Non-perturbative Gauge-Higgs Unification

Francesco Knechtli

Bergische Universität Wuppertal

November 20, 2013

Theoretical Particle Physics Seminar, University of Edinburgh

Outline		
Outline		

- Introduction
- Non-perturbative GHU
- Lattice results

Based on work in collaboration with Nikos Irges, Magdalena Luz, Antonio Rago, Kyoko Yoneyama and Peter Dziennik

Outline		
Outline		

- ▶ no fermions, but fundamental properties of gauge theory
- what is the origin of the Higgs mechanism?
- ▶ are (non-renormalizable) 5d gauge theories viable?
- is the Higgs mass stable under quantum corrections?
- what is the mass hierarchy in the gauge-Higgs sector?

Gauge-Higgs Unification

Gauge field in 5 dimensions

$$A_M^C \xrightarrow{\mathcal{M}_5 = E_4 \times S^1/\mathbb{Z}_2} \{A_\mu^3, A_5^{1,2}\} \text{ "even" fields}$$

5d SU(2) gauge field decomposes into 4d U(1) gauge field and a 4d scalar (Higgs) h

Higgs field

Higgs is identified with 5d components of the gauge field Physical degrees of freedom are Polyakov loops in the 5th dimension Higgs potential (zero at tree level)? Non-renormalizability?

Results

Gauge field on a circle

Spurion field \mathcal{G}

SU(N) gauge fields on S^1 require two open charts and a transition function $\mathcal{G} \in SU(N)$ on the overlaps (size ϵ)

$$A_M^{(-)} = \mathcal{G}A_M^{(+)}\mathcal{G}^{-1} + \mathcal{G}\partial_M\mathcal{G}^{-1}$$

$$S^{1}: x_{5} \in (-\pi R, \pi R]; \text{ Reflection } \mathcal{R}$$
$$z = (x_{\mu}, x_{5}) \rightarrow \bar{z} = (x_{\mu}, -x_{5})$$
$$A_{M}(z) \rightarrow \alpha_{M} A_{M}(\bar{z}), \quad \alpha_{\mu} = 1, \ \alpha_{5} = -1$$

Gauge field on the S^1/\mathbb{Z}_2 orbifold

Orbifold projection

 \mathbb{Z}_2 projection: $\mathcal{R} A_M^{(+)} = A_M^{(-)}$ Only $A_M = A_M^{(+)}$ and \mathcal{G} on $I_{\epsilon} = \{x_u, x_5 \in (-\epsilon, \pi R + \epsilon)\}$ $\mathcal{R}A_M = \mathcal{G}A_M \mathcal{G}^{-1} + \mathcal{G}\partial_M \mathcal{G}^{-1}$ Gauge-covariance under gauge transformation Ω requires $\mathcal{G} \to (\mathcal{R}\,\Omega)\,\mathcal{G}\,\Omega^{-1}$ and $D_M\mathcal{G} \equiv 0$ Gauge field on the interval I_0 $\epsilon \to 0$, at the boundaries $\mathcal{G}|_{x_5=0,\pi R} = g$ constant

 $\alpha_M A_M = g A_M g^{-1}$ $-\alpha_M \partial_5 A_M = g \partial_5 A_M g^{-1}$

Dirichlet boundary conditions Neumann boundary conditions Outline

Ion-perturbative GHI

Results

Gauge symmetry on the orbifold

Breaking at the boundaries $\mathcal{G} = q$ constant implies for gauge transformations Ω

 $[g,\Omega]=0$ on the boundaries

Choice of g defines a inner automorphism which assigns parities to group generators T^A [Hebecker and March-Russell, 2002]

 $g T^a g^{-1} = T^a$ (unbroken), $g T^{\hat{a}} g^{-1} = -T^{\hat{a}}$ (broken)

Gauge symmetry is G = SU(N) in the bulk and

 $G = SU(p+q) \xrightarrow{g} H = SU(p) \times SU(q) \times U(1)$

on the boundaries

Gauge symmetry on the orbifold

Example 1. $SU(2) \xrightarrow{g} U(1)$ $g = \operatorname{diag}(-i, i)$: even fields (i.e. non-zero on the boundaries) $\blacktriangleright A_{\mu}^3$: "photon/Z" \blacktriangleright $A_5^{1,2}$: complex "Higgs" Example 2. $SU(3) \xrightarrow{g} SU(2) \times U(1)$ $q = \operatorname{diag}(-1, -1, 1)$: even fields • $A^{1,2,3,8}_{\mu}$: "photon,Z and W^{\pm} " • $A_5^{4,5,6,7}$: doublet of complex "Higgs" in the fundamental representation of SU(2)Minimal model to reproduce the Standard Model Higgs sector

Effective Higgs potential on S^1/\mathbb{Z}_2

Kaluza–Klein (KK) expansion

 $E(x,x_5) = \frac{1}{\sqrt{2\pi R}} E^{(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} E^{(n)}(x) \cos(nx_5/R)$ even fields $O(x,x_5) = \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} O^{(n)}(x) \sin(nx_5/R)$ odd fields

