The Tight Knot Spectrum in QCD

Tom Kephart Vanderbilt University

Seminar at the University of Edinburgh 10 October 2012

Knots, Links, and Physics Examples of Knots and Links in Physics Knots and Tight Knots: Theory Tight Knots/Links in QCD Other Possible Tight Knot Applications

Introduction: Tight Knots and Physics

 Many Potential Physical Systems can be Knotted or Linked, some tightly

 Examples in Several Areas of Physics

List of Examples

CLASSICAL PHYSICS/BIOPHYSICS

- Plasma Physics
- DNA
- MacroBiology

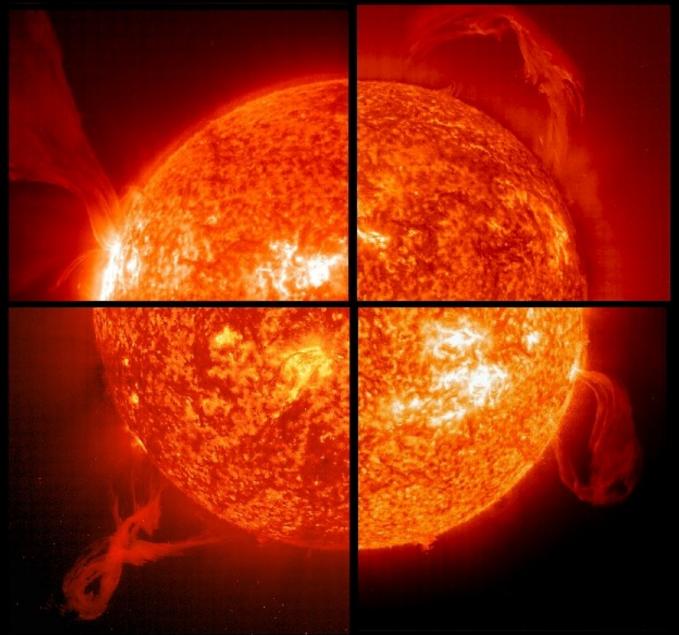
QUANTUM PHYSICS

- QCD Flux Tubes (tight)
- Superconductors (tight)
- Superfluids and Superfluid Turbulence
- Atomic Condensates
- Cosmic Strings (tight?)

UNIVERSALITY for Tight Quantum Case

Plasma Phys: Magnetic Flux Tubes

- Tubes under Tension Contract
- Minimum Length Determined by Topology
- Taylor States in Plasma
- Differs for QCD where radius is fixed


Plasma Physics

L. Woltjer, PNAS, 44, 489 (1958)
H. K. Moffatt, J. Fluid Mech. 35, 117 (1969)
J. B. Taylor, PRL, 33, 1139 (1974)

Biology

A. Stasiak, et al., Nature 384, 122 (1996)

Plasma Physics: SOHO images

6

Helicity Conservation:

Energy $E = \frac{1}{2} \int B^2 dV$ Helicity $H = \int B \cdot dA$

Minimize Energy E Holding H Fixed

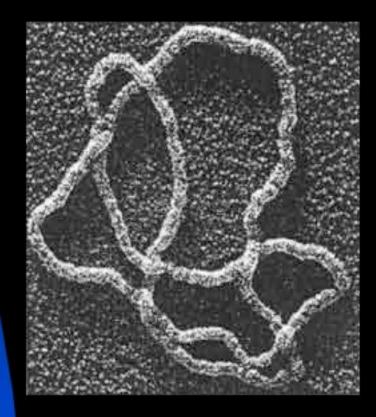
Find $J = \lambda B$ or $\nabla \times B = \lambda B$

Force Free Configurations

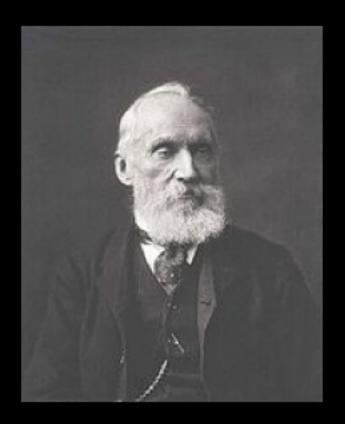
See e.g., P. M. Bellan, ``Spheromaks,'' (2000)

Knot / Link stabilty

Conserved quantum numbers Gaussian linking--Hopf link, trefoil knot Genealized linking--Borromean rings, etc.


Tightly Knotted DNA

Tight knots first discussed and lengths estimated in:


Katritch, V., Bednar, J., Michoud, D., Scharein, R.G., Dubochet, J. & Stasiak, A. (1996) Nature

Katritch, V., Olson, W.K., Pieranski, P., Dubochet, J. & Stasiak, A. (1997) Nature.

Knotted DNA

Knots and Particle Physics

Lord Kelvin: Modeled "elementrary" atoms as knotted fluid vortices in the aether.

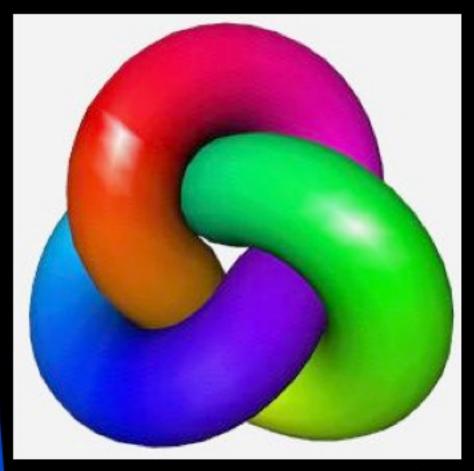
Flux Tubes in Quantum Chromodynamics

- Glueballs as Tight Knots and Links
- Quantized Flux
- Knot "Energy" (E_K = L/r) Length Proportional to Particle Mass
- Semi-classical model at the level of liquid drop model of nucleus or QCD bag model

Tight Knots and Links in QCD

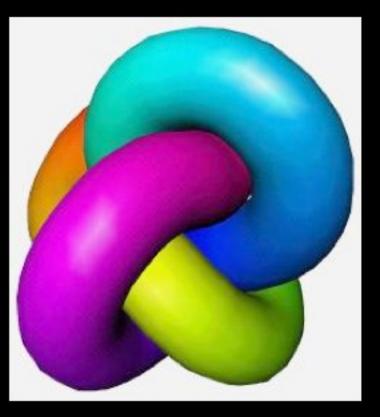
Roman V. Buniy and TWK, "A model of glueballs," Phys. Lett. B576, 127 (2003)

R. Buniy and TWK, "Glueballs and the universal energy spectrum of tight knots and links," Int. J. Mod. Phys. A20, 1252 (2005)

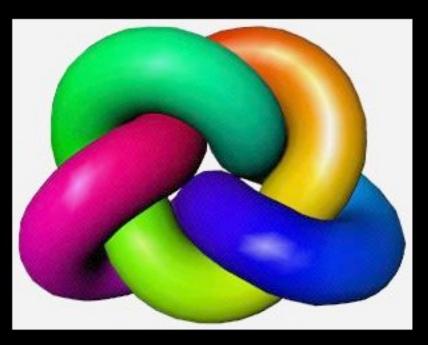

R. Buniy, J. Cantarella, TWK and E. Rawdon, "The tight knot spectrum in QCD," arXiv:1212.xxx

T. Ashton, J. Cantarella, M. Piatek, E. Rawdon, "Knot Tightening By Constrained Gradient Descent," arXiv:1002.1723

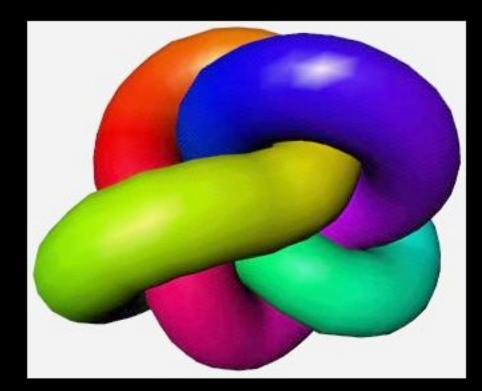
Chromoelectric Flux


- Flux between q, qbar pair is chromoelectric
- Open for normal mesons
- Closed in our case
- Knotted and/or linked

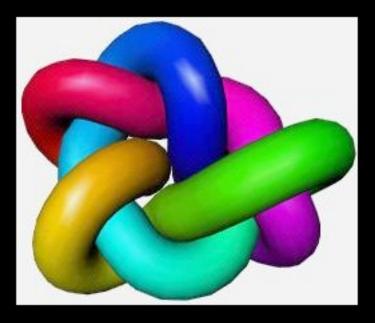
Tight Trefoil (3₁ knot)


From E. Rawdon webpage

Tight Figure Eight Knot (41 knot)


rope length 21.2313

Tight 5₁ Knot


rope length 23.8431

Tight 5₂ Knot

rope length 25.5724

Tight 8₁ Knot

rope length 35.9874

Counting knots

n = number of crossings

n	prime knots	prime alternating knots	prime nonalternating knots	torus knots	satellite knots
Sloane	A002863	A002864	A051763	A051764	A051765
3	1	1	0	1	0
4	1	1	0	0	0
5	2	2	0	1	0
6	3	3	0	0	0
7	7	7	0	1	0
8	21	18	3	1	0
9	49	41	8	1	0
10	165	123	42	1	0
11	552	367	185	1	0
12	2176	1288	888	0	0
13	9988	4878	5110	1	2
14	46972	19536	27436	1	2
15	253293	85263	168030	2	6
16	1388705	379799	1008906	1	10

Hoste et al. 1998

N. Sloane, The On-Line Encyclopedia of Integer Sequences!

Types of knots and links

- Prime knots
- Composite knots (connected sums of prime knots)
- Prime links
- Composite links
- Physics should allow all types !

