

tau evidence

chann

search

ts collisions

neutra

combined

PERSPECTIVES ON HIGGS PHYSICS

ling measured

correspond

approximately

observation

e probability

bbbar, standard

CHRISTOPH ENGLERT

PPT Seminar Edinburgh, 24.10.2012

Published datasets

previously

tau

ocities

integrated

compa

OUTLINE

- A tell-tale story of Higgs physics
- Higgs boson couplings
- Higgs boson spin & CP
- Higgs boson self-interactions

OUTLINE

- A tell-tale story of Higgs physics
- Higgs boson couplings
- Higgs boson spin & CP
- Higgs boson self-interactions

mass. Many scientists hope that the Large Hadron Collider in Geneva, Switzerland will detect the elusive Higgs Boson when it begins colliding particles at 99.99% the speed of light.

Wool felt, velour with gravel fill for maximum mass. MADE IN CHINA.

A tell-tale story of the light Higgs boson

• well-defined massive gauge bosons \iff spontaneous symmetry breaking

[Heisenberg `28]

[Higgs `64] [Brout, Englert `64] [Guralnik, Hagen, Kibble `64] [Cornwall, Levin, Tiktopoulos `75]

• LEP/Tevatron upshot (electroweak precision)

[LEP Tevatron Higgs WG `06]

 $\Lambda \sim m_W:$

 $SU(3)_C \times SU(2)_L \times U(1)_Y$ $\xrightarrow{?} SU(3)_C \times U(1)_Q$

 $W_L^{\pm}, Z_L \sim [SU(2)_L \times U(1)_Y]/U(1)_Q$

+ light scalar

 SM Higgs field ~ (1,2)_{1/2} implements EWSB in the most economic way

A tell-tale story of the l

• well-defined massive gauge l

• LEP/Tevatron upshot (elect [LEP Tevatron Higgs WG `06]

$$SU(3)_C \times SU(2)_L \times U(1)_Y$$

$$\xrightarrow{?} SU(3)_C \times U(1)_Q$$

 $W_L^{\pm}, Z_L \sim [SU(2)_L \times U(1)_Y]/U(1)_Q$

+ light scalar

 SM Higgs field ~ (1,2)_{1/2} implements EWSB in the most economic way

[LEP Tevatron Higgs WG `06]

$$a_{\ell} = \frac{1}{32\pi} \int_{-1}^{1} \mathrm{d}\cos\theta \,\mathcal{M}(\cos\theta) P_{\ell}(\cos\theta) \,, \quad |a_{\ell}| \le 1$$

• unitarity in longitudinal gauge boson scattering

+ crossed s \leftrightarrow t

$$a_{\ell} = \frac{1}{32\pi} \int_{-1}^{1} \mathrm{d}\cos\theta \,\mathcal{M}(\cos\theta) P_{\ell}(\cos\theta) \,, \quad |a_{\ell}| \le 1$$

unitarity in longitudinal gauge boson scattering

+ crossed s \leftrightarrow t

$$a_{\ell} = \frac{1}{32\pi} \int_{-1}^{1} \mathrm{d}\cos\theta \,\mathcal{M}(\cos\theta) P_{\ell}(\cos\theta) \,, \quad |a_{\ell}| \le 1$$

unitarity in longitudinal gauge boson scattering

 $\sim E^0$

$$a_{\ell} = \frac{1}{32\pi} \int_{-1}^{1} \mathrm{d}\cos\theta \,\mathcal{M}(\cos\theta) P_{\ell}(\cos\theta) \,, \quad |a_{\ell}| \le 1$$

unitarity in massive quark to gauge boson scattering

$$a_{\ell} = \frac{1}{32\pi} \int_{-1}^{1} \mathrm{d}\cos\theta \,\mathcal{M}(\cos\theta) P_{\ell}(\cos\theta) \,, \quad |a_{\ell}| \le 1$$

unitarity in massive quark to gauge boson scattering

- constant terms constrained the Higgs boson to be lighter than ~ ITeV
- unitarity determines Higgs boson couplings to quarks and gauge bosons

