Lattice QCD measurement of the strong coupling constant

Benoît Blossier

LPT Orsay

Edinburgh, 22nd February 2012

• Phenomenological considerations
• Hints of lattice QCD
• Hadronic and finite volume schemes
• Fixed gauge approach
Phenomenological considerations

A major activity in Particle Physics is nowadays the search of Higgs boson, whose the existence might explain the spontaneous symmetry breaking of $SU(2)_W \times U(1)_Y$ predicted by the Standard Model and observed in Nature.

[ATLAS, ’12; Lepton-Photon ’11]

ATLAS has excluded at 95% of CL the region $131 < m_H < 238$ GeV (and also the mass range $251 < m_H < 466$ GeV). Hint of a signal around 125 GeV, both for ATLAS and CMS, in $h \rightarrow \gamma\gamma$ and $h \rightarrow 4l$.
Different modes of Higgs boson production:

Gluon fusion

![Gluon fusion diagram](image)

Associated production with \(\bar{Q}Q \)

![Associated production with \(\bar{Q}Q \) diagram](image)

Higgs strahlung

![Higgs strahlung diagram](image)

Vector boson fusion

![Vector boson fusion diagram](image)

Gluon fusion highly favored w.r.t. other Higgs production processes

Good hope to observe a SM Higgs, if existing, at LHC
Estimating as accurately as possible $\sigma_{gg \rightarrow H \rightarrow X}^{th}$ is an important ingredient to assess the detectors sensitivity to the Higgs physics. Several sources of uncertainty:

- NNNLO (QCD) and NNLO (EW) corrections
- factorisation scale uncertainties
- error on $H \rightarrow X$
- parton distribution functions and $\delta(\alpha_s)$

\[
\Delta \sigma_{gg \rightarrow H \rightarrow X}^{NNLO} \sim 20 - 25\% \text{ at LHC (}\sqrt{s} = 7 \text{ TeV)}, \text{ with 2-3 } \% \text{ from } \delta\alpha_s
\]
Plenty of α_s estimates based on experimental data analysis.

Parton Distribution Function in DIS

\[
\alpha_s^{\text{NNLO, DIS}}(m_Z) = 0.1171(14) \quad 68\% \text{ CL}
\]

Event-shape in e^+e^- collisions

\[\ldots\]
Phenomenological analysis of the τ decay into hadrons provides another way to extract α_s.

\[R_\tau \equiv \frac{\Gamma[\tau^- \to \nu_\tau \text{ hadrons}]}{\Gamma[\tau^- \to \nu_\tau e^- \bar{\nu}_e]} \]

\[R_{\tau, V+A} = N_c |V_{ud}|^2 S_{EW} (1 + \delta_P + \delta_{NP}), \quad \delta_{NP} = -0.0059(14) \quad [\text{Davier et al, '08}] \]

\[\delta_P = \sum_n K_n A^{(n)}(\alpha_s) = \sum_n (K_n + g_n)\alpha^n(m_\tau) \]

\[A^{(n)} = \frac{1}{2\pi i} \int_{|s|=m_\tau^2} ds \left(\frac{\alpha_s(-s)}{\pi} \right)^n \left(1 - \frac{s}{m_\tau^2} + \frac{s^3}{m_\tau^6} - \frac{s^4}{m_\tau^8} \right) = \alpha^n(m_\tau) + O(\alpha^{n+1}(m_\tau)) \]

Fixed Order Perturbation Theory (FOPT) vs Contour Improved Perturbation Theory (CIPT):
\[\alpha_s(m_\tau)_{\text{CIPT}} = 0.344(14) \quad \alpha_s(m_\tau)_{\text{FOPT}} = 0.321(15) \quad [\text{A Pich, '11}] \]
Hints of lattice QCD

Discretisation of QCD in a finite volume of Euclidean space-time.

The lattice spacing a is a non perturbative UV cut-off of the theory.

Fields: $\psi^i(x)$, $U_\mu(x) \equiv e^{iag_0A_\mu(x+a^\mu/2)}$.