Non-q-qbar bosonic hadrons

(1) hybrids—bound states of quarks and gluons, like $q\bar{q}G$ with $J^{PC} = 0^{-+}, 1^{-+}, 1^{--}, 2^{-+}, \ldots$

(2) exotics—for example, $qq\bar{q}\bar{q}\bar{q}$ and $qqq\bar{q}\bar{q}\bar{q}\bar{q}$ with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots$

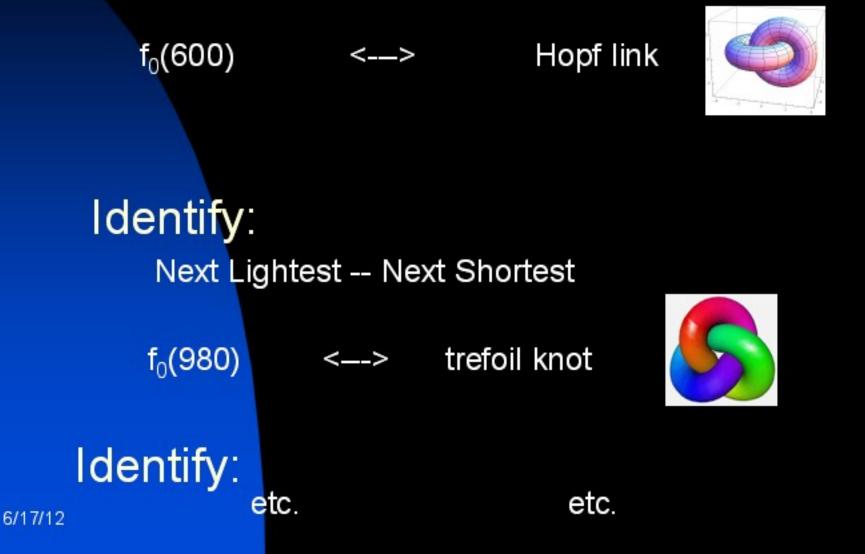
(3) glueballs—states with no valence quarks at all, composed of pointlike or collective glue, e.g., closed flux tubes, with $J^{PC} = 0^{++}, 1^{++}, 2^{++}, \ldots$

Glueballs

- Hadrons Strong Interactions
- No Valence Quarks, f_{J} states ($J^{PC} = J^{++}$)
- Do not Decay Directly to Photons
- Decay in Knotted Flux Tube Model of Glueballs via QM processes:
 1. String (Tube) Breaking
 2. Reconnection
 3. Tunneling

Summary of model assumptions:

- (1) There is a one-to-one correspondence between f states and tightly knotted and linked chromoelectric flux tubes.
- (2) The flux is quantized with one flux quantum per tube.
- (3) Knotted and linked flux tubes are stabilized by topological quantum numbers.


Summary of model assumptions:

(4) The tube diameter is in the ~ 0.1 fm range.

- (5) The quantity J in an f_J or f'_J state is the intrinsic angular momentum of the associated knotted soliton.
- (6) The relaxation to a tight state configuration (via processes where no topology change is involved) is faster than its decay rate (via processes with topology change) for an f state, i.e., $\tau_{\text{relax}} \ll \tau_{\text{decay}}$.

Identify:

Lightest glueball candidate --Shortest Knot/Link

2012 Refit with New Data

- New Glueball Data J^{PC} = J⁺⁺ States
 Particle Data Group 2011
- New Tight Prime Knot/Link Data
- New! Composite Knots and Links
- Expect continuum of glueballs by ~3 GeV from knot counts

R. Buniy, J. Cantarella, TWK and E. Rawdon, "The tight knot spectrum in QCD," arXiv:1212.xxxx²⁷

- Helicity Conservation & Force Free Configurations
- Generalize to relativistic case and to QCD:
- Chromoelectric helicity, higher order invariants

Caveats

Until August 2012 $\sigma = f_0(600)$

 $M_{f_0(600)} = 800 \pm 400 \; MeV$

Now $\sigma \to f_0(500)$

$$M_{f_0(500)} = 475 \pm 75 MeV$$

 $M_{f_0(500)}$ and $M_{f_0(1370)}$ extracted from partial wave analysis. Others from invariant mass plots.

Mixing with light $qq\bar{q}\bar{q}$ and $qqq\bar{q}\bar{q}\bar{q}q$, etc. states?

Rope lengths from Ashton et al.

Link	Ropp	Rop	Previous	Link	Ropp	Rop	Previous
2_{1}^{2}	25.1439	25.1388		83	71.1880	71.1655	71.56 (0.55%)
				84	72.0301	72.0049	72.41 (0.55%)
31	32.7490	32.7448	32.7433864(-%)	85	72.2100	72.1878	72.70 (0.7%)
	42.0997	10.0008	42.1158845 (0.05%)	86	72.5005	72.4791	72.93 (0.61%)
41	42.0997	42.0928	42.1138845 (0.05%)	87	72.2447	72.2204	72.63 (0.56%)
4_{1}^{2}	40.0247	40.0169		88	73.3533	73.3334	73.88 (0.73%)
-1		40.0100		89	72.4717	72.4461	72.96 (0.7%)
51	47.2156	47.2016	47.51 (0.64%)	810	73.4279	73.4095	73.86 (0.6%)
52	49.4840	49.4704	49.73 (0.52%)	811	73.5029	73.4802	76.70 (4.19%)
				812	74.0291	74.0098	74.61 (0.8%)
5_{1}^{2}	49.7874	49.7723		813	72.8291	72.8045	73.29 (0.66%)
	50 2010	50 2150	57 ss (0.0007)	814	73.9226	73.8991	74.93 (1.37%)
61	56.7316	56.7150	57.11 (0.69%)	815	74.3344	74.3134	74.82 (0.67%)
62	57.0451 57.8602	57.0271 57.8435	57.44 (0.71%)	816	74.9213	74.8962	75.47 (0.76%)
63	37.8002	31.8433	58.48 (1.08%)	817	74.5276	74.5071	75.08 (0.76%)
6_{1}^{2}	54.4068	54.3893		818	74.9420	74.9252	75.44 (0.68%)
6]	56.7132	56.7028		819	61.0734	61.0430	61.35 (0.5%)
61	58.1161	58.1044		820	63.1530	63.1146	64.11 (1.55%)
				821	65.5504	65.5298	65.91 (0.57%)
613	57.8334	57.8170					
6}	58.0300	58.0145		81	68.5198	68.4884	
63	50.5865	50.5745		82	71.1823	71.1587	
19.1				83	72.7498	72.7291	
71	61.4319	61.4109	61.89 (0.77%)	84	72.6102	72.5908	
7_{2}	63.9165	63.8956	65.36 (2.24%)	88	74.0039	73.9826	
73	63.9539	63.9327	64.35(0.64%)	86	73.2932	73.2502	
74	64.2960	64.2724	65.63 (2.06%)	84	74.4165	74.3885	
7_8	65.2802	65.2609	65.70(0.66%)	81	73.7849	73,7702	
76	65.7183	65.7012	66.17 (0.7%)	85	74.0620	74.0386	
77	65.6316	65.6108	66.09 (0.72%)	8^{2}_{10}	73.6890	73.6684	
-2	CA OF OF	C4 0050		811	73.0115	72.9899	
-1	64.2585 65.0467	64.2353 65.0274		8_{j2}^{2}	74.0194	73.9140	
72	65.3743	65.3561		813	74.1685	74.1501	
7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	65.0971	65.0759		มะขายของมายของมายของมีอยู่เรื่องมีอยู่เป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็น	73.7000	73.6775	
72	66.2400	66.2186		845	64.3305	64.3086	
72	66.3494	66.3372		8 ⁴ _{be}	66.8434	66.8315	
-8	55.5451	55.5311		e3	72.2883	72.2649	
72	57.8043	57.7948		-1	72.9544	72.9360	
18	91.9043	01.1949		0.000000000000000000000000000000000000	74.9366	74.9139	
7_{1}^{3}	65.8275	65.8090		03	77.8544	77.8314	
				-4	73.4286	73.4061	
81	71.0484	71.0241	71.44 (0.58%)	3	74.7680	74.7468	
82	71.4327	71.4107	71.91 (0.69%)	23	60.6065	60.5888	