- constant terms constrain the Higgs boson to be lighter than \sim I TeV
- unitarity determines Higgs couplings to quarks and gauge bosons

- constant terms constrain the Higgs boson to be lighter than \sim I TeV
- unitarity determines Higgs couplings to quarks and gauge bosons

- constant terms constrain the Higgs boson to be lighter than ~ I TeV
- unitarity determines Higgs couplings to quarks and gauge bosons

7

- constant terms constrain the Higgs boson to be lighter than \sim I TeV
- unitarity determines Higgs couplings to quarks and gauge bosons

OUTLINE

- A tell-tale story of Higgs physics $\sqrt{}$
- Higgs couplings
- Higgs Spin & CP
- Higgs self-interactions

• Relevant interactions for Higgs pheno at the LHC (the better CERN $mug^{\mathbb{R}}$)

$$-\mathcal{L} \supset \frac{1}{2}m_{h}^{2}h^{2} + \sqrt{\frac{\eta}{2}}m_{h}h^{3} + \frac{\eta}{4}h^{4}$$
$$-g_{v}m_{V}V^{2}h + \frac{m_{f}}{v}\bar{f}fh$$
$$-\frac{1}{4}\frac{\alpha_{s}}{12\pi}G^{a}_{\mu\nu}G^{a\,\mu\nu}\log(1+h/v)$$

• Relevant interactions for Higgs pheno at the LHC

• Relevant interactions for Higgs pheno at the LHC

$$\begin{split} -\mathcal{L} \supset \quad \frac{1}{2}m_{h}^{2}h^{2} + \sqrt{\frac{\eta}{2}}m_{h}h^{3} + \frac{\eta}{4}h^{4} & \qquad & \text{Higgs potential,} \\ symmetry breaking \\ -g_{v}m_{V}V^{2}h + \frac{m_{f}}{v}\bar{f}fh & \qquad & \text{gauge boson and fermion} \\ -\frac{1}{4}\frac{\alpha_{s}}{12\pi}G_{\mu\nu}^{a}G^{a\,\mu\nu}\log(1+h/v) & \qquad & \text{fancy way to include} \\ & + \text{ nothing else} & \qquad & \text{[Shifman et al. `79]} \end{split}$$

• Relevant interactions for Higgs pheno at the LHC

- the SM Higgs is a CP even scalar $\mathcal{L} \not\supset GGh \dots$
- no exotic decays (well ... by definition)
- all couplings are predictions and need to be measured:

deviations of xsections, BRs,

• Relevant interactions for Higgs pheno at the LHC

- the SM Higgs is a CP even scalar $\mathcal{L} \not\supset GGh \dots$
- no exotic decays (well ... by definition)
- all couplings are predictions and need to be measured:

deviations of xsections, BRs,

SM-like Higgs couplings

$$-\mathcal{L} \supset \frac{1}{2}m_h^2h^2 + \sqrt{\frac{\eta}{2}}m_hh^3 + \frac{\eta}{4}h^4$$
$$-gm_VV^2h - \frac{m_f}{v}\bar{f}fh$$
$$-\frac{\alpha_s}{12\pi}G^a_{\mu\nu}G^{a\ \mu\nu}\log(1+h/v)$$

Sitter

10

Ton

SM-like Higgs couplings

$$\mathcal{L} \supset \frac{1}{2}m_h^2h^2 + \sqrt{\frac{\eta}{2}}m_hh^3 + \frac{\eta}{4}h^4$$
 But what about non-standard decay modes?

$$- gm_V V^2h - \frac{m_f}{v}\bar{f}fh$$
 Can we separate production modes?

$$- \frac{\alpha_s}{12\pi}G^a_{\mu\nu}G^{a\,\mu\nu}\log(1+h/v)$$
 \rightarrow impact on global fit!