Inputs: bare coupling $g_0(a) \equiv \sqrt{6/\beta}$, bare quark masses m_i.

Computation of Green functions of the theory from first principles:

\[
\langle O(U, \psi, \bar{\psi}) \rangle = \frac{1}{Z} \int DU D\psi D\bar{\psi} O(U, \psi, \bar{\psi}) e^{-S(U, \psi, \bar{\psi})}
\]

\[
Z = \int DU D\psi D\bar{\psi} e^{-S(U, \psi, \bar{\psi})}
\]

\[
S(U, \psi, \bar{\psi}) = S^{YM}(U) + \bar{\psi}_x M^{ij}_{xy}(U) \psi^j
\]

\[
Z = \int DU \text{Det}[M(U)] e^{-S^{YM}(U)} \equiv \int DU e^{-S_{\text{eff}}(U)}
\]

Monte Carlo simulation: $\langle O \rangle \sim \frac{1}{N_{\text{conf}}} \sum_i O\{U\}_i$:

we have to build the statistical sample $\{U\}_i$ in function of the Boltzmann weight $e^{-S_{\text{eff}}}$. Incorporating the quark loop effects hidden in $\text{Det}[M(U)]$ is particularly expensive in computer time. Crucial in the extraction of α_s.
Simulations set up

In the past years tremendous progresses have been made by the lattice community to perform simulations that are closer to the physical point.

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>(N_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLS</td>
<td>2</td>
</tr>
<tr>
<td>ETMC</td>
<td>2</td>
</tr>
<tr>
<td>QCDSF</td>
<td>2</td>
</tr>
<tr>
<td>BGR</td>
<td>2</td>
</tr>
<tr>
<td>JLQCD</td>
<td>2</td>
</tr>
<tr>
<td>TWQCD(plaq)</td>
<td>2</td>
</tr>
<tr>
<td>TWQCD(Iwa)</td>
<td>2</td>
</tr>
<tr>
<td>BMW(HEX)</td>
<td>2 + 1</td>
</tr>
<tr>
<td>BMW(stout)</td>
<td>2 + 1</td>
</tr>
<tr>
<td>PACS-CS</td>
<td>2 + 1</td>
</tr>
<tr>
<td>QCDSF</td>
<td>2 + 1</td>
</tr>
<tr>
<td>JLQCD</td>
<td>2 + 1</td>
</tr>
<tr>
<td>RBC-UKQCD</td>
<td>2 + 1</td>
</tr>
<tr>
<td>MILC</td>
<td>2 + 1</td>
</tr>
<tr>
<td>MILC</td>
<td>2 + 1 + 1</td>
</tr>
<tr>
<td>ETMC</td>
<td>2 + 1 + 1</td>
</tr>
</tbody>
</table>

![Graph showing data points and parameters](image-url)
Improvements in algorithms

2001: \(N_{\text{op}} = k_1 \left(\frac{20 \text{ MeV}}{m_q} \right)^3 \left(\frac{L}{3 \text{ fm}} \right)^5 \left(\frac{0.1 \text{ fm}}{a} \right)^7 \) TFlops × years ("Berlin Wall")

2007: \(N_{\text{op}} = 0.01 k_1 \left(\frac{20 \text{ MeV}}{m_q} \right)^1 \left(\frac{L}{3 \text{ fm}} \right)^5 \left(\frac{0.1 \text{ fm}}{a} \right)^6 \) TFlops × years (deflation)

Regularisation of quarks and gluons with a smooth spectrum in the UV regime, mass shift, multi-step/Omelyan integrators, e/o preconditioning, domain decomposition, deflation,...

[M. Lüscher, '03] [M. Lüscher, '06]
Hadronic and finite volume schemes

Those schemes are based on hadronic quantities to fix the parameters (quark masses, renormalised coupling). It is not necessary to fix the gauge.

Hadronic schemes I [C. Davies et al, '08]

- u/d, s and c quark masses are tuned from m_π, $2m_K^2 - m_\pi^2$ and m_η_c while the lattice spacing is extracted from the Υ spectrum.

