Probing Lepton Number Violation on Three Frontiers

Frank Deppisch f.deppisch@ucl.ac.uk

University College London

Theoretical Particle Physics Seminar University of Edinburgh, 22 May 2013

Probing LNV on Three Frontiers

Overview

- Neutrinos
 - Oscillations
 - Absolute Mass
- Neutrinoless Double Beta Decay
 - Light Neutrino Exchange
 - New Physics Mechanisms
 - In Combination with Cosmology
- Neutrino Mass Models
 - Effective Mass and Seesaw
 - Minimal Left-Right Symmetry
- LFV and LNV at the LHC
- Conclusion

Neutrino Oscillations

Neutrino interaction states different from mass eigenstates

Neutrino flavour can change through propagation

$$\nu_{i} = \sum_{\alpha} U_{i\alpha} \nu_{\alpha}, \quad \nu_{i}(t) = e^{-i(E_{i}t - p_{i}x)} \nu_{i}$$
$$\Rightarrow P_{\alpha \to \beta} = \sin^{2}(2\theta) \sin^{2} \left(1.27 \frac{\Delta m^{2}}{eV^{2}} \frac{L/km}{E/GeV} \right)$$

- Solar neutrino oscillations Large mixing
- Atmospheric oscillations
 Maximal mixing
- Reactor and accelerator neutrinos

 $\sin^2(2\theta_{13}) = 0.092 \pm 0.021$

• **Experimental unknowns and anomalies** CP violation? Sign of Δm_{23} ? Sterile Neutrinos?

3/32 Frank Deppisch

Probing LNV on Three Frontiers

Absolute Neutrino Mass

4/32 Frank Deppisch

Probing LNV on Three Frontiers

Dirac vs Majorana

5/32 Frank Deppisch

Probing LNV on Three Frontiers

Dirac vs Majorana

6/32 Frank Deppisch

Probing LNV on Three Frontiers

Neutrinoless Double Beta Decay

- Process: $(A, Z) \rightarrow (A, Z+2) + 2e^{-1}$
- Uncontroversial detection of 0vββ
 of utmost importance
 - Prove lepton number to be broken
 - Prove neutrinos to be Majorana particles (Schechter, Valle '82)

• Which mechanism triggers the decay?

General Effective Operator

Light Neutrino Exchange

• Standard Mass Mechanism d_L V-A W_L W_L W_L W_L W_L W_L U-A e_L u_L

β $\overline{v_{e}}$ allowed $\beta\beta$ $\overline{v_{e}}$ $\overline{v_{e}}$ $\overline{v_{e}}$ neutrinoless $\beta\beta$ e^{-} $\overline{v_{e}}$

Lindner, Merle, Rodejohann (2005)

Decay Rate

$$\Gamma = T_{1/2}^{-1} = \frac{m_{\beta\beta}^2}{m_e^2} G^{0\nu} |M^{0\nu}|^2$$

Effective Mass

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 m_{\nu_i} \right| \equiv (m_{\nu})_{ee}$$

8/32 Frank Deppisch

Probing LNV on Three Frontiers

Nuclear Matrix Elements

• Decay Rate

$$T = T_{1/2}^{-1} = \frac{m_{\beta\beta}^2}{m_e^2} G^{0\nu} |M^{0\nu}|^2$$

- Requires calculation of matrix element of the nuclear transition via intermediate state
- Many-body problem not solvable from first principle
- Factor 2 3 uncertainty between different nuclear models
 - Shell Models
 - QRPA
 - IBM

Important to search for 0vββ in several isotopes

Probing LNV on Three Frontiers

 $0\nu 2\beta$ (exotic, not observed)

Up to

5 to 6
 hbar

0+ g.s.