$$+ \text{ nothing else}$$

$$\sigma_p \times BR_d \sim \frac{\Gamma_p \Gamma_q}{\Gamma_{tot}}$$

$$\sim g_p^2 g_d^2 / \left(\sum_{modes} g_i^2\right)$$

$$(\sum_{modes} g_i^2)$$

$$(\sum_{modes}$$

10

invisible branching ratios

 $\mathcal{L}_{\text{new}} \overset{???}{\not\supset} \eta |\phi_{\text{SM}}|^2 |\phi_{\text{hid}}|^2$ (allowed by gauge invariance & renormalizability)

 $\mathcal{L}_{\text{new}} \overset{???}{\not\supset} \eta |\phi_{\text{SM}}|^2 |\phi_{\text{hid}}|^2$ (allowed by gauge invariance & renormalizability)

vis

vis

invis

(d)

Η

 ϕ

 ϕ_1

vis

vis

invis

- boosted kinematics
- triggers $\sqrt{}$
- subjet algorithms
- b tagging

[CE, Spannowsky, Wymant `12]

 $\mathcal{L}_{\text{new}} \overset{???}{\not\supset} \eta |\phi_{\text{SM}}|^2 |\phi_{\text{hid}}|^2$ (allowed by gauge invariance & renormalizability)

- boosted kinematics
- triggers $\sqrt{}$

vis

vis

invis

invis

300

300

- subjet algorithms
- b tagging
- "particle flow" E_T

 $\mathcal{L}_{\text{new}} \overset{???}{\not\supset} \eta |\phi_{\text{SM}}|^2 |\phi_{\text{hid}}|^2$ (allowed by gauge invariance & renormalizability)

- boosted kinematics
- triggers $\sqrt{}$
- subjet algorithms
- b tagging

14 TeV

12

[CE, Spannowsky, Wymant `12]

 $\mathcal{L}_{\text{new}} \stackrel{???}{\not\supset} \eta |\phi_{\text{SM}}|^2 |\phi_{\text{hid}}|^2$ (allowed by gauge invariance & renormalizability)

- boosted kinematics
- triggers $\sqrt{}$

VIS

vis

invis

invis

- subjet algorithms
- b tagging

$$14 {
m TeV}$$

Higgs boson spin and CP

- Landau-Yang: cannot be spin 1
- spin 2 is a theoretical stretch but we want to measure that

[CE, Goncalves, Mawatari, Plehn, in prep]

• What's the resonance's CP ?

 $\Delta\Phi_{jj}$ in h+2j events

[Plehn, Rainwater, Zeppenfeld `01]

13

Higgs boson spin and CP

Higgs CP with event shape-like observables

• Event shape observables do much better than $\Delta \Phi_{jj}$ at the inclusive level !

Higgs CP with event shape-like observables

• Event shape observables do much better than $\Delta \Phi_{ii}$ at the inclusive level !

Why is WBF / GF separation important?

we always observe superpositions of Higgs boson production

$$\sum_{p} \sigma_{p} \times \mathrm{BR}_{d} \sim \sum_{p} \frac{\Gamma_{p} \Gamma_{d}}{\Gamma_{\mathrm{tot}}} \sim \sum_{p} \frac{g_{p}^{2} g_{d}^{2}}{\sum_{\mathrm{modes}} g_{k}^{2}}$$

- GF is sensitive Yukawas, WBF is sensitive to W, Z couplings, same order of magnitude in typical Higgs searches.
- systematic limitation of Higgs coupling extraction!
- alternative to event shapes:
 - use rec. higgs also for discrimination
 - construct likelihood based on matrix elements for fixed multiplicities
 - by definition maximum discrimination

[Andersen, CE, Spannowsky, in prep]

OUTLINE

- A tell-tale story of Higgs physics $\sqrt{}$
- Higgs couplings $\sqrt{}$
- Higgs Spin & CP $\sqrt{}$
- Higgs self-interactions

$$= \lambda_{\rm SM} = g^2 m_h^2 |m_W^2 |$$
$$= \lambda_{\rm SM} = \int \frac{1}{2} m_h^2 h^2 + \sqrt{\frac{\eta}{2}} m_h h^3 + \frac{\eta}{4} h^4$$
$$-gm_V V^2 h - \frac{m_f}{v} \bar{f} f h$$
$$-\frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\,\mu\nu} \log(1+h/v)$$