- One computes Wilson loops $\mathcal{W}_{m,n}$ that one develops at short distance $r = a/d$ in perturbation theory: $\mathcal{W}_{m,n} = \sum_{i=1}^{\infty} c_i \alpha_V^i (d/a)$.

- $\alpha_V(q)$ defined by $V(q) = \frac{C_f 4 \pi \alpha_V(q)}{q^2}$ (one-gluon exchange part of the potential) [P. Lepage and P. McKenzie, '92].

- The series converges better by considering $\ln(\mathcal{W}_{m,n})$, $\ln(\mathcal{W}_{m,n}') \equiv \ln[\mathcal{W}_{m,n}/\mathcal{W}_{11}^{(m+n)/2}]$ (tadpole improvement), and even better, Creutz ratios $\ln \left(\frac{\mathcal{W}_{m,n+1}}{\mathcal{W}_{m,n}} \frac{\mathcal{W}_{m-1,n+1}}{\mathcal{W}_{m-1,n}} \right)$.

- One subtracts a gluon-condensate term $-\frac{\pi^2}{36} A^2 \langle \alpha_s G^2 / \pi \rangle$ to the lattice results to compare with perturbation theory.

- Running of $\alpha_V(d/a)$ to $\alpha_0 \equiv \alpha_V(7.5 \text{ GeV})$, conversion to $\alpha_{\overline{\text{MS}}}(m_Z, N_f = 5) = 0.1183(8)$.
Hadronic schemes II [I. Allison et al, ’08, C. McNeile et al, ’10]

– Strategy to tune the bare quark mass parameters and a already discussed.

– Consider $G(t) = a^6 \sum_x (a m_{0h})^2 \langle J_5(x, t) J_5(\vec{0}, 0) \rangle$, $J_5 = \bar{\psi}_c \gamma^5 \psi_c$.

– Define the n^{th} moment of the correlator $G_n = (t/a)^n \sum_t G(t)$, its counterpart $G_n^{(0)}$ known at lowest order of perturbation theory, $R_4 \equiv G_4/G_4^{(0)}$ and $R_{n \geq 6} = \frac{a m_{0h}}{a m_{0h}} \left(\frac{G_n}{G_n^{(0)}} \right)^{1/(n-4)}$.

– Those R_n have an expression in continuum perturbation theory: $R_4 = r_4(\alpha_{MS}, \mu/m_h)$ and $R_{n \geq 6} = \frac{r_n(\alpha_{MS}, \mu/m_h)}{2 m_h(\mu)/m_{\eta h}}$.

– Power corrections to the perturbative expression of moments are taken into account by including a factor $1 + d_n \langle \alpha_s G^2 / \pi \rangle / (2 m_h)^4$.

Despite the errant structure of cut-off effects in R_n, one can extract from that analysis $\alpha_{MS}(m_Z, N_f = 5) = 0.1183(7)$.

![Graph](image-url)
Finite volume scheme

Partition function: \[\mathcal{Z}[C, C'] = \langle C' | e^{-H^T} | C \rangle \] [K. Symanzik, '81]

\(C(x_0 = 0) \) and \(C'(x_0 = T) \) are 2 field configurations that are given.

The Schrödinger Functional \(\mathcal{Z} \) is renormalisable with Yang-Mills theories. [M. Lüscher et al, '92]

The associated renormalisation scheme is of finite volume kind and regularisation independent:

\[
\Gamma(B) \equiv - \ln \mathcal{Z}[C, C'] = g_0^{-2} \Gamma_0[B] + \Gamma_1[B] + g_0^2 \Gamma_2[B] + \ldots \quad \left. \frac{\delta S}{\delta \Phi} \right|_{\Phi = B} = 0
\]

\[
C^{(')} \equiv C^{(')}(\eta) \quad \bar{g}^2(L) = \left[\frac{\partial \Gamma_0(B)}{\partial \eta} \right] / \left[\frac{\partial \Gamma(B)}{\partial \eta} \right] \bigg|_{\eta=0} \quad \bar{g}^2(L) = \left. \left\langle \frac{\partial S}{\partial \eta} \right\rangle \right|_{\eta=0}
\]
The running of the coupling constant is obtained from step scaling functions
\[\sigma(u) = \lim_{a/L \to 0} \Sigma(u, a/L), \quad \Sigma(u, a/L) = \bar{g}^2(2L)\bar{g}^2(L) = u; \]
\[\sigma(u) \] is an integrated \(\beta \) function at discrete points.