6/17/12

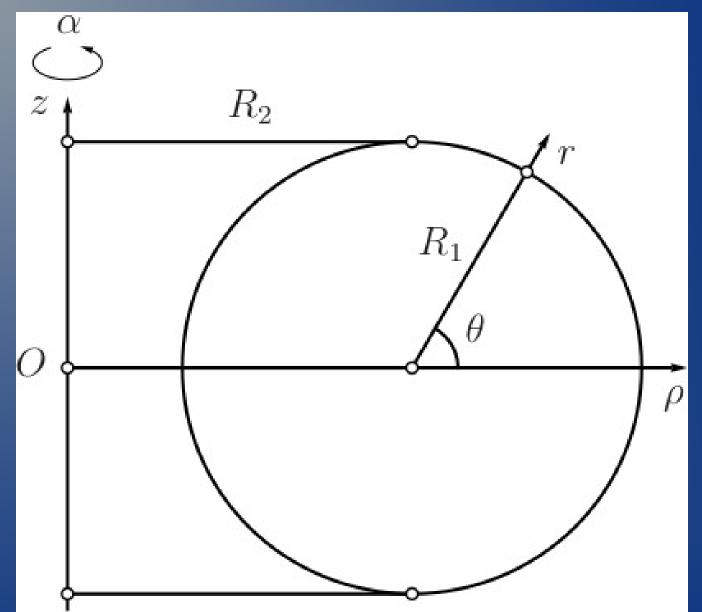
Curvature Corrections

- We have physical knots, not ideal knots
- Flux is uniform across cross sections of straight tubes
- But, knotted and linked tubes are curved
- Flux is not uniform across cross sections of curved tubes
- Correct energy for curvature

Curvature Corrections for a Toroidal Solenoid

Flux

$$\Phi = \int_D B dz d\rho$$


Energy

$$W = \frac{1}{2} \int B^2 \rho dz d\rho d\alpha$$

Hold flux Φ fixed and vary the field

$$\delta(W - \lambda \Phi) = 0$$

Toroidal Solenoid-Cross Section

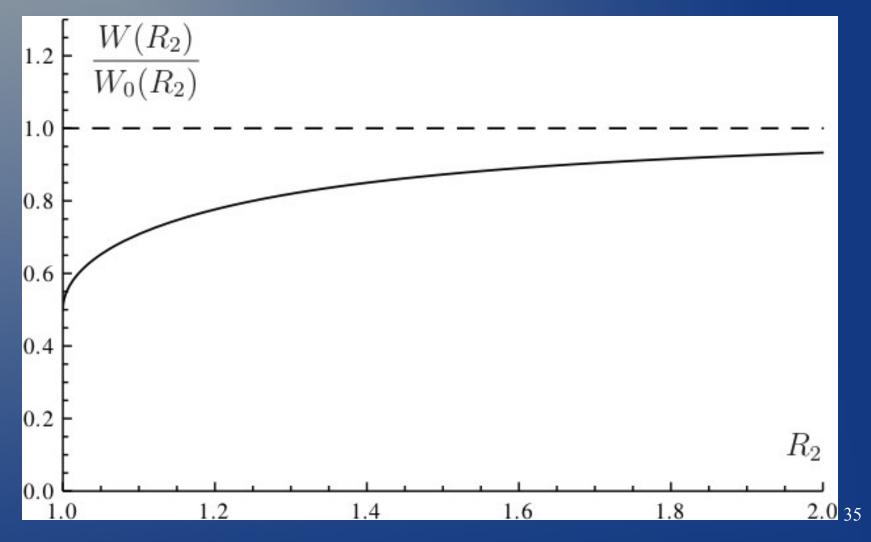
Curvature Corrections for a Toroidal Solenoid

Variation of
$$B$$
 gives

$$\int_{D} (2\pi B\rho - \lambda) \delta B dz d\rho = 0$$
 λ is a Lagrange multiplier.

Vanishes for arbitrary δB iff

$$B(
ho) = rac{\lambda}{2\pi
ho}$$


leads to

$$W(R_2) = rac{\Phi^2}{2\left[R_2 - (R_2^2 - R_1^2)^{1/2}
ight]}$$

Compare straight cylinder of length $2\pi R_2$

$$W_0(R_2) = rac{\Phi^2 R_2}{R_1^2}$$

Curvature Correction as a Function of R2

Curvature Corrections for a Toroidal Solenoid

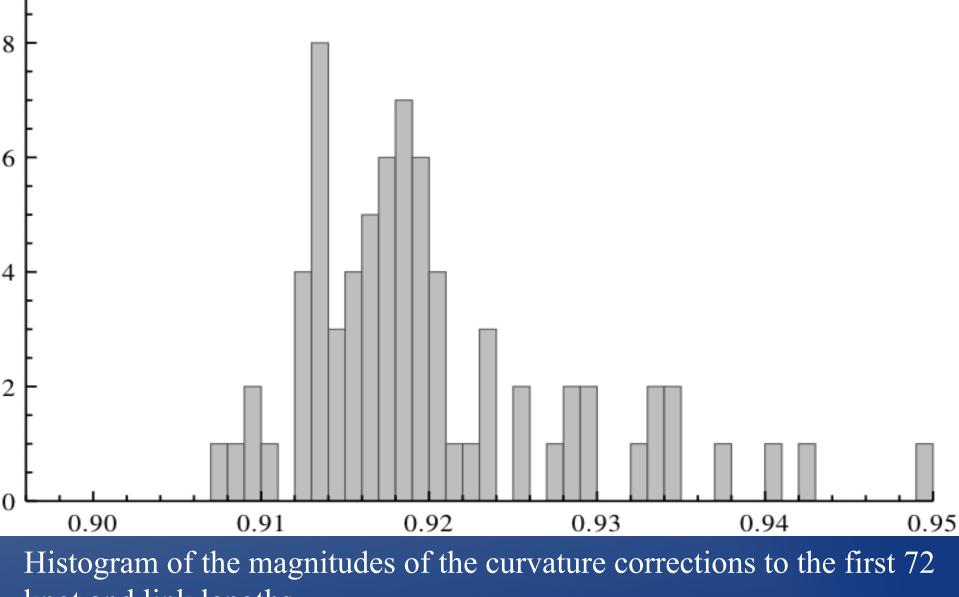
Each wedge of a link is corrected by a factor (Link with c components ith wedge)

$$r_{ic} = rac{E_{ic}(R_{2,ic})}{E_{0,ic}(R_{2,ic})}.$$

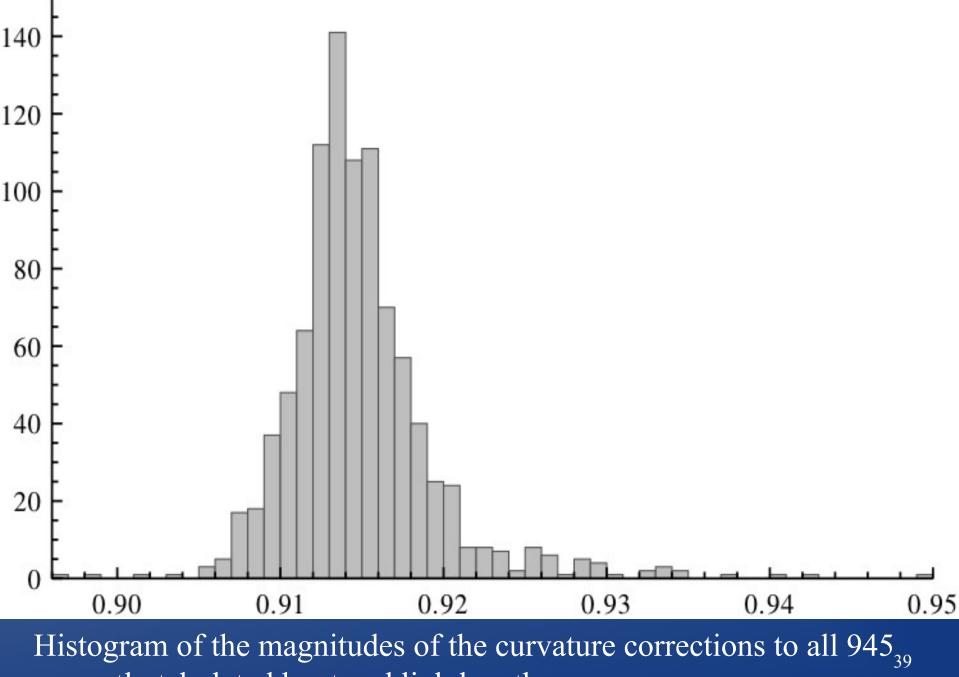
Full model of a knotted flux tube K:

- Sum of n solenoidal wedges
- Minimize the energy in each wedge

$$W_K = \sum_{i=1}^n W(R_{2,i}),$$


Curvature Corrections for a Toroidal Solenoid

- Example: We can calculate exactly for:
- Chain of three unknots $2_1^2 # 2_1^2$
- Length $6\pi + 2 \approx 20.8496$
- $R_2 = 2R_1$ in curved regions.
- $R_2 \rightarrow \infty$ in straight sections.
- Corrected value


$$E(2_1^2 \# 2_1^2) = \frac{1}{4(2-\sqrt{3})} 6\pi + 2$$

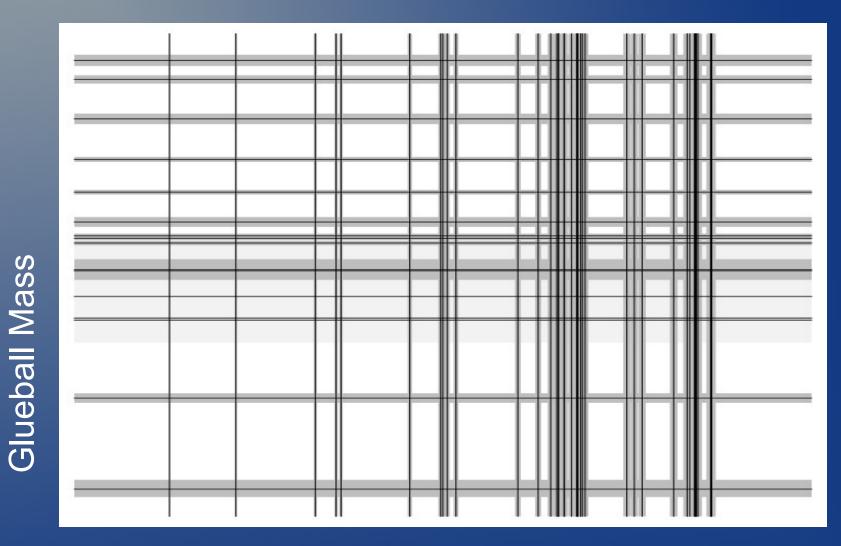
or

 $E(2_1^2 \# 2_1^2) \approx 0.933013(6\pi + 2) \approx 19.4529$

knot and link lengths.

currently tabulated knot and link lengths.

Fit f_J's to knots

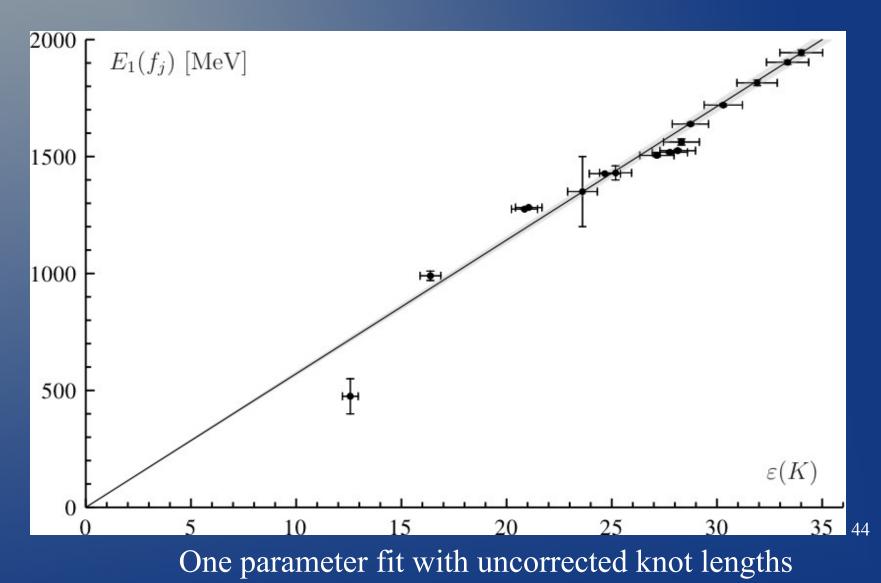

Curvature corrections included in fit

Glueball Mass

		FIIII -	
		<u>↓</u>	
			I
		╎╢╢	
			I

Knot Length

The Glueball Tartan

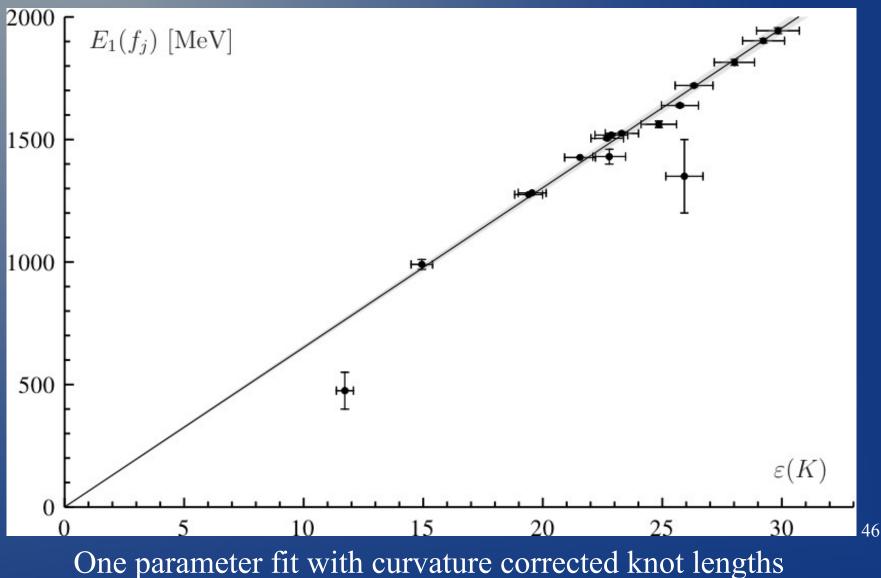


Knot Length

Fit

- We fit one set of sporadic numbers with another
- I.e., f-state masses <---> knot lengths
- Either one-parameter: slope
- Or two parameters: slope and intercept

f_J's vs knot lengths

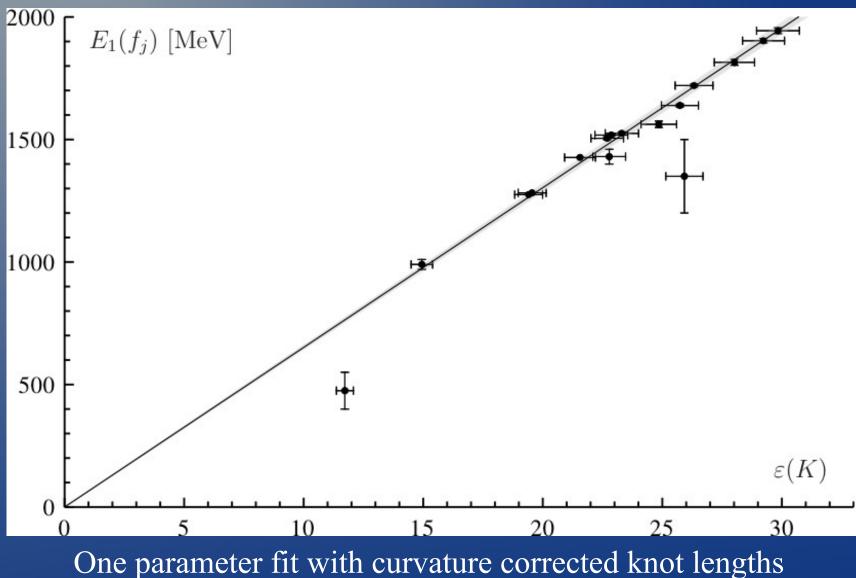

Options

- Linear fit: 1-1 in order of mass/length
- Move f states with large error bars out of order to improve fit to:

1. Account for tension in data by leaving gaps

2. Find best fit

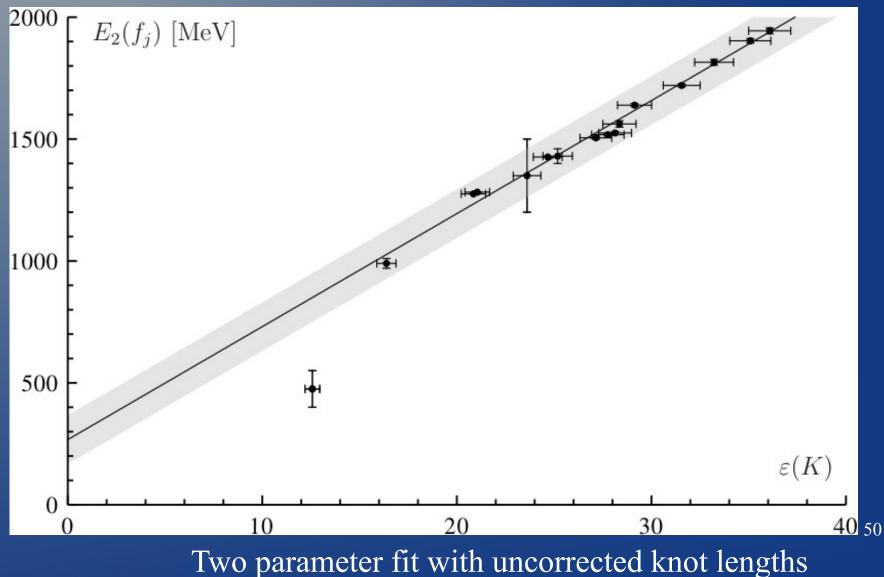
f_J's vs knot lengths

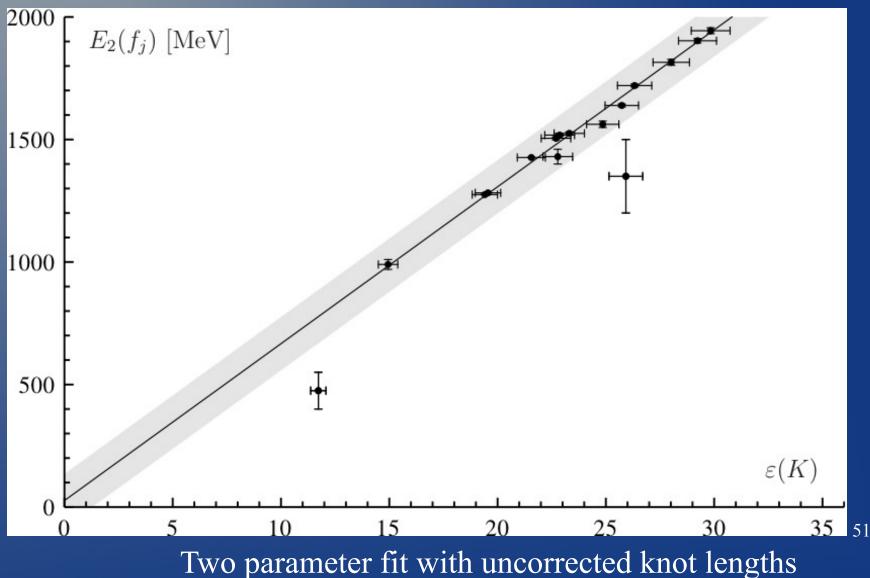


Best qualified fit

- This previous figure is best fit allowing for resolution of the tension in the data at ~1220 MeV
- Free knot i.e., 4²₁ unassigned and used to predict a state near 1200 MeV

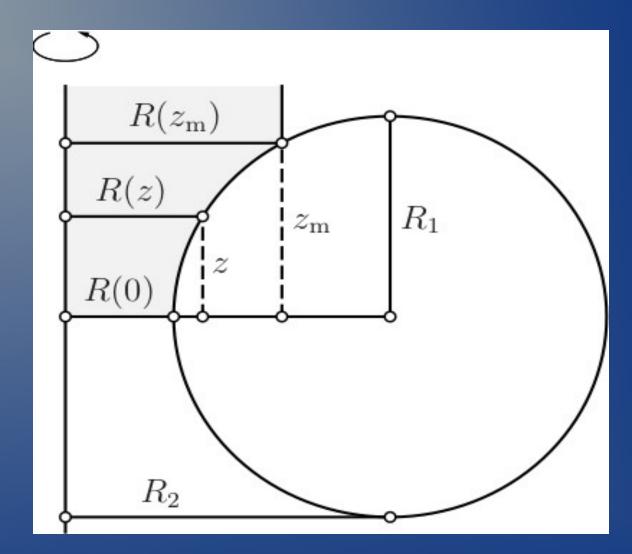
f_J's vs knot lengths


48


One parameter curvature corrected vs uncorrected fits

- f(1270) and f(1285) poorly fit without curvature correction
- Fit of f(1270) and f(1285) considerably improved with curv. correction

f_J's vs knot lengths


f_J's vs knot lengths

Two parameter fits

- Two parameter fit does not pass through origin for no curv. correction
- Curv. Corrected two parameter fit is consistent with zero intercept

Other Corrections

Toroidal flux tube (minor radius R1, major radius R2) constricting a cylindrical flux tube of radius R(z)

Other Corrections

Constriction

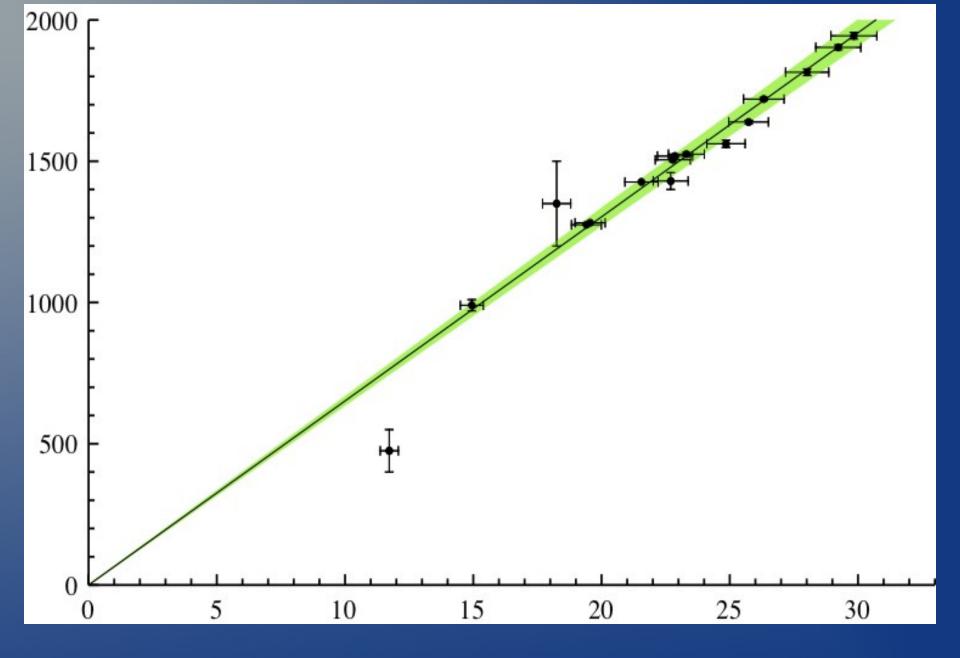
Balance tension with magnetic pressure

Estimate 5% correction for Hopf link

QCD may be more complicated—confinement effects, etc.