4d KK masses

$$(m_n R)^2 = n^2$$

For energies $E \ll 1/R$, 4d effective theory of $E^{(0)}(x)$

Coleman-Weinberg potential

For a real scalar field in D-dimensional Euclidean space

$$\int [\mathrm{D}\phi] \mathrm{e}^{-S_{\mathrm{E}}} \sim \mathrm{e}^{-V} \equiv \frac{1}{\sqrt{\det[-\partial_{\mu}\partial_{\mu} + M^{2}]}}$$

Take D = 4 and insert KK masses m_n (only $n \neq 0$)

Outline

Resul

Hosotani mechanism

Example: SU(2) [Kubo, Lim and Yamashita, 2002]

A vev $\langle A_5^1
angle$ shifts KK masses $(m_n R)^2 = n^2\,, \; (n\pm \alpha)^2 \; (n \neq 0)$

$$V(\alpha) = -\frac{3 \cdot 2 \cdot P}{64\pi^6 R^4} \sum_{m=1}^{\infty} \frac{\cos(2\pi m\alpha)}{m^5}, \quad \alpha = g_5 \left\langle A_5^1 \right\rangle R$$

- pure gauge: P = 3, minimum at α = 0, 1, ..., lowest H = U(1) KK gauge boson is massless
- ► + $N_{\rm f}$ adjoint fermions: $P = 3 - 4N_{\rm f}$, minimum is at $\alpha = 1/2, 3/2, \ldots$ for $N_{\rm f} > 3/4$, gauge boson has $m_Z = 1/(2R)$

Outline

Results

Hosotani mechanism

Hosotani mechanism [Hosotani, 1983, 1989]

- gauge theory + massless fermions, vev $\alpha = g_5 \langle A_5^{\hat{a}} \rangle R$
- minimization of $V(\alpha)$ yields α_{\min}
- dynamical fermion masses $m_{\rm f} = \alpha_{\rm min}/(2R)$
- ► Hosotani breaking $H \rightarrow$?, dynamical gauge boson masses $m_Z = \alpha_{\min}/R$?
- ► if $\alpha_{\min} \in \mathbb{Z}$ the rank of H is not broken. Polyakov loop $\langle P \rangle = \exp(2\pi i \alpha T^{\hat{a}})$, Cartan generators H_i

 $[\langle P \rangle, H_i] = 0$ for integer α

- \blacktriangleright in order to get $\alpha_{\min} \neq 0,1$ one needs extra matter fields
- it is hard to get a Higgs heavier than the gauge boson, cf. [Antoniadis, Benakli and Quiros, 2001], [Lim and Maru, 2007]

Higgs mass

Zero at tree level (5d gauge invariance). From the potential

$$(m_H R)^2 = R^4 g_4^2 \frac{\mathrm{d}^2 V}{\mathrm{d}\alpha^2} \Big|_{\alpha = \alpha_{\min}} , \quad g_4^2 = \frac{g_5^2}{2\pi R}$$

same as from Feynman diagram perturbation theory [Gersdorff, Irges and Quiros (2002); Cheng, Matchev and Schmalz (2002)]

Solution to hierarchy problem

- finite (bulk) mass
- insensitive to the UV cut-off Λ (at 1-loop)
- boundary mass term tr {[A₅, g][A₅, g⁻¹]} ~ Λ²: invariant under H but is excluded because tr {D₅G D₅G} ≡ 0 on I_ϵ [Irges and FK, 2005]

Renormalization

Renormalizability of SU(N) gauge theory in D > 4 dimensions?

- ▶ bare coupling has negative dimension $[g_D] = (4 D)/2$
- perturbative limit $g_D \rightarrow 0$ is trivial
- \blacktriangleright for $\epsilon=D-4\ll 1$ and $g^2\sim \mu^\epsilon g_D^2$ [Peskin, 1980]

$$\mu \frac{\mathrm{d}g^2}{\mathrm{d}\mu} = \beta_{g^2} = \epsilon g^2 - \frac{22N}{3} \frac{g^4}{16\pi^2} + \dots$$

►
$$g_{\star}^2 = 24\pi^2 \epsilon/(11N)$$
 non-trivial UV fixed point

- ► (truncated) RG flow supports existence for D = 5 [Gies, 2003]
- what are the relevant operators?