Several tuning simulations are necessary to fix \(\bar{g}^2(L) = u \) for a given \(L/a \).

Computation of the RGI \(\Lambda \) scale [M. Lüscher et al, '93]:

\[\Lambda_{SF} = \frac{1}{L} \left[\beta_0 \bar{g}(L) \right]^{-\frac{\beta_1}{2\beta_0^2}} \exp \left(-\frac{1}{2\beta_0 \bar{g}(L)} \right) \exp \left[-\int_0^{\bar{g}(L)} dg \left(\frac{1}{\beta(g)} + \frac{1}{\beta_0 g^3} - \frac{\beta_1}{\beta_0^2 g} \right) \right] \]

\[\beta(g) = -g^3(\beta_0 + \beta_1 g^2 + \beta_2 g^4 + \cdots) \]
Starting from \((L_{\text{max}}, \bar{g}^2(L_{\text{max}}))\), one uses the step scaling functions to follow the RG flow and reach \((L \equiv 2^{-n} L_{\text{max}}, \bar{g}^2(L))\).

One can finally extract \(\Lambda_{\text{SF}} L_{\text{max}}\) and, more interesting for phenomenology, \(\Lambda_{\overline{\text{MS}}}\).

One needs a physical input to convert the numbers obtained on the lattice to physical units. Ambiguity: \(r_0, f_K\) or \(f_\pi\) at \(N_f = 2\), \(m_\Omega\) at \(N_f = 2 + 1\).

\[\Lambda_{\overline{\text{MS}}} = 340(30) \text{ MeV} \quad \alpha_s(m_Z) = 0.12047(81)(48)(-173)\]

\[r_0 \Lambda_{\overline{\text{MS}}}^{N_f=2} = 0.73(3)(5) \quad \text{[F. Knechtli and B. Leder, '10]}\]

\[\Lambda_{\overline{\text{MS}}}^{N_f=2} = 316(26)(17) \text{ MeV} \quad \text{[M. Marinkovic et al, '11]}\]
Fixed gauge approach

Another very popular way to extract α_s is the analysis of Green functions. It is necessary to fix the gauge so that $\langle O_{q,G,F} \rangle \neq 0$.

3-gluon vertex [B. Alles *et al*, '97; Ph. Boucaud *et al*, '98, '01]

$$A_\mu(x + \hat{\mu}/2) = \left[\frac{U_\mu(x) - U_\mu^\dagger(x)}{2i a_0} \right]_{\text{traceless}} A_\mu(p) = \int e^{ipx} A_\mu(x)$$

- Consider $G_{\mu\nu}^{(2)}(p) = \langle A_\mu(p) A_\nu(p) \rangle \equiv G(p^2) \left(\delta_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right)$ and

 $$G_{\mu\nu\rho}^{(3)}(p_1, p_2, p_3) = \langle A_\mu(p_1) A_\nu(p_2) A_\rho(p_3) \rangle$$

 $$\equiv \Gamma_{\alpha\beta\gamma}(p_1, p_2, p_3) G_{\alpha\mu}^{(2)}(p_1) G_{\beta\nu}^{(2)}(p_2) G_{\gamma\rho}^{(2)}(p_3)$$

- RI-MOM renormalisation scheme: $Z_3^{-1}(\mu) G(p)|_{p^2 = \mu^2} = \frac{1}{\mu^2}$ and

 $$\sum_{\alpha=1}^4 G_{\alpha\beta\alpha}(p,0,-p) = 6i Z_1^{-1}(p) g_0 p_\beta \text{ (MOM)}.$$

- The renormalised coupling is then defined by

 $$g_R(\mu) = Z_3^{3/2}(\mu) Z_1^{-1}(\mu) g_0.$$

- One fits $\alpha_s^{\text{Latt}}(\mu^2) = \alpha_{s,\text{pert}}(\mu^2) \left(1 + \frac{c}{\mu^2} \right)$

- From configurations with $N_f = 2$ Wilson fermions, it was found $\alpha_s(m_Z) = 0.113(3)(4)$.