$$-\mathcal{L} \supset \frac{1}{2}m_{h}^{2}h^{2} + \sqrt{\frac{\eta}{2}}m_{h}h^{3} + \frac{\eta}{4}h^{4} - gm_{V}V^{2}h - \frac{m_{f}}{v}\bar{f}fh - \frac{\alpha_{s}}{12\pi}G_{\mu\nu}^{a}G^{a\,\mu\nu}\log(1+h/v)$$

$$-\mathcal{L} \oint \frac{1}{2} m_h^2 h^2 + \sqrt{\frac{\eta}{2}} m_h h^3 + \frac{\eta}{4} h^4 \longrightarrow \frac{1}{2} m_V V^2 h - \frac{m_f}{v} \bar{f} f h$$

$$- \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\,\mu\nu} \log(1 + h/v)$$

$$= -\frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\,\mu\nu} h + \frac{\alpha_s}{24\pi v^2} G^a_{\mu\nu} G^{a\,\mu\nu} h^2 + \dots$$

$$-\mathcal{L} \rightarrow \frac{1}{2} m_h^2 h^2 + \sqrt{\frac{\eta}{2}} m_h h^3 + \frac{\eta}{4} h^4 \longrightarrow \frac{\eta}{p roduction!} \frac{1}{2} m_V V^2 h - \frac{m_f}{v} \bar{f} f h$$

$$- \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a \ \mu\nu} \log(1 + h/v)$$

$$= -\frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a \ \mu\nu} h + \frac{\alpha_s}{24\pi v^2} G^a_{\mu\nu} G^{a \ \mu\nu} h^2 + \dots$$

$$-\mathcal{L} \rightarrow \frac{1}{2} m_h^2 h^2 + \sqrt{\frac{\eta}{2}} m_h h^3 + \frac{\eta}{4} h^4 \longrightarrow \frac{\eta}{p roduction!} \text{need at least dihiggs} \\ -gm_V V^2 h - \frac{m_f}{v} \bar{f} f h \\ -\frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\,\mu\nu} \log(1 + h/v) \\ = -\frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\,\mu\nu} h + \frac{\alpha_s}{24\pi v^2} G^a_{\mu\nu} G^{a\,\mu\nu} h^2 + \dots$$

• massive quark loops are resolved for $p_{T,h} \gtrsim m_t$

[Baur, Plehn, Rainwater `03, `04]

 NLO QCD corrections are large ~2

[Dawson, Dittmaier, Spira `98]

• good a priori sensitivity to λ for $m_h = 125 \text{ GeV}$

for dihiggs production this becomes $s = (p_{h,1} + p_{h,2})^2 = 4m_t^2$

sensitivity to the trilinear coupling for $m_h \simeq 125 \text{ GeV}$ is in the boosted regime

- inclusive cross sections are small, need as many channels as possible to improve constraints!
- phase space in inclusive dihiggs production is limited due to small phase space for the back-to-back configuration at rather small invariant masses $2m_t$
- open up the phase space by accessing small invariant masses in a collinear configuration:

Self-coupling measurements with "ISR"

need to work a little harder:

+ quark & gluon induced

Self-coupling measurements with "ISR"

[Dolan, CE, Spannowsky `12]

+ quark & gluon induced

sensitivity at small invariant masses and small dihiggs opening angles

Self-coupling measurements with "ISR"

[Dolan, CE, Spannowsky `12]

Self-coupling measurements at the hadron level

- We're dealing with small xsections, hence need to look for large BRs for theoretical improvements: $h \rightarrow b\bar{b}, W^+W^-, \tau^+\tau^-$
- MC with unweighted event output for $pp \rightarrow hh + X$, $pp \rightarrow hh + j + X$ interfaced to Herwig++ [Bähr et al. `08] for shower & hadronization
- backgrounds from MadEvent [Alwall et al. `11] and Sherpa [Gleisberg et al. `09]
- apply fatjet/subjet methods

[Butterworth et al. `08]

