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Degeneracies
• Ideally, would like to use data to rule out models or

even confirm specific inflationary model
• However, this goal is probably out of reach, because of

1 limitations in observation
2 degeneracy between predictions

• But we have no choice: to connect data with theory,
must take potential degeneracies into account!
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Inflation: Slow Roll
Vanilla inflation: single field theory with canonical kinetic
term

L = −1
2

(∂φ)2 − V (φ)

Get inflation when the potential is flat enough for a large
enough field range...
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Inflation: Usual approach
For FRW metric

ds2 = −dt2 + a2(t)dx2,

we get exponential expansion a(t) ∼ eHt for slow-roll:

H =
ȧ
a

; ε = − Ḣ
H2 � 1; η =

ε̇

Hε
� 1.

ε = εV =
1
2

(
V ′

V

)2

η = 4εV − 2ηV ; ηV =
V ′′

V



Degeneracies
between

canonical and
non-canonical

inflation

Rhiannon
Gwyn, AEI
Potsdam

Introduction

Non-canonical
inflation

Canon/Noncan
transformation

Summed
resonant non-
gaussianities

Conclusions

UV sensitivity of inflation
The UV-complete theory in which inflation operates is
unknown, so we take an EFT approach:
• Effective field theory: corrections from higher-

dimensional operators should be suppressed by the
cut-off Λ:

Leff = Lrelevant +
∑

n

cn
On

Λn−4

However, the EFT can be sensitive to the UV physics:
• Eta problem: Mass dimension 6 corrections can spoil

the flatness of the potential: O6
M2

p
→ O4

M2
p
φ2

Veff = V0 +
1
2

m2
0φ

2 +
O4

M2
p
φ2

< O4 > ∼ V0 ⇒ ηV = M2
p

V ′′

V
∼ O(1).
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UV sensitivity of kinetic terms
In particular, non-canonical kinetic terms arise when
massive degrees of freedom are integrated out:

L =
1
2

(∂φ)2 +
1
2

(∂ρ)2 +
ρ

M
(∂φ)2 − 1

2
M2ρ2

⇒ Leff =
1
2

(∂φ)2 +
(∂φ)4

M4 for H � M

at energy scales H << M. E.g., the DBI action [Silverstein and
Tong, 0310221]

LDBI = −Λ4

[√
1− (∂φ)2

Λ4 − 1

]
− V (φ)

≈ 1
2

(∂φ)2 +
1
8

(∂φ)4

Λ4 + ...− V (φ)
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Non-canonical Lagrangian
A single scalar field coupled minimally to gravity (X = 1

2 φ̇
2):

S =

∫
d4x
√
−g4

[
M2

p

2
R4 + p(X , φ)

]

For example,

pcan = X − V (φ)

pDBI = − 1
f (φ)

(√
1− 2f (φ)X − 1

)
− V (φ)

pTach = −V (φ)

√
1− 2

X
Λ4

pK = K (φ)X +
X 2

Λ4
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Non-canonical Inflation
Take separable action

p(X , φ) = Λ4S(X )− V (φ).

The inflationary solution is given by Xinf (A) satisfying√
2X
Λ4

dp
dX

= A =
V ′

3HΛ2

where A is the noncanonicalness parameter.
• A << 1⇒ εV � 1 i.e. canonical regime
• NCI is attractive (small perturbations driven to zero)
• overshoot/ICFTP reduced when the NC regime is

relevant
[Franche, RG, Underwood and Wissanji: 0912.1857 & 1002.2639]
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Observational signatures of
NCI: Nongaussianity

The power spectrum and spectral index are given by the
two-point function of scalar perturbations:

< RkRk ′ > = (2π)3δ(k + k ′)PR(k)

∆2
s =

k3

2π2PR(k)

ns − 1 =
d ln ∆2

s
d ln k

For Gaussian fields even higher point functions are
determined by this and odd higher point functions are zero
(order SR parameters). For Nongaussian fields, get
nonnegligible contribution to bispectrum (three point
function) etc < Rk1Rk2Rk3 >
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Observational signatures of
NCI:

NCI models P(X , φ) can lead to an observable amount of
nongaussianity, of the equilateral type: k1 ≈ k2 ≈ k3 [Chen,
Huang, Kachru, Shiu: 0605045]

f equil
NL ∼ c−2

s

where

c2
s =

(
1 + 2X

pXX

pX

)−1

• Potentially clear observational signature of NCI!
• Not yet ruled out by data....
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Constraints on NCI
New Planck bounds: [1303.5082 etc]

f local
NL = 2.7± 5.8

f equil
NL = −42± 75

f ortho
NL = −25± 39

cs ≥ 0.02
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Outline

1 Planck: local fNL severely constrained, putting pressure
on multifield models

2 f equil
NL (NC kinetic terms, varying cs) relatively

unconstrained
3 NC kinetic terms are also fairly generic in string theory

models of inflation
4 However, there is degeneracy between canonical and

noncanonical models even at the 3pt function level
(Non gaussianities)

5 in [1211.0070] and [1212.4135] we try to understand
this degeneracy better...
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Field redefinitions
• for simple Lagrangians p(X , φ) can transform to a

canonical action via a field redef eg
p(X , φ) = − 1

2φ2 (∂µφ)2 − V (φ) using ψ = lnφ.

• for more general p(X , φ) can always transform a
canonical theory to a noncanonical one via canonical
transformations in 0 + 1D [Bean et al, 0801.0742]:

p =
∂F
∂φ

, p̃ = −∂F
∂φ̃

for a generating functional F (φ, φ̃).
• However only separable NC theories with quadratic

potentials can be transformed to canonical theories this
way (AFAIK...). [RG, Rummel and Westphal, 1212.4135]
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Onshell transformation
Can we construct a potential Vcan(φ) which gives rise
(in a canonical theory) to the same trajectory Xinf (φ) as
in the noncanonical theory?
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Onshell transformation
Noncanonical theory:

Πinf (φ) ≈ ∂p
∂φ

1
3H

Π = −
√

2X
∂p
∂X

H2 =
ρ

3M2
p

=
2XpX − p

3M2
p

Canonical theory:

φ̇ = −V ′can(φ)

3H(φ)

H2(φ) =
Vcan(φ)

3

Given some
X (φ) = Xinf , integrate

√
6Xdφ =

dVcan√
Vcan

⇒ Vcan(φ) =

(√
Vcan +

∫ φ

φ0

dφ′
√

3
2

Xinf (φ′)

)2
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DBI + Inflection point potential

Vinf (φ) = V0 + λ(φ = φ0) + β(φ− φ0)3
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Canon vs Noncanon
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Observables
(Non)Canonical theory:

∆2
s(k) =

1
8π2

H2

M2
p

1
csε

∣∣∣∣∣
csk=aH

∆2
t (k) =

2
π2

H2

M2
p

∣∣∣∣∣
k=aH

ns(k)− 1 = − 2ε− η|csk=aH

nt (k) = −2 ε|k=aH

• ε = − Ḣ
H2 ; η = ε̇

Hε so in the canonical limit
ε→ εV ; η → 4εV − 2ηV

• Recall that c−2
s = 1 + 2X pXX

pX

• note that time of horizon crossing is different for scalar
modes in NCI
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Comparison of Observables

0.001 0.005 0.010 0.050 0.100 0.500 1.000 Φ�MP

5

10

50

100

500

Ne

can
DBI

can. regime

0.001 0.005 0.010 0.050 0.100 0.500 1.000 Φ�MP

10-12

10-11

10-10

10-9

10-8
Ds

2

0.001 0.005 0.010 0.050 0.100 0.500 1.000 Φ�MP

0.8

0.9

1.

1.1

1.2

ns

can
DBI

can. regime

0.001 0.005 0.010 0.050 0.100 0.500 1.000 Φ�MP

5 ´ 10-17

1 ´ 10-16

2 ´ 10-16

Dt
2



Degeneracies
between

canonical and
non-canonical

inflation

Rhiannon
Gwyn, AEI
Potsdam

Introduction

Non-canonical
inflation

Canon/Noncan
transformation

Summed
resonant non-
gaussianities

Conclusions

Why is DBI special?
For theories with (1) a canonical limit where V = Vcan and
(2) a speed limit st Xinf = Λ4R when A is large (from finite
convergence radius), ∆2

s(k),∆2
t (k),Ne match when

Vcan ≈ V ; cs =

√
2R
A

for A� 1

.
• can have V ≈ Vcan and V ′ >> V ′′can in some

intermediate regime for A

• c2
s (A) =

A ∂Xinf
∂A

2Xinf
≈ 1

An for Xinf = Xinf (An). Then we get
the matching condition for DBI:

X DBI
inf =

Λ4

2
A2

1 + A2

No other working examples.... DBI special?
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Two-point function degeneracy
• in all 2 point observables
• over a large range of efolds
• for a large range of field values well outside the

canonical regime of DBI
• (Recall that the field range in DBI is limited by the

phase space bounds so that one cannot access the
very large A regime)

This degeneracy is not resolved by observation and
• may not see a measurement of eq type NG for many

years, even if it is large and present
• Even should non-negligible eq NG be observed, it is

possible that this could arise from a canonical SF
model.