[Diagram of 3-gluon vertex]
Ghost-gluon vertex [A. Sternbeck *et al*, '07; Ph. Boucaud *et al*, '08; B. Blossier *et al*, '11, '12]

In Landau gauge, bare gluon and ghost propagators read

\[
\left(G^{(2)} \right)^{ab \mu \nu}_{p^2}(p^2, \Lambda) = \frac{G(p^2, \Lambda)}{p^2} \delta_{ab} \left(\delta_{\mu \nu} - \frac{p_\mu p_\nu}{p^2} \right) \quad \left(F^{(2)} \right)^{ab}_{p^2}(p^2, \Lambda) = -\delta_{ab} \frac{F(p^2, \Lambda)}{p^2}
\]

Renormalized dressing functions \(G_R \) and \(F_R \) are defined through

\[
G_R(p^2, \mu^2) = \lim_{\Lambda \to \infty} Z_3^{-1}(\mu^2, \Lambda) G(p^2, \Lambda) \quad F_R(p^2, \mu^2) = \lim_{\Lambda \to \infty} \tilde{Z}_3^{-1}(\mu^2, \Lambda) F(p^2, \Lambda)
\]

\[
G_R(\mu^2, \mu^2) = F_R(\mu^2, \mu^2) = 1
\]

The amputated ghost-gluon vertex is given by

\[
\tilde{\Gamma}^{abc\nu}_{\mu}(q, k; q-k) = -\Gamma^{abc\nu}_{\mu} = ig_0 f^{abc}_{\nu} (q_\nu H_1(q, k) + (q-k)_\nu H_2(q, k))
\]

The renormalised vertex is \(\tilde{\Gamma}_R = \tilde{Z}_1 \Gamma \) \quad MOM prescription:

\[
(H_1^R(q, k) + H_2^R(q, k)) \bigg|_{q^2=\mu^2} = \lim_{\Lambda \to \infty} \tilde{Z}_1(\mu^2, \Lambda) (H_1(q, k; \Lambda) + H_2(q, k; \Lambda)) \bigg|_{q^2=\mu^2} = 1
\]
In terms of H_1 and H_2 scalar form factors, one has

$$g_R(\mu^2) = \lim_{\Lambda \to \infty} \frac{Z_3(\mu^2, \Lambda) Z_3^{1/2}(\mu^2, \Lambda) g_0(\Lambda^2)}{Z_1(\mu^2, \Lambda^2)} \left(H_1(q, k; \Lambda) + H_2(q, k; \Lambda) \right)_{q^2 \equiv \mu^2}$$

$$= \lim_{\Lambda \to \infty} g_0(\Lambda^2) \frac{Z_3^{1/2}(\mu^2, \Lambda^2) Z_3(\mu^2, \Lambda^2)}{Z_1(\mu^2, \Lambda^2)}$$

The case of MOM scheme with zero incoming ghost momentum corresponds to a kinematical configurations where the non-renormalisation theorem by Taylor applies [J. Taylor, '71]

$$\tilde{\Gamma}^{abc}_{\nu}(-q, 0; q) = ig_0 f^{abc} (H_1(q, 0) + H_2(q, 0)) q_\nu \quad H_1(q, 0; \Lambda) + H_2(q, 0; \Lambda) = 1 \quad \tilde{Z}_1(\mu^2) = 1$$

Taylor scheme: $\alpha_T(\mu^2) \equiv \frac{g_T^2(\mu^2)}{4\pi} = \lim_{\Lambda \to \infty} \frac{g_0^2(\Lambda^2)}{4\pi} G(\mu^2, \Lambda^2) F^2(\mu^2, \Lambda^2)$

😊 Only gluon and ghost propagators are involved to extract $\alpha_T(\mu^2)$, the ghost-gluon vertex is not required. \tilde{Z}_1 is equal to 1 only in Taylor scheme.