100 MeV

 Probes all states

T=6

Experimental Situation

Probing LNV on Three Frontiers

Combining 0vββ and Cosmology J. Auger, FFD, O. Lahav, I. Sadeh, D. Waters, Work in Progress

Effective 0vββ Observable

$$m_{\beta\beta} \equiv (m_{\nu})_{ee} = \left| \sum_{i} U_{ei}^{2} m_{\nu_{i}} \right| = \left| m_{\nu_{1}} |V_{el}|^{2} + m_{\nu_{2}} |V_{e2}|^{2} e^{2i\phi_{12}} + m_{\nu_{3}} |V_{e3}|^{2} e^{2i\phi_{23}} \right|$$

$$\approx m_{1} \sqrt{1 - \sin^{2}(2\theta_{12}) \sin^{2}(\phi_{12})} \quad \text{quasi-deg. neutrinos}$$

Interplay of mass probes

Probing LNV on Three Frontiers

Combining 0vββ and Cosmology J. Auger, FFD, O. Lahav, I. Sadeh, D. Waters, Work in Progress

Probing LNV on Three Frontiers

New Physics Contributions to 0vßß

Plethora of New Physics Scenarios

13/32 Frank Deppisch

Probing LNV on Three Frontiers

Disentangling New Physics Scenarios

• Angular and Energy distribution of emitted electrons (Doi et al. '83; Ali et al. '06; Arnold et al. '10; FFD, Jackson, Nasteva, Söldner-Rembold '10)

$$\frac{d\Gamma}{dE_1dE_2d\cos\theta} = \frac{\Gamma}{2}(1 - k(E_1, E_2)\cos\theta) \quad -1 < k < 1$$

- Linear in $\cos\theta$
- $k(E_1, E_2)$ depends on $0\nu\beta\beta$ mechanism

• Comparison of 0vββ in multiple isotopes (FFD, Päs PRL 2007)

$$\frac{T_{1/2}(^{A}X)}{T_{1/2}(^{B}Y)} = \frac{G(^{B}Y)|M(^{B}Y)|^{2}}{G(^{A}X)|M(^{A}X)|^{2}}$$

- Depends on $0\nu\beta\beta$ mechanism
- Independent of details of new physics (if one mechanism dominates)

• Effective operator for Majorana neutrino mass

$$L = \frac{1}{2} \frac{h_{ij}}{\Lambda_{\text{LNV}}} (\overline{L_i^c} \cdot \tilde{H}) (\tilde{H}^T \cdot L_j) \rightarrow \frac{1}{2} (m_v)_{ij} \overline{v_i^c} v_j$$

Unique dim-5 Operator

Seesaw Mechanism

Add right-handed neutrinos to the Standard Model particle content, $M \approx 10^{14} \text{ GeV}$

$$L = L_{\rm SM} - \frac{1}{2} \,\overline{\mathbf{v}}_R M \,\mathbf{v}_R^c + \overline{\mathbf{v}}_R Y_{\mathbf{v}} L \cdot H_u$$

Light neutrino mass matrix at low energies

$$m_v = m_D^T M^{-1} m_D$$
 for $m_D \ll M_R$ $m_v \approx 0.1 \text{eV} \left(\frac{m_D}{100 \text{ GeV}}\right)^2 \left(\frac{M}{10^{14} \text{ GeV}}\right)^{-1}$

• Effective operator for Majorana neutrino mass

$$L = \frac{1}{2} \frac{h_{ij}}{\Lambda_{\text{LNV}}} (\overline{L_i^c} \cdot \tilde{H}) (\tilde{H}^T \cdot L_j) \rightarrow \frac{1}{2} (m_v)_{ij} \overline{v_i^c} v_j$$

Unique dim-5 Operator

Seesaw Mechanism

Sterile Neutrino Mass Scale Unknown

- ≈10¹⁴ GeV: Naive Seesaw, GUTs
- >10⁹ GeV: Thermal Leptogenesis
- ≈10² GeV: Resonant Leptogenesis, Production at LHC

- \approx 1 keV: Dark Matter Candidate
- \approx 1 eV: Oscillation, Cosmology, (Double) Beta Decay