• Only sufficiently precise measurement of r/nT could
break the degeneracy.
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What about
nongaussianities??
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Resonant NG
Axionic shift symmetry will receive small periodic
modulations from NP effects [Chen, Easther, Lim 0801.3295 &
Flauger and Pajer 1002.0833]

V (φ) = V0(φ) + Λ4 cos(
φ

f
)

⇒ G(k1, k2.k3)

k1k2k3
= f res

[
sin(

√
2ε?
f

ln
K
k?

) +
∑

cos() + ...

]
where

f res =
3b?
√

2π
8

(

√
2ε?
f

)3/2

b? =
Λ4

V ′0(φ?)f
K = k1 + k2 + k3.

NG comes from δ̇ where δ = Ḧ
2HḢ

in interaction term. f is the
axion decay constant.
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Resonant NG

0.0

0.5

1.0

0.6

0.8

1.0

-2

0

2

Less than 10 % overlap with the other shapes (local,
equilateral, orthogonal)
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Multiple sources

V (φ) = V0(φ) +
∑

i

Ai cos(
φ+ ci

fi
)

δ̇

H
=

∑
i

√
2ε?
fi

3b?i cos(
φ0 + ci

fi
)

G(k1, k2, k3)

k1k2k3
=

∑
i

3
√

2πb?i
8

(√
2ε?
fi

)3/2

sin(

√
2ε?
fi

ln
K
k?

+
ci

fi
) + ...]

Can choose b?i , fi , ci to get an overlap with a periodic
equilateral shape for N = O(10) terms!
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One-dimensional limit

x2 =
k2

k1
, x3 =

k3

k1
, x± = x2 ± x3

Resonant NG is to 1st order in fi√
2ε?

a fn of x+, k1 but not x−:

sin
(√

2ε?
fi

ln
K
k?

)
= sin

(√
2ε?
fi

(ln(1 + x+) + ln
k1

k?
)

)
Can only reproduce NG which is predominantly a function of
x+, such as equil:

Seq(k1, k2, k3) =
(k1 + k2 − k3)(k1 + k3 − k2)(k3 + k2 − k1)

k1k2k3

Sx−→0
eq (x+) =

4(x+ − 1)

x2
+

C(Seq,S
x−→0
eq ) = 0.93
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Periodic approximation

Need to approximate a scale-inv shape by a scale-dep
shape: make a periodic generalisation of Sx−→0

equil . The
overlap is still considerable:

C(Sequil ,S
per
equil) = 0.83

Can now fourier synthesize.
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Fourier series

Fourier expansion for N = 5(left) and N = 10(right)
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NG for a single field model!

• We can get equilateral-type nongaussianity from
summing oscillating potential terms in a single field
theory with canonical kinetic term.

• Equilateral type NG can also arise from inflaton
fluctuations sourced by gauge quanta via φF̃F [Barnaby
and Peloso, 1011.1500; Barnaby, Pajer and Peloso, 1110.3327]

• May not be possible to distinguish canonical and
noncanonical theories.
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Observational constraints

fi < 1; b?i < 1; b?i fi <
10−5
√

2ε?

⇒ ε?f
eq
NL < 10−2.

• as is, the power spectrum constraint implies a
resonantly generated f equil

NL ≤ O(1)

• if shift symmetry is collectively broken [Behbahani & Green,
1207.2779] (i.e. scale invariance is protected by several
independent symmetries), N pt functions are no longer
hierarchically suppressed with N.

• Then can have fNL up to 140 without implying a large
oscillation in the power spectrum

• for small field models expect no NG (f too large to have
fourier sum)
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Conclusions/Future Work
Canonical/Noncanonical
• We suspect the description in terms of a canonical

theory may be special to the DBI case
• We don’t know why this works (asking for fluctuations

around the bg to match...)
• Might be able to match 3pt observables

Resonant NG
• Possible string theory/axion monodromy embedding?

(series of instanton corrections expected)
• Applications elsewhere?
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