Several steps are necessary to get from lattice simulations $\alpha_T(\mu^2)$ with a good control on systematic errors.
ETMC $N_f=2+1+1$ ensembles: $a^\beta=2.1 \sim 0.06$ fm, $a^\beta=1.95 \sim 0.08$ fm, $a^\beta=1.9 \sim 0.09$ fm, $m_\pi \in [250-325]$ MeV

Landau gauge is obtained by standard methods: minimisation of $A^\mu A_\mu$, overrelaxation, Fourier acceleration

Ghost propagator $F^{(2)}(x-y)\delta^{ab} = \left\langle \left[\left(\mathcal{M}^{\text{lat}}_{FP} \right)^{-1} \right] \right\rangle$, lattice Faddeev-Popov $\mathcal{M}^{\text{lat}}_{FP}$ defined by

$$\mathcal{M}^{\text{lat}}_{FP} \omega = \frac{1}{V} \sum_\mu \left\{ G^{ab}_\mu(x) \left(\omega^b(x + e_\mu)\omega^b(x) - (x \leftrightarrow x - e_\mu) \right) + \frac{1}{2} f^{abc} \omega^b(x + e_\mu) A^c_\mu \left(x + \frac{e_\mu}{2} \right) - \omega^b(x - e_\mu) A^c_\mu \left(x - \frac{e_\mu}{2} \right) \right\}$$

$$G^{ab}_\mu(x) = -\frac{1}{2} \text{Tr} \left[\left\{ t^a, t^b \right\} \left(U_\mu(x) + U_\mu^\dagger(x) \right) \right] \quad A^c_\mu \left(x + \frac{e_\mu}{2} \right) = \text{Tr} \left[t^c \left(U_\mu(x) - U_\mu^\dagger(x) \right) \right]$$

It is crucial to properly eliminate lattice artifacts: $O(a^2 p^2)$ (O(4) invariant) but remove also $H(4)$ invariant artifacts [F. de Soto and C. Roiesnel, ’07]:

$$\alpha_T^{\text{Latt}} \left(a^2 p^2, a^2 \frac{p^{[4]}}{p^2}, \ldots \right) = \hat{\alpha}_T(a^2 p^2) + \left. \frac{\partial \alpha_T^{\text{Latt}}}{\partial \left(a^2 \frac{p^{[4]}}{p^2} \right) \left| a^2 \frac{p^{[4]}}{p^2} = 0 \right.} \right| a^2 \frac{p^{[4]}}{p^2} + \ldots \frac{a^2 p^{[4]}}{p^2} = \sum_i p_i^{[4]}$$
"fishbone" structure clearly visible for F small statistical errors on $\hat{\alpha}_T(p^2)$

$F(p^2)$

$\hat{\alpha}_T(p^2)$

$a \sim 0.08 \text{ fm}$

$a \sim 0.06, 0.08 \text{ fm}$

Remaining $O(a^2p^2)$ artifacts are taken into account by fitting data according to the formula

$$\hat{\alpha}_T(a^2p^2) = \alpha_T(p^2) + c_{a2p2} a^2 p^2 + O(a^4)$$

Power corrections to the OPE read

$$\alpha_T(\mu^2) = \alpha_T^{\text{pert}}(\mu^2) \left[1 + \frac{9}{\mu^2} R(\alpha_T^{\text{pert}}(\mu^2), \alpha_T^{\text{pert}}(q_0^2)) \left(\frac{\alpha_T^{\text{pert}}(\mu^2)}{\alpha_T^{\text{pert}}(q_0^2)} \right)^{1-\gamma^A_0/\beta_0} g_T^2(q_0^2) \langle A^2 \rangle R_{q_0^2}^2 \right]$$