Self-coupling measurements at the hadron level

- unboosted searches hopeless execpt for $b\overline{b}\gamma\gamma$ [Baur, Plehn, Rainwater `03, `04]
- boosted searches better

$$m_h = 125 \text{ GeV}$$

$bb\tau\tau$ (assuming small tau fake rate)

	$\xi = 0$	$\xi = 1$	$\xi = 2$	$b\bar{b} au au$	$b\bar{b}\tau\tau$ [ELW]	$b\bar{b}W^+W^-$	ratio to $\xi = 1$
cross section before cuts	59.48	28.34	13.36	67.48	8.73	873000	$3.2 \cdot 10^{-5}$
reconstructed Higgs from τs	4.05	1.94	0.91	2.51	1.10	1507.99	$1.9 \cdot 10^{-3}$
fatjet cuts	2.27	1.09	0.65	1.29	0.84	223.21	$4.8 \cdot 10^{-3}$
kinematic Higgs reconstruction $(m_{b\bar{b}})$	0.41	0.26	0.15	0.104	0.047	9.50	$2.3 \cdot 10^{-2}$
Higgs with double <i>b</i> -tag	0.148	0.095	0.053	0.028	0.020	0.15	0.48

$bb\tau\tau + j$ (assuming small tau fake rate)

[Dolan, CE, Spannowsky `12]

	$\xi = 0$	$\xi = 1$	$\xi = 2$	$bar{b} au^+ au^- j \ bar{b} au^+$	$\tau^{-}j$ [ELW]	$t\bar{t}j$	ratio to $\xi = 1$
cross section before cuts	6.45	3.24	1.81	66.0	1.67	106.7	$1.9 \cdot 10^{-2}$
$2 \tau s$	0.44	0.22	0.12	37.0	0.94	7.44	$4.8 \cdot 10^{-3}$
Higgs rec. from taus + fatjet cuts	0.29	0.16	0.10	2.00	0.150	0.947	$5.1 \cdot 10^{-2}$
kinematic Higgs rec.	0.07	0.04	0.02	0.042	0.018	0.093	0.26
$2b + hh$ invariant mass $+ p_{T,j}$ cut	0.010	0.006	0.004	< 0.0001	0.0022	0.0014	1.54

What about Higgs boson imposters / BSM Higgs sectors ?

Dilaton

- PNGB of spontaneously broken conformal invariance
- couples to

$$T^{\mu}_{\mu} \sim m^2_W W^+_{\mu} W^{-\mu} + \frac{m^2_w}{\cos^2 \theta_w} Z_{\mu} Z^{\mu} + \sum_f m_f \bar{f} f + \dots$$

[Dolan, CE, Spannowsky, in prep.]

composite Higgs

- entire Higgs doublet is a set of NGB, e.g. $SO(5) \rightarrow SO(4)$ $\simeq SU(2)_L \times SU(2)_R$
- gauging a subgroup: breaking global invariance and the NGB picks up a mass + EWSB
- partial compositness: heavy fermions through mixing
- new heavy fermionic resonances

What about Higgs boson imposters / BSM Higgs sectors

[Dolan, CE, Spannowsky, in prep.]

Dilaton

composite Higgs

entirely different di-"Higgs" phenomenology

SUMMARY

- Well, this one we ordered and we finally got it
- but this is not the end!
- What are the properties of this resonance? Is it really a 30 yr old idea coming to life, or is it something more involved?
 - spin and CP
 - - couplings, (exotic) branching ratios
 - reconstruction of the symmetry-breaking potential
- New insights in phenomenological QCD and its interplay with the ELW sector allows to sharpen the LHC search potential
 - subjet technology
 - (non-global) event shape observables, matrix element method

BACKUP

Higgs subjet taggers in a nutshell

• apply fatjet/subjet methods (in a nutshell)

[Butterworth, Davison, Rubin, Salam `08]

I. mass drop $m_{j_1} < 0.66 m_j$

2. check asymmetry

$$\frac{\min(p_{T,j1}^2, p_{T,j2}^2)}{m_j^2} \Delta R_{j1,j2}^2 > y_{\text{cut}}$$

