier to make precision measurements of masses/couplings.

Q: What energy for LC?*Q*: What do we get from LHC^a?

^aLHC/ILC Working Group Report: hep-ph/0410364

ence & Technology

Ofking grou

Convergence

We run 9×1000000 points. By comparing the 9 independent chains with random starting points, we can provide a statistical measure of convergence: an upper bound r on the excepted variance decrease for infinite statistics.

 $m_{ll}^2 = \frac{(m_{\chi_2^0}^2 - m_{\tilde{l}}^2)(m_{\tilde{l}}^2 - m_{\chi_1^0}^2)}{m_{\tilde{l}}^2 - m_{\tilde{l}}^2}$

Q: Can we measure enough of these to pin SUSY^{*a*} down?

Cambridge Orking grow

Predicting Ωh^2

Not much left that's allowed but edge measurements allow reasonable $\Omega h^2 \operatorname{error}^a$ for 300 fb⁻¹.

Q: What about other bits of parameter space? Nojiri, G Polesello, D Tovey, JHEP 0603 (2006) 063, ^{a}M hep-ph/0512204. Edinburgh seminar: 2012

B.C. Allanach – p. 60

Bulk Region

M Nojiri, G Polesello, D Tovey, JHEP 0603 (2006) 063, hep-ph/0512204. for 300 fb⁻¹. SPA point $m_0 = 70 \text{ GeV}, m_{1/2} = 250 \text{ GeV}, A_0 = -300 \text{ GeV},$ $\tan \beta = 10, \mu > 0$: $\Omega h^2 = 0.108$. Put in $m_{ll}^{max}, m_{llq}^{max},$ $m_{lq}^{low}, m_{lq}^{high}, m_{llq}^{min}, m_{lL} - m_{\chi_1^0}, m_{ll}^{max}(\chi_4^0), m_{\tau\tau}^{max}, m_h.$

$$\begin{array}{cccc} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \to \ell^{+}\ell^{-} & 40\% \\ \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \to \tau^{+}\tau^{-} & 28\% \\ \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \to \nu\bar{\nu} & 3\% \\ \tilde{\chi}_{1}^{0}\tilde{\tau}_{1} \to Z\tau & 4\% \\ \tilde{\chi}_{1}^{0}\tilde{\tau}_{1} \to A\tau & 18\% \\ \tilde{\tau}_{1}\tilde{\tau}_{1} \to \tau\tau & 2\% \end{array}$$

Neutralino mass matrix

Neutralino masses measured: $\chi^0_{1,2,4}$ but need mixing matrix to determine couplings. Left with $\tan \beta$.

M_1	0	$-m_Z c_\beta s_W$	$m_Z s_\beta s_W$ -
0	M_2	$m_Z c_eta c_W$	$-m_Z s_\beta c_W$
$-m_Z c_\beta s_W$	$m_Z c_eta c_W$	0	$-\mu$
$m_Z s_eta s_W$	$-m_Z s_\beta c_W$	$-\mu$	0

Science & Technology Facilities Council

 $\begin{array}{c} \mathbf{1} \\ \mathbf{$

Cambridge

Orking groun

Neutralino mass matrix

Neutralino masses measured: $\chi^0_{1,2,4}$ but need mixing matrix to determine couplings. Left with $\tan \beta$.

Edinburgh seminar: 2012

Slepton/*A*⁰ **Higgs**

 $\Gamma(\chi_2^0 \to \tilde{l}_R l) / \Gamma(\chi_2^0 \to \tilde{\tau}_1 \tau)$ then helps determine θ_{τ} for a given $\tan \beta$. Exclusion of A^0 helps you to exclude A^0 appearing in cascade decays. Meaurement of m_h provides constraints in $m_A - \tan \beta$ plane.

Edinburgh seminar: 2012

V

Uncertainties in Relic Density

Bulk region: $\tilde{B}\tilde{B} \to Z, h \to l\bar{l}$. Coannihilation: $\tilde{\tau}\chi_1^0 \to \tau + X$

Figure 7: Bulk/coannihilation region. Full: SoftSusy, dotted: SPheno.

Orking grout

Focus Point

Science & Technology Facilities Council

al

High $\tan \beta$

BCA, Belanger, Boudjema, Pukhov, Porod, hep-ph/0402161. Baer et

 Ωh^2 Ωh 10 10 SoftSUSY 10 10 10^2 $\tan\beta = 52$ 10 $\tan\beta = 52$ $M_0 = 1500 \text{GeV}$ $M_{0} = 1500 \, \text{GeV}$ $M_{1/2} = 1300 \text{GeV}$ -310 10 2000 500 1000 1500 4.1 4.2 4.3 4 4 m₀(GeV) $M_{1/2}(GeV)$

Figure 9: High $\tan \beta$ region. Full: SoftSusy, dotted: SPheno, dashed: SuSpect. Get annihilation into A.