Other Corrections

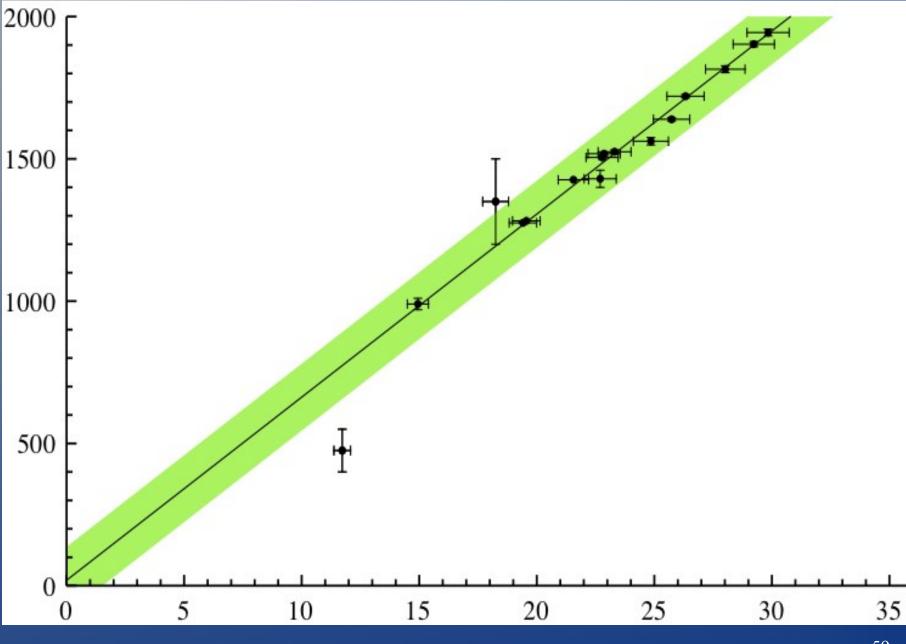
Distortion of tube cross section


E.g., wrap a rope tightly around a post and it's Cross section distorts

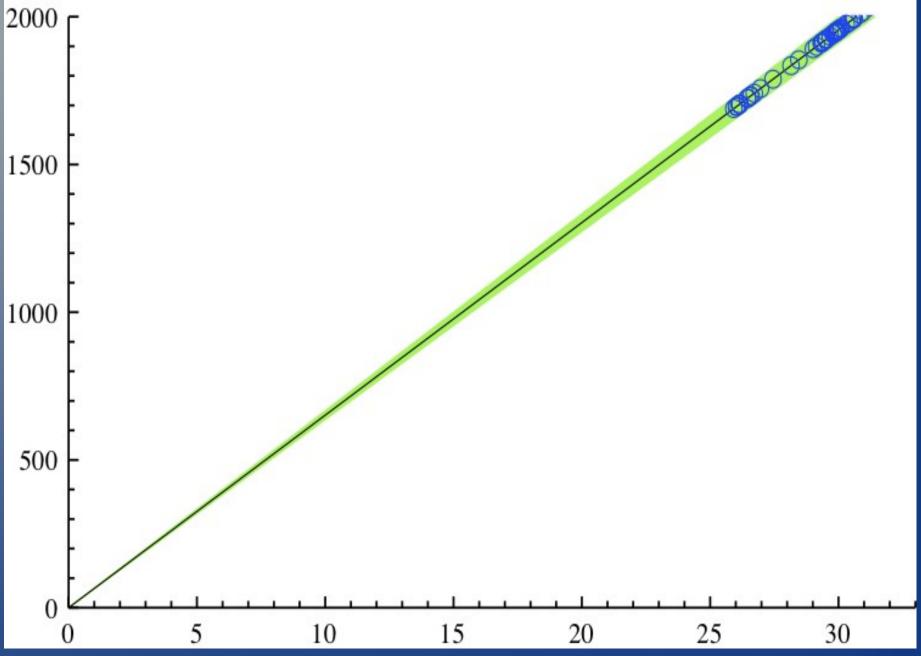
Estimate few % corrections

Corrections to Knot Lengths

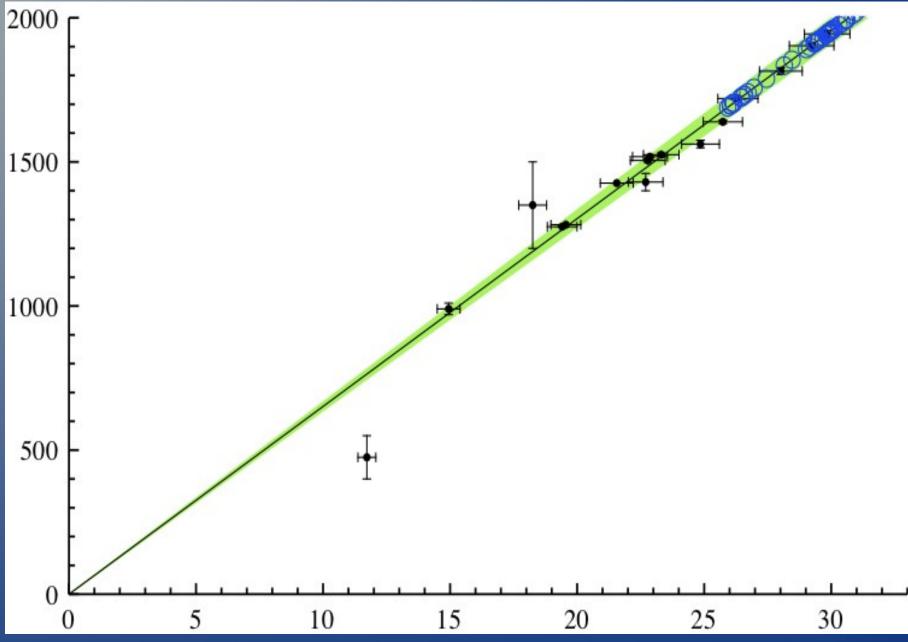
- Curvature corrections ~ few % variation
- Constriction corrections few %
- Distortion corrections few %
- QCD effects ?


- Conservative assumption: 3% error on knot energy
- Note: only the spread in corrections is important

one parameter fit—curvature corrected


Best unqualified fit

The previous figure is the best overall fit
f(1350) was reordered



two parameter fit—curvature corrected

59

Predictions for masses

Fit plus predictions

RESULTS and PREDICTIONS for 1-Parameter Fit

(1) Knots and f_J states are in one-to-one for first 12 knots/links and first 12 states

(2) $\chi^2 = 28$

(3) $R^2 = 0.9994$

(4) $\Lambda_{tube} = 65.2 \pm 0.8 \text{ MeV}$ or $\pm 1.5 \%$

Compare to Λ_{QCD} where

 $\Lambda_{\bar{M}\bar{S}} = 217 \pm 12 \text{ MeV} \quad \text{or} \quad \pm 5\%$

2-Parameter Fit

- (1) Knots and f_J states are in one-to-one for first 12 knots/links and first 12 states
- (2) $\chi^2 = 28$ unchanged

(3)
$$\Lambda_{tube} = 65.2 \pm 0.8 \text{ MeV} (\text{unchanged})$$

(4) Intercept = 19 ± 114 MeV Consistent with zero. I.e., model is not improved by adding an extra parameter

Quality of the fit

TABLE I: Statistical tests of the model. Recalling that p is bounded $0 \le p \le 1$ and p < 0.01implies poor correlation, 0.01 implies moderate correlation and <math>0.1 < p implies strong correlation, we see that all these tests strongly support the model.

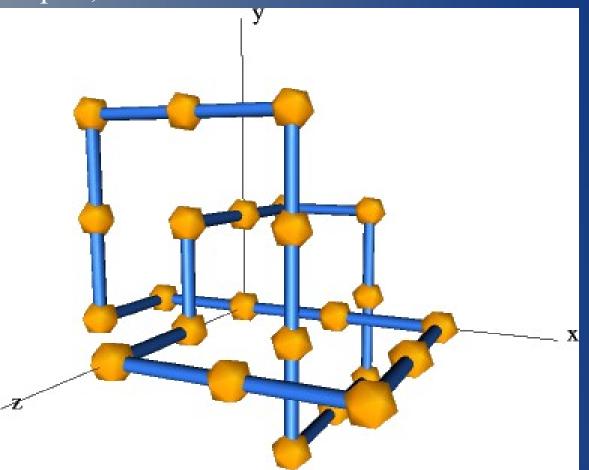
Goodness-of-fit test	<i>p</i> -value	Variance test	<i>p</i> -value
Pearson χ^2	0.66	Brown-Forsythe	0.74
Kolmogorov-Smirnov	0.95	Fisher Ratio	0.69
Cramer-von Mises	0.96	Levene	0.74
Anderson-Darling	0.97	Siegel-Tukey	0.82
Kuiper	0.99		
Watson U Square	0.90		

		1	0 ()	
State	Mass	K^a	$arepsilon(K)^b$	$E(K)^c$
$f_0(500)$	475 ± 75	2_{1}^{2}	11.724	764
$f_0(980)$	990 ± 20	31	14.943	974
$f_0(1370)$	1350 ± 150	4_{1}^{2}	18.250	1189
$f_2(1270)$	1275.1 ± 1.2	41	19.411	1265
$f_1(1285)$	1282.1 ± 0.6	$2_1^2 \# 2_1^2$	19.556	1274
$f_1(1420)$	1426.4 ± 0.9	51	21.559	1405
$f_2(1430)$	≈ 1 430	$2_1^2 \# 3_1$	22.697	1479
$f_0(1500)$	1505 ± 6	52	22.779	1484
$f_1(1510)$	1518 ± 5	5_{1}^{2}	22.866	1490
$f_{2}'(1525)$	1525 ± 5	6^{3}_{3}	23.309	1519
$f_2(1565)$	1562 ± 13	6_{1}^{2}	24.854	1619
$f_2(1640)$	1639 ± 6	7^{2}_{7}	25.735	1677
		6^{2}_{2}	25.924	1689
		61	26.025	1696
		$2_1^2 \# 4_1^2$	26.046	1697
		$3_1 \# 3_{1m}$	26.135	1703
		$3_1#3_1$	26.151	1704
		62	26.158	1704
f ₀ (1710)	1720 ± 6	6^{3}_{1}	26.327	1715
		$(2_1^2 \# 2_1^2 \# 2_1^2)_{\rm kc}$	26.449	1723
		$2_1^2 # 4_1$	26.466	1724
		63	26.567	1731