16/32 Frank Deppisch

Probing LNV on Three Frontiers

Effective operator for Majorana neutrino mass

$$L = \frac{1}{2} \frac{h_{ij}}{\Lambda_{\text{LNV}}} (\overline{L_i^c} \cdot \tilde{H}) (\tilde{H}^T \cdot L_j) \rightarrow \frac{1}{2} (m_v)_{ij} \overline{v_i^c} v_j$$

Unique dim-5 Operator

- Seesaw Mechanism
- Three possible mediators at tree level

Effective operator for Majorana neutrino mass

$$L = \frac{1}{2} \frac{h_{ij}}{\Lambda_{\text{LNV}}} (\overline{L_i^c} \cdot \tilde{H}) (\tilde{H}^T \cdot L_j) \rightarrow \frac{1}{2} (m_v)_{ij} \overline{v_i^c} v_j$$

Unique dim-5 Operator

- Seesaw Mechanism
- Three possible mediators at tree level

Effective Mass and Loops

• Effective operator for Majorana neutrino mass

$$L = \frac{1}{2} \frac{h_{ij}}{\Lambda_{\text{LNV}}} (\overline{L_i^c} \cdot \tilde{H}) (\tilde{H}^T \cdot L_j) \rightarrow \frac{1}{2} (m_v)_{ij} \overline{\nu_i^c} \nu_j$$

Unique dim-5 Operator

Radiative Generation via Loops

Alternative to Seesaw Mechanism

Probing LNV on Three Frontiers

19/32 Frank Deppisch

- Introduces high energy scale
- **Right-handed neutrinos are singlets** Couple only via small mixture with active neutrinos
- Mechanism not testable with low energy observables

- Introduces high energy scale
- **Right-handed neutrinos are singlets** Couple only via small mixture with active neutrinos
- Mechanism not testable with low energy observables
- Possible Solutions
 - **SUSY Seesaw** Testable LFV effects from sleptons

- Introduces high energy scale
- Right-handed neutrinos are singlets
 Couple only via small mixture with active neutrinos
- Mechanism not testable with low energy observables
- Possible Solutions
 - **SUSY Seesaw** Testable LFV effects from sleptons
 - "Bent" Seesaw mechanisms
 LNV at low scale allows low mass of right-handed neutrinos

- Introduces high energy scale
- Right-handed neutrinos are singlets
 Couple only via small mixture with active neutrinos
- Mechanism not testable with low energy observables
- Possible Solutions
 - **SUSY Seesaw** Testable LFV effects from sleptons
 - "Bent" Seesaw mechanisms
 LNV at low scale allows low mass of right-handed neutrinos
 - Left-Right symmetric models Right-handed neutrinos couple with gauge strength to charged leptons

Minimal Left-Right Symmetrical Model

$$SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

Pati & Salam '74 Mohapatra & Senjanovic '75

Neglect any

Left-Right mixing

Higgs Sector:
 Bidoublet (EW Breaking) + Left-handed Triplet + Right-handed
 Triplet (Breaking Lepton Number + Parity + SU(2)_R)

• Generate
$$N_i + W_R + Z_R$$
 masses

$$M_{N_i} \approx M_{W_R} \approx M_{Z_R} \approx <\Delta_R > \approx 0.5 - 5 \text{ TeV}$$