3. apply "filtering" to clean up UEV

4. take 3 hardest subjets

5. b tagging on the two hardest ones

 $R = 1.2 \dots 1.5$

Comparing phenomenology: the CL_S method

A modified Frequentist analysis: the CL_S method

[LEPHWG '98] [Read '00]

- data gives a downward fluctuation wrst to "B" \rightarrow exclusion of $\sigma(S) = 0$ at 95% CL
- this is a statement about observing a similar or stronger exclusion in the future, not about the existence of "S" however
- $CL_S = CL_{S+B}/CL_B$ and define confidence $1 CL_S \ge CL$

exclusion @ 95%: $CL_s \leq 0.05$

false exclusion is not more than 5% of the potential exclusion

Intro

19/21

theoretically & experimentally challenged: pile up, systematics of CJV, forward JES weak boson fusion

associated production

[Eboli, Zeppenfeld `00]

Η

[Godbole et al. '03] [Davoudiasl et al. '05]

theoretically & experimentally challenged: pile up, systematics of CJV, forward JES weak boson fusion

associated production

Initial state radiation

[Eboli, Zeppenfeld `00]

H

[Godbole et al. '03] [Davoudiasl et al. '05]

A known example is the NMSSM for $\tan\beta \simeq 5$, $m_A \simeq 10~{\rm GeV}$

[Ellwanger, Gunion, Hugonie `05]

A known example is the NMSSM for $\tan\beta \simeq 5$, $m_A \simeq 10 \text{ GeV}$

[Ellwanger, Gunion, Hugonie `05]

A known example is the NMSSM for $\tan\beta \simeq 5$, $m_A \simeq 10 \text{ GeV}$

[Ellwanger, Gunion, Hugonie `05]

A known example is the NMSSM for $\tan\beta \simeq 5$, $m_A \simeq 10 \text{ GeV}$

[Ellwanger, Gunion, Hugonie `05]

• ditau jet is still a light, yet boosted object with little QCD activity: use a combination of subjettiness and jet active area $\sim p_T^j/m_j$

[Stewart, Tackmann, Waalewijn `10] [Thaler, Van Tilburg `11]

$$\tau_N = \frac{\sum_k p_{T,k} \min \left(\Delta R(1,k), \dots, \Delta R(N,k) \right)}{\sum_j p_{T,j} R}$$

A known example is the NMSSM for $\tan\beta \simeq 5$, $m_A \simeq 10 \text{ GeV}$

[Ellwanger, Gunion, Hugonie `05]

Η

• ditau jet is still a light, yet boosted object with little QCD activity: use a combination of subjettiness and jet active area $\sim p_T^j/m_j$

[Stewart, Tackmann, Waalewijn `10] [Thaler, Van Tilburg `11]

$$\tau_N = \frac{\sum_k p_{T,k} \min \left(\Delta R(1,k), \dots, \Delta R(N,k) \right)}{\sum_j p_{T,j} R}$$

A known example is the NMSSM for $\tan\beta \simeq 5$, $m_A \simeq 10 \text{ GeV}$

[Ellwanger, Gunion, Hugonie `05]

Η

• ditau jet is still a light, yet boosted object with little QCD activity: use a combination of subjettiness and jet active area $\sim p_T^j/m_j$

[Stewart, Tackmann, Waalewijn `10] [Thaler, Van Tilburg `11]

$$\tau_N = \frac{\sum_k p_{T,k} \min \left(\Delta R(1,k), \dots, \Delta R(N,k) \right)}{\sum_j p_{T,j} R}$$

how N-"clumpy" is the jet substructure

A known example is the NMSSM for $\tan\beta \simeq 5$, $m_A \simeq 10 \text{ GeV}$

[Ellwanger, Gunion, Hugonie `05]

• ditau jet is still a light, yet boosted object with little QCD activity: use a combination of subjettiness and jet active area $\sim p_T^j/m_j$

A known example is the NMSSM for $\tan\beta \simeq 5$, $m_A \simeq 10 \text{ GeV}$

[Ellwanger, Gunion, Hugonie `05]