Wilson coefficient ($q_0 = 10 \text{ GeV}$): $R(\alpha, \alpha_0) = (1 + 1.18692\alpha + 1.45026\alpha^2 + 2.44980\alpha^3) \times (1 - 0.54994\alpha_0 - 0.13349\alpha_0^2 - 0.10955\alpha_0^3)$

Finally α_T^{pert} is expressed in function of Λ_T with $\frac{\Lambda_{\text{MS}}}{\Lambda_T} = \exp \left(-\frac{507 - 40N_f}{792 - 48N_f} \right)$
Data from different masses and lattice spacings merged by rescaling the momenta to a common unit. Rescaling factors enter the data fit, as well as $a(\beta)\Lambda_{\text{MS}}$, $a^2(\beta)g^2\langle A^2 \rangle$ and $c_a a^2 p^2$; a-independence of $c_a a^2 p^2$ and the smallness of higher order cut-off effects is checked:

$$\alpha_{\text{Latt}}^{\beta=2.1}(a(1.95)p) - \alpha_{\text{Latt}}^{\beta=1.95}(a(1.95)p) = \left(\frac{a^2(2.1)}{a^2(1.95)} - 1 \right) c_a a^2 p^2 a^2(1.95) p^2 + o(a^2(1.95) p^2)$$

At low ap the precise interpolating $O(a^0)$ formula to match data from different a is not crucial.
Our data confirm, once more, the necessity to include a (gauge-artifact) power correction.

\[a(1.95)p \leq 1.5, \text{ need to include a } \frac{d}{p^6} \text{ term (at this point, no physical interpretation)} \]

<table>
<thead>
<tr>
<th>(\Lambda_{MS}^{N_f=4}) (MeV)</th>
<th>(g^2(q_0^2)\langle A^2 \rangle_{q_0^6}^R) (GeV(^2))</th>
<th>(d^{1/6}) (GeV)</th>
<th>(\alpha(m_Z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>316(13)</td>
<td>4.5(4)</td>
<td></td>
<td>0.1198(9)</td>
</tr>
<tr>
<td>324(17)</td>
<td>3.8(1.0)</td>
<td>1.72(3)</td>
<td>0.1203(11)</td>
</tr>
</tbody>
</table>
\[N_f = 2 + 1 + 1 \]

ETMC ’12

N_f = 2 + 1

PACS-CS ’11

N_f = 2 + 1

HPQCD ’10

DIS

MSTW ’08

WA ’10

WA ’’12

\[\alpha_s(m_Z) \]

WA: PDG world average

WA ’: world average replacing \(N_f = 2 + 1 \) lattice results by \(N_f = 2 + 1 + 1 \)
A last word about $\alpha(m_\tau)$

Nice agreement between lattice data and phenomenological analyses: $\alpha_s(m_\tau) = 0.339(13)$
Outlook

- As the production at LHC of energetic particles like the Higgs boson comes from pp collisions, it is welcome to reduce as much as possible the QCD part of the uncertainty on their theoretical production rate, in order to well estimate the detectors sensitivity to their physics.

- Beyond the uncertainty on PDF’s and intermediate ingredients in the computations, like the factorisation scale, a non negligible part of the theoretical error comes from α_s.

- Several experimental ways to determine α_s exist: DIS, event-shape. Quite large uncertainty $\sim 2.5\%$ for the latter (hadronisation effects,...). τ decay analysis by OPE (discrepancy of 1.5σ between CIPT and FOPT, 6% of uncertainty).

- Lattice QCD is appropriate to extract α_s. Popular methods consists in studying short-distance related quantities ($Q\bar{Q}$ potential at small r, moments of 2-pt $c\bar{c}$ correlators) or defining a renormalised coupling such that integration of β function at discrete points is possible.

- A complementary approach is the analysis of gluon and ghost Green functions: three gluons vertex and ghost gluon vertex (small statistical error). For the first time α_s has been extracted without an ad-hoc treatment of the charm threshold ($N_f = 2 + 1 + 1$ ensembles). Data indicate the need to subtract a $1/p^2$ power correction to the OPE below 5 GeV and a $1/p^6$ term below 3 GeV.