• General Seesaw II Mechanism

$$M_{\nu} = \begin{pmatrix} M_L & M_D \\ M_D^T & M_R \end{pmatrix},$$

Charged current weak interactions

 $J_{W_{1}}^{\mu-} = \frac{g_{L}}{\sqrt{2}} \left(\bar{\nu}_{i} U_{\ell i}^{LL} + \bar{N}_{i}^{c} U_{\ell i}^{LR} \right) \gamma^{\mu} \ell_{L} + \frac{g_{R}}{\sqrt{2}} \sin \zeta_{W} \left(\bar{\nu}_{i} U_{\ell i}^{RL} + \bar{N}_{i} U_{\ell i}^{RR} \right) \gamma^{\mu} \ell_{R}, \qquad J_{W_{L}}^{\mu-} \approx \frac{g_{L}}{\sqrt{2}} U_{\ell i} \bar{\nu}_{i} \gamma^{\mu} \ell_{L}, \\ J_{W_{2}}^{\mu-} = -\frac{g_{L}}{\sqrt{2}} \sin \zeta_{W} \left(\bar{\nu}_{i} U_{\ell i}^{LL} + \bar{N}_{i} U_{\ell i}^{LR} \right) \gamma^{\mu} \ell_{L} + \frac{g_{R}}{\sqrt{2}} \left(\bar{N}_{i} U_{\ell i}^{RR} + \bar{\nu}_{i}^{c} U_{\ell i}^{RL} \right) \gamma^{\mu} \ell_{R}, \qquad J_{W_{R}}^{\mu-} \approx \frac{g_{R}}{\sqrt{2}} V_{\ell i} \bar{N}_{i} \gamma^{\mu} \ell_{R},$

24/32 Frank Deppisch

Probing LNV on Three Frontiers

Neutrinoless Double Beta Decay in the LRSM

Right-handed Neutrino Production at the LHC

26/32 Frank Deppisch

Probing LNV on Three Frontiers

Single Neutrino Production

- Monte Carlo Simulation (PROTOS)
- Background ttbar, Z + jets (Pythia, Alpgen)
- Fast Detector Simulation (AcerDET)
- Selection Criteria

27/32 Frank Deppisch

number of jets	$N_j \ge 2$
number of isolated leptons	$N_\ell = 2$
invariant dilepton mass	$m_{\ell\ell} > 300 { m ~GeV}$
total invariant mass	$m_{\ell\ell jj} > 1.5 \text{ TeV}$

Opposite Sign + Same Sign Leptons LHC reach @ 14 TeV, 30 fb⁻¹

Probing LNV on Three Frontiers

Comparison to $0\nu\beta\beta$

 Consider contributions to 0vββ from triplet Higgs

$$\frac{M_{W_L}^4}{M_{W_R}^4} \frac{m_p}{M_{\Delta_R^{--}}^2} \sum_i (U_{ei}^{\rm RR})^2 M_{N_i}$$

and heavy neutrinos

$$\frac{M_{W_L}^4}{M_{W_R}^4} \sum_i \frac{(U_{ei}^{\mathrm{RR}})^2}{M_{N_i}}$$

$$m_{H_{L_R}^{++}} = 0.3 m_{W_R} m_{W_R} [TeV]$$

LHC reach @ 14 TeV, 30 fb⁻¹

28/32 Frank Deppisch

Probing LNV on Three Frontiers

Neutrinos much lighter than other fermions
 Strong experimental program to probe absolute mass

- Neutrinos much lighter than other fermions
 Strong experimental program to probe absolute mass
- Neutrinos are the only neutral fermions Dirac or Majorana? Lepton Number Violation?

- Neutrinos much lighter than other fermions
 Strong experimental program to probe absolute mass
- Neutrinos are the only neutral fermions
 Dirac or Majorana? Lepton Number Violation?

0vββ is crucial probe for BSM physics

- Hope for the best
 New LNV physics at the EW scale
- Prepared for the worst
 Only 5-dim operator from LNV
 at the GUT scale

- Neutrinos much lighter than other fermions
 Strong experimental program to probe absolute mass
- Neutrinos are the only neutral fermions
 Dirac or Majorana? Lepton Number Violation?

0vββ is crucial probe for BSM physics

- Hope for the best
 New LNV physics at the EW scale
- Prepared for the worst
 Only 5-dim operator from LNV
 at the GUT scale
- Rich phenomenology in models of neutrino mass generation
 - Cosmological Observations
 - Charged lepton flavour violation
 - LFV and LNV processes at the LHC
 - Connection to Leptogenesis?

32/32 Frank Deppisch