SUSY Kinematics: a Reminder

Take a particle decaying into 2 particles, eg $H^0 \rightarrow b\overline{b}$. We define the invariant mass of the $b\overline{b}$ pair such that:

Is *invariant* in boosted frames *Question*: What happens to invariant mass in SUSY cascade decays, where we miss the final particle?

ience & Technology

Cascade Decay $l^{-} \qquad p^{\mu}_{\tilde{l}} = (m_{\tilde{l}}, \underline{0})$ $p_{l^{\pm}}^{\mu} = (|\underline{p}_{l^{\pm}}|, \underline{p}_{l^{\pm}})$ $\underbrace{\tilde{l}}_{-} \underbrace{\tilde{l}}_{-} \underbrace{\chi_{1}^{0}}_{\chi_{1,2}^{0}} p_{\chi_{1,2}^{0}}^{\mu} = \left(\sqrt{m_{\chi_{1,2}^{0}}^{2} + |\underline{p}_{\chi_{1,2}^{0}}|^{2}}, \underline{p}_{\chi_{1,2}^{0}}\right)$ χ^0_2 The invariant mass of the $l^+ l^{-2}$ pair is $m_{ll}^2 = (p_{l^+} + p_{l^-})^{\mu} (p_{l^+} + p_{l^-})_{\mu} = p_{l^+}^2 + p_{l^-}^2 + 2p_{l^+} \cdot p_{l^-}$ $= 2|\underline{p}_{l^+}||\underline{p}_{l^-}|(1 - \cos \theta) \le 4|\underline{p}_{l^+}||\underline{p}_{l^-}|.$ Momentum conservation: $\Rightarrow \underline{p}_{\chi_2^0} + \underline{p}_{l^+} = \underline{0}, \qquad \underline{p}_{l^-} + \underline{p}_{\chi_1^0} = \underline{0}.$ Energy conservation: $\sqrt{m_{\chi_2^0}^2 + |\underline{p}_{l^+}|^2} = m_{\tilde{l}} + |\underline{p}_{l^+}|$, $\Rightarrow |\mathbf{p}_{l^+}| = \frac{m_{\chi_2^0}^2 - m_{\tilde{l}}^2}{2m_{\tilde{l}}}$. Similarly $|\mathbf{p}_{l^-}| = \frac{m_{\tilde{l}}^2 - m_{\chi_1^0}^2}{2m_{\tilde{l}}}$.

Mass differences well constrained, but overall mass scale not so well constrained by LHC

Fitting to SUSY Breaking Model

- Experimenters pick a SUSY breaking point
- They derive observables and errors after detector simulation
- We fit^{*a*} this "data" with our codes

^aBCA, S Kraml, W Porod, JHEP 0303 (2003) 016

Science & Technology Facilities Council

supersymmetry

Working grout

Cambridge

Edge Fitting at S5 and O1

Supersymmetry

Cambridge Working grout

Å Å

•

¥

Edge Positions

endpoint	S5 fit	O1 fit
m_{ll}	109.10 ± 0.13	70.47 ± 0.15
$m_{llq} \; { m edge}$	532.1±3.2	544.1 ± 4.0
lq high	483.5 ± 1.8	$515.8{\pm}7.0$
lq low	321.5 ± 2.3	249.8 ± 1.5
llq thresh	266.0 ± 6.4	182.2±13.5

Best case lepton mass measurements can be as accurate as 1 per mille, but jets are a few percent

Other Observables

Often more complicated, eg m_{llq} edge:

$$\frac{(m_{\tilde{q}}m_{\tilde{l}} - m_{\chi_2^0}m_{\chi_1^0})(m_{\chi_2^0}^2 - m_{\tilde{l}}^2)}{m_{\chi_2^0}m_{\tilde{l}}}$$

Also m_{lq}^{high} , m_{lq}^{low} , llq threshold ^a, $M_{T_2}^2(m) = \min_{\not p_1 + \not p_2 = \not p_T} \left[\max \left\{ m_T^2(p_T^{l_1}, \not p_1, m), m_T^2(p_T^{l_2}, \not p_2, m) \right\} \right]$

 $\max_{\text{Edinburgh seminar: 2012}} \max[M_{T_2}(m_{\chi_1^0})] = m_{\tilde{l}}] \text{ for dislepton production.}$

Same order prior

We wish to encode the idea that "SUSY breaking terms should be of the same order of magnitude"

$$p(m_0|M_S) = \frac{1}{\sqrt{2\pi w^2}m_0} \exp\left(-\frac{1}{2w^2}\log^2(\frac{m_0}{M_S})\right),$$

$$p(A_0|M_S) = \frac{1}{\sqrt{2\pi e^{2w}}M_S} \exp\left(-\frac{1}{2e^{2w}}\frac{A_0^2}{M_S^2}\right),$$
We don't know SUSY breaking scale M_S :

 $\int dM_S \ p(m_0, M_{1/2}, A_0, \mu, B | M_S) \ p(M_S)$

 $p(m_0, M_{1/2}, A_0, \mu, B) =$

Naturalness

$$M_{Z}^{2} = \tan 2\beta \left[m_{H_{2}}^{2} \tan \beta - m_{H_{1}}^{2} \cot \beta \right] - 2\mu^{2}$$

Cancellation implied by sparticle mass bounds. Quantify by

$$f = \max_{x} \{ \left\| \frac{d \ln M_Z^2}{d \ln x} \right\| \}$$

where $x \in \{M_{1/2}, m_0, A_0, \mu, B\}$. We will choose the prior to be 1/f.

Fine Tuning

Compare with usual definition of *fine-tuning*:

 $f = \max_p \frac{d \ln M_Z}{d \ln p}$

SPS1a Point $M_{1/2} = 250 \text{ GeV}$ $\tan \beta = 10 \text{ GeV}$ $A_0 = -100 \text{ GeV}$