• ditau jet is still a light, yet boosted object with little QCD activity: use a combination of subjettiness and jet active area $\sim p_T^j/m_j$

Buried Higgs

$pp \to (Z \to 2\ell) + \not\!\!\!E_T + j + X$	ditaus	ZZj	WZj	WWj	$t\overline{t}$
	1.00	1.00	1.00	1.00	1.00
$n_{\ell} = 2,$ Z mass reconstruction with e^+e^- or $\mu^+\mu^-$	0.416	0.217	0.130	0.011	0.026
$\max\left(p_T^{\ell}, p_T^{\ell'}\right) \ge 80 \text{ GeV}, \ p_T^Z \ge 150 \text{ GeV}$	0.216	0.048	0.035	0.00019	$3.9 \ 10^{-4}$
$n_j \ge 1$ with $p_T^j \ge 30$ GeV, no $\Delta R(j_{50}, Z) \le 1.5$	0.199	0.0402	0.029	0.00019	$3.0 \ 10^{-4}$
$p_T \ge 50 \text{ GeV}, \ \Delta \phi(\mathbf{p}, Z) \ge 2$	0.172	0.033	0.021	0.00015	$4.6 \ 10^{-5}$
$\tau_3/\tau_1 _{\text{ecal}} \le 0.5 \text{ (leading jet)}$	0.125	0.011	0.0084	$5.4 \ 10^{-5}$	$2.1 \ 10^{-5}$
$p_T^j/m_j \ge 7 \text{ (leading jet)}$	0.083	0.0018	0.0020	$3.0 \ 10^{-6}$	$7.2 10^{-6}$
cross section [fb]	1.32	0.45	1.83	0.18	0.29

Buried Higgs

 ${\rm d}\sigma/{\rm d}m_T^{\rm cluster}~[{\rm ab}/10~{\rm GeV}]$

$pp \to (Z \to 2\ell) + \not\!\!\!E_T + j + X$	ditaus	ZZj	WZj	WWj	$t\overline{t}$	
	1.00	1.00	1.00	1.00	1.00	
$n_{\ell} = 2,$ Z mass reconstruction with e^+e^- or $\mu^+\mu^-$	0.416	0.217	0.130	0.011	0.026	
$\max\left(p_T^{\ell}, p_T^{\ell'}\right) \ge 80 \text{ GeV}, \ p_T^Z \ge 150 \text{ GeV}$	0.216	0.048	0.035	0.00019	$3.9 10^{-4}$	
$n_j \ge 1$ with $p_T^j \ge 30$ GeV, no $\Delta R(j_{50}, Z) \le 1.5$	5 0.199	0.0402	0.029	0.00019	$3.0 \ 10^{-4}$	
$p_T \ge 50 \text{ GeV}, \ \Delta \phi(\mathbf{p}, Z) \ge 2$	0.172	0.033	0.021	0.00015	$4.6 \ 10^{-5}$	
$\tau_3/\tau_1 _{\text{ecal}} \leq 0.5 \text{ (leading jet)}$	0.125	0.011	0.0084	$5.4 \ 10^{-5}$	$2.1 \ 10^{-5}$	
$p_T^j/m_j \ge 7 \text{ (leading jet)}$	0.083	0.0018	0.0020	$3.0 \ 10^{-6}$	$7.2 10^{-6}$	
cross section [fb]	1.32	0.45	1.83	0.18	0.29	
$pp \rightarrow (Z \rightarrow 2\ell)$ sensitivity $S/$ $\mathcal{L} = 12 \text{ fb}^{-1}$	$D + E_T$ $\sqrt{B} =$ $\sqrt{s} =$ $\sum K$	r + 2 = 5 fo = 14 7 = 0.80	j + X or FeV)	T H m	$A \xrightarrow{A} A$	
$m_T^{cluster}(j_1 j_2) [GeV] \qquad [Campan]$ ditau $\boxtimes WZj \boxtimes ZZj \otimes ZZj \otimes ZZj$	nario, CE, ario, CE, I	Spannov Kallweit	wsky `I(et al. `I()] [CE,	Roy, Spannov	wsky `