Fit and predicted masses for 1st 22 knots/links

Predicted f_.'s from knot energies No new states below ~1680 MeV (Not inconsistent with one new state at ~1195 MeV upon reording f(1370)) Five new states 1690—1705 MeV range Many new states above ~ 1720 MeV

Estimated to 3% accuracy


From one parameter fit with curvature corrected knot lengths

Comments about Predictions

- There is tension in the data near f(1710), f(1810), and some other high mass
 f-states.
- 50 years of HEP data to reconcile
- Multiple states possible in these regions
- Attempts should be made to resolve them

Smallest knot on a cubic lattice

From knotplot, Rob Scharein

Minimal trefoil hits 24 vertices, Y. Diao (1993)

Trefoil energy

- Minimal lattice trefoil energy = 24
- Minimal lattice trefoil energy ~ 16.44
- Lattice could predict knot energies on the high side

Conventional glueball on lattice--difficult problem

Lattice knotted and linked flux tubes--open problem

CONCLUSIONS

CLASSICAL SYSTEMS

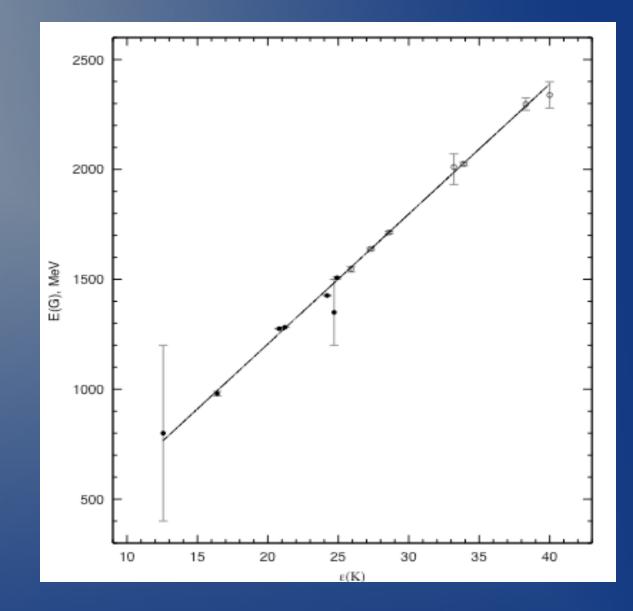
- Systems can Knot and Link
- Possibly Tight
- Varying Tube Radius and Energy Spectrum

CONCLUSIONS

QUANTUM SYSTEMS

- Knots and Links
- Fixed Tube Radius (Quantized Flux)
- Tight implies "Quantized Lengths" for tight knots
- Quantized Energy
- Universal Spectra

One Parameter per System - the Slope Predictions for QCD !

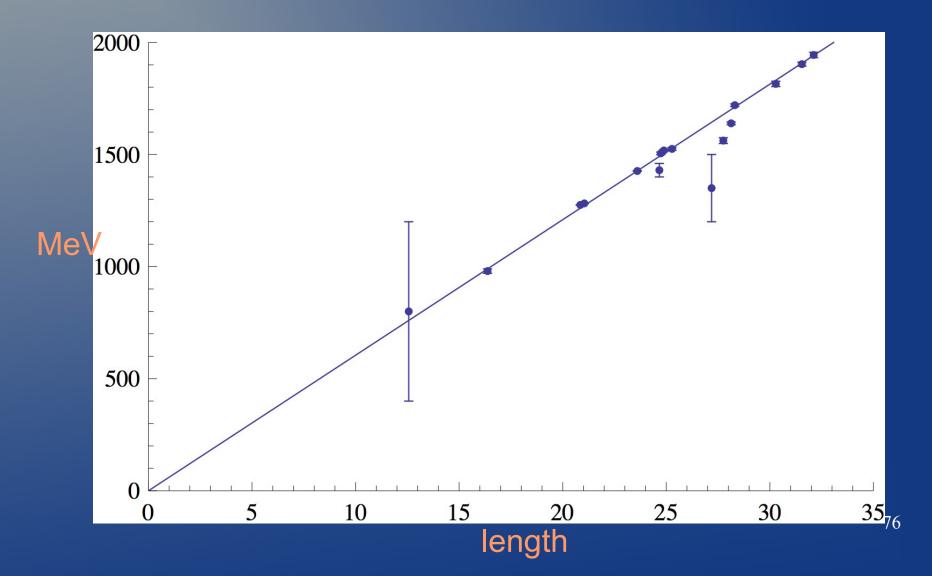

END

Now fit with only f₀ data

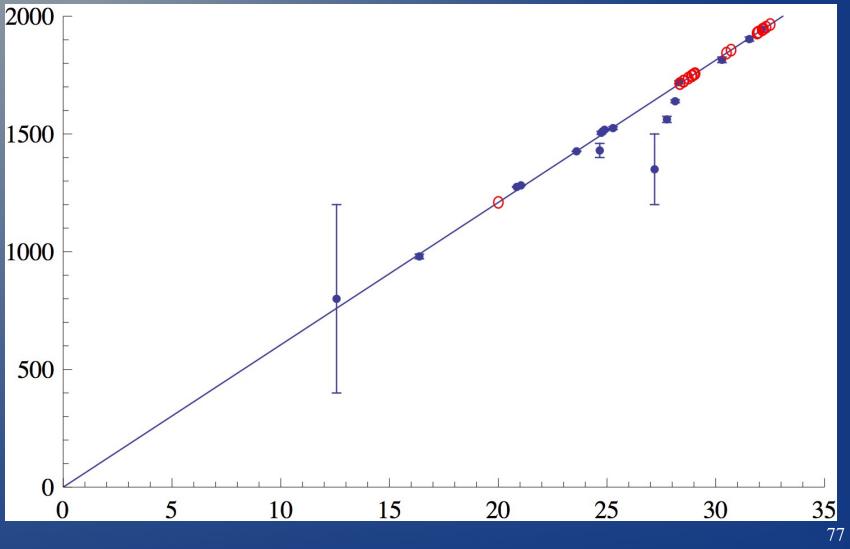
More conservative

No interpretation of J > 0

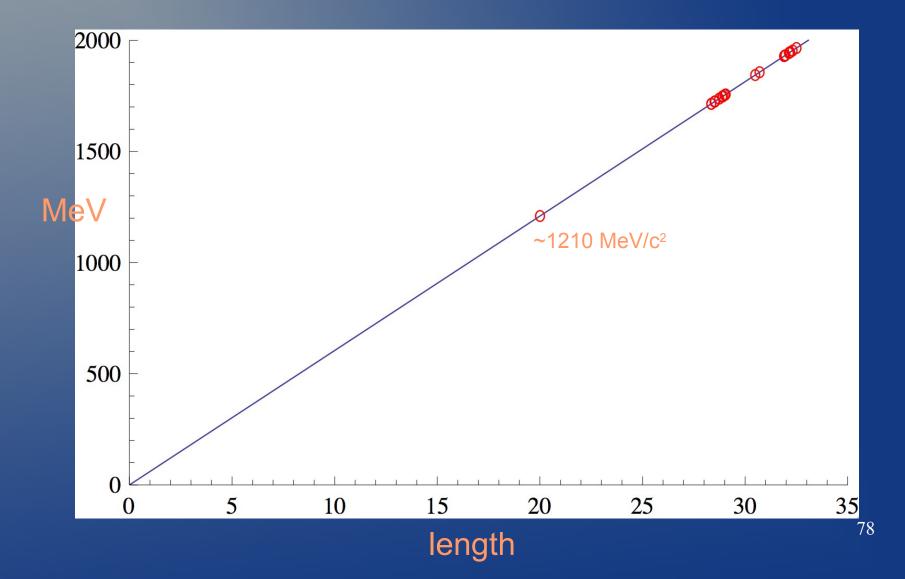
Only 6 states, so more predictions

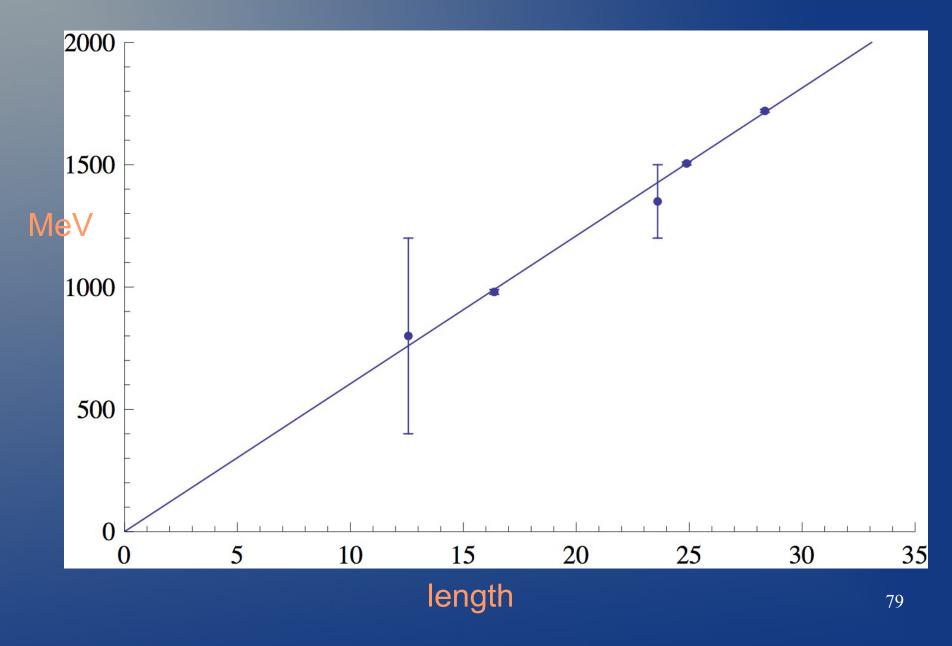


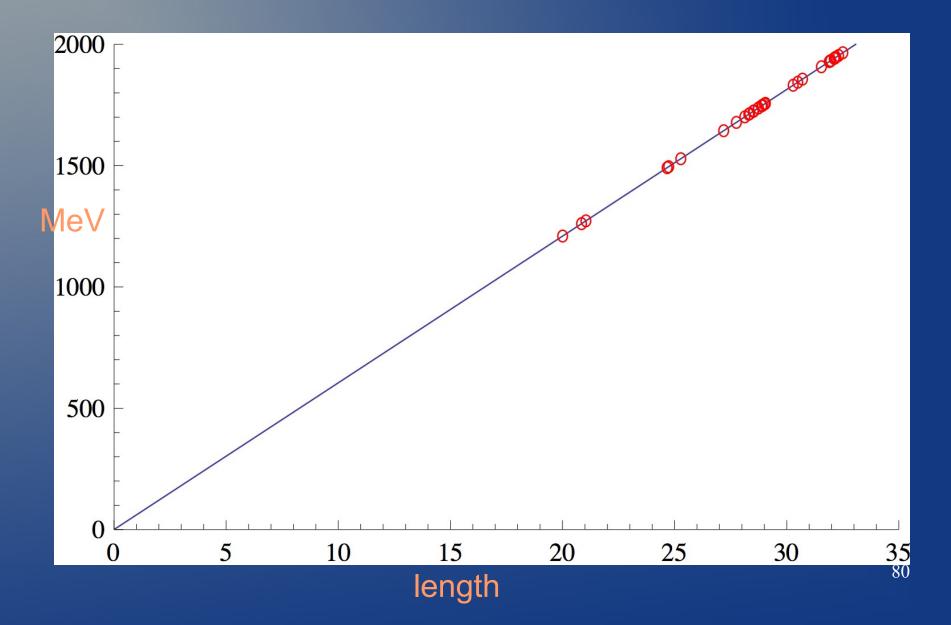
Knot energy vs glueball mass, 2003 results

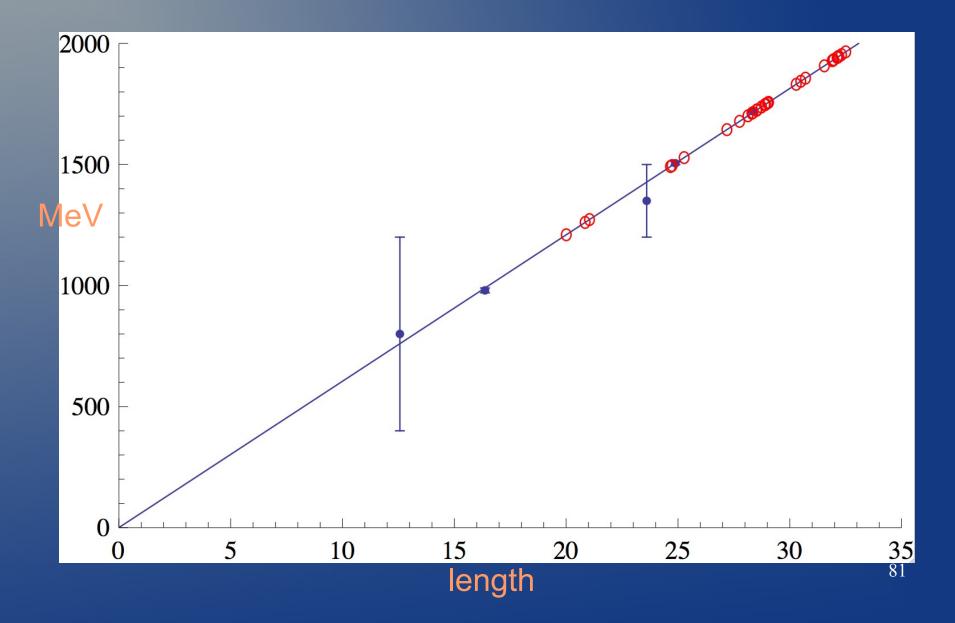

75

Fit of all f_J data of mass < 2 GeV/c²


(Assume all knots and links known)


Data and Predictions for f_J States


Model Predictions


Fit of f₀ data only

Predictions from fit to f₀ data

Data and Predictions for f₀ States

The Tight Knot Spectrum in QCD

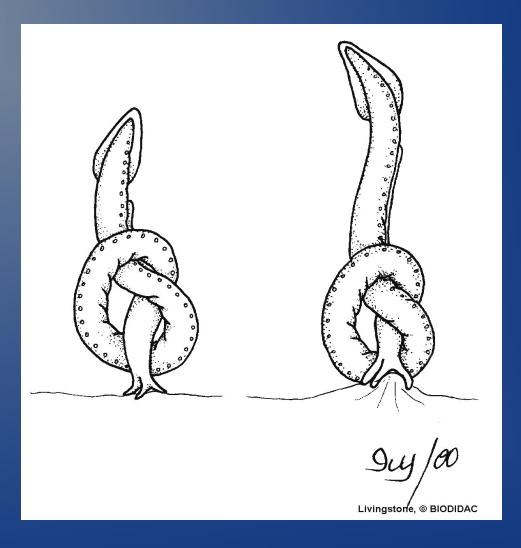
Tom Kephart Vanderbilt University

Presented at the Isaac Newton Institute TOD Programme 17 November 2012

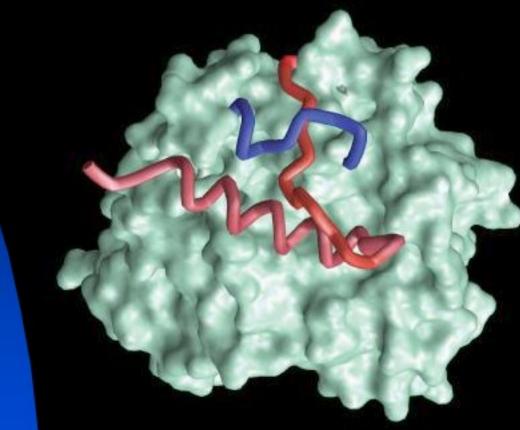
The Tight Knot Spectrum in QCD

Tom Kephart Vanderbilt University

Presented at the International Centre for Mathematical Sciences Edinburgh 3rd TOD workshop Isaac Newton Institute


17 October 2012

Sea Creatures in Knots



Logfish sightlass ool

Feeding Hagfish

Proteins can also be Knotted

Computer model of knotted protein in methanobacterium thermoautotrophicum Argonne National Laboratory

Results

- Knot Length Errors ~0.1%
- R² = .9996 for n = 10 f₀ States

■ Slope Parameter S = 60.6 +/- 0.91 MeV Intercept -9.0 +/- 26.1 S ~ $\Lambda_{\rm QCD}/\pi$

• New States at $E = E_{\kappa} xS$

E.g., 4_1^2 at E = 1203 MeV, 7_7^2 at E = 1673 MeV, etc.

Counting knots

c chiral noninvertible
+ amphichiral noninvertible
- amphichiral invertible
i chiral invertible
a fully amphichiral and invertible

n	C	+	-	i	а
Sloane	A051766	A051767	A051768	A051769	A052400
3	0	0	0	1	0
4	0	0	0	0	1
5	0	0	0	2	0
6	0	0	0	2	1
7	0	0	0	7	0
8	0	0	1	16	4
9	2	0	0	47	0
10	27	0	6	125	7
11	187	0	0	365	0
12	1103	1	40	1015	17
13	6919	0	0	3069	0
14	37885	6	227	8813	41
15	226580	0	1	26712	0
16	1308449	65	1361	78717	113

88