Non-perturbative phase diagram

Monte Carlo simulations on the lattice [FK, Luz and Rago, 2011]

- \blacktriangleright anisotropic Wilson plaquette gauge action, S^1
- non-trivial UV fixed point \leftrightarrow 2nd order phase transition
- ▶ in "infinite" volume only a 1st order phase transition, cf. [Del Debbio, Kenway, Lambrou and Rinaldi, 2013]

F. Knechtli, Non-perturnative Gauge-Higgs Unification

Orbifold action

Euclidean $T \times L^3 \times (N_5 + 1)$ lattice, spacings a_4 and a_5 gauge links $U_M(n) \in SU(2)$ connect $n + \hat{M}$ with n anisotropic Wilson plaquette action

$$\begin{split} S_W^{\text{orb.}} &= \quad \frac{\beta}{2} \Big[\frac{1}{\gamma} \sum_{4 \text{d } p} w \operatorname{tr} \{ 1 - P_{\mu,\nu}(n) \} + \gamma \sum_{5 \text{d } p} \operatorname{tr} \{ 1 - P_{\mu,5}(n) \} \\ w &= \quad \begin{cases} \frac{1}{2} & \text{boundary plaquette} \\ 1 & \text{in all other cases.} \end{cases}, \quad \pi R = N_5 a_5 , \\ \beta_4 = \beta/\gamma , \quad \beta_5 = \beta \gamma , \quad \gamma = a_4/a_5 \text{ (classical level)} \end{split}$$

Extra dimension $n_5 \in [0, N_5]$ with Dirichlet boundary conditions $U_{\mu}(n) = g U_{\mu}(n) g^{-1} \Rightarrow U_{\mu}(n) = e^{\phi(n)g} \in U(1)$ at $n_5 = 0$ and $n_5 = N_5$ with $g = -i\sigma^3$ [Irges and FK, 2005]

	Non-perturbative GHU	

Lattice fields

Outline	Introduction	Non-perturbative GHU	Results	Conclusions and outlook
1				

Lattice symmetries

Global symmetries

$Z\otimes F\otimes \mathcal{F}$

- $\blacktriangleright~Z$ center transformation on 4d hyperplanes by center of G
- F reflection with respect to $n_5 = N_5/2$
- Fixed point symmetry $\mathcal{F} = \mathcal{F}_L \oplus \mathcal{F}_R$

$$\mathcal{F}_L : U_5(n_5 = 0) \rightarrow g_F^{-1} U_5(n_5 = 0) U_{\nu}(n_5 = 0) \rightarrow g_F^{-1} U_{\nu}(n_5 = 0) g_F$$

 $\begin{array}{l} \{g,g_F\}=0:\;g_F=\mathrm{e}^{i\theta}(-i\sigma^2)\;\text{defines}\;U(1)\;\text{stick symmetry}\\ \mathcal{S}_{L(R)}\;\;\text{[Ishiyama, Murata, So and Takenaga, 2010]}\\ [g,g_F]=0:\;\text{defines a global gauge transfomation} \end{array}$

Lattice Higgs operators

Polyakov line P on S^1/\mathbb{Z}_2 Orbifolded Polyakov loop

$$P_L = lgl^{\dagger}g^{-1}$$

where $q = -i\sigma^3$

Lattice Higgs operators:

- J = 0, C = 1, P = 1, U(1) charge is 2
- \blacktriangleright tr P_L : $\mathcal{S}_L, \mathcal{S}_R$
- $\operatorname{tr} \Phi_L \Phi_L^{\dagger} : \mathcal{S}_L, \mathcal{S}_R$ with $\Phi_L = 1/(4N_5) [P_L - P_L^{\dagger}, q] = i\phi^1 \sigma^1 + i\phi^2 \sigma^2$
- mass(es)

$$C_{ij}(t) = \langle O_i(t)O_j(0)^* \rangle - \langle O_i(t) \rangle \langle O_j(0)^* \rangle$$

$$\overset{t \to \infty}{\sim} \operatorname{const} \times \exp(-m_O t)$$

• tr $\{Z_L\}$: \mathcal{S}_L , \mathcal{S}_R

		Non-perturbative GHU	
Wilson	loops		

- tr {W(r,T)} : \mathcal{S}_L , \mathcal{S}_R
- static potential V between infinitely heavy quark-pair QQ:

$$\langle \operatorname{tr} \{ W(r,T) \} \rangle \overset{T \to \infty}{\sim} \exp(-V(r)T)$$

Spontaneous symmetry breaking (SSB)

SSB in 5d gauge theories

- ► Higgs mechanism breaks boundary *H* gauge symmetry?
- ▶ perturbatively: SSB can be triggered by a vev $A_5 \rightarrow A_5 + v \; (\langle P \rangle \neq 0)$
- non-perturbatively: the order parameter has to be gauge invariant [Elitzur, 1975]

Order parameters

- $\langle \operatorname{tr} P_L \rangle = 0$ defines confined phase, $\langle \operatorname{tr} P_L \rangle \neq 0$ defines deconfined phase
- deconfined phase is Higgs phase when $\langle \operatorname{tr} Z_L \rangle \neq 0$
- ▷ S_L induces F_L, which contains global gauge transformations
- $\langle \operatorname{tr} Z_L \rangle$ is order parameter of SSB

Results

Mean-field expansion

Mean-field for SU(N) [Drouffe and Zuber, 1983]

SU(N) gauge links U are replaced by $N\times N$ complex matrices V and Lagrange multipliers H

$$\begin{aligned} \langle \mathcal{O} \rangle &= \frac{1}{Z} \int \mathrm{D}U\mathcal{O}[U] \mathrm{e}^{-S_W^{\mathrm{orb.}}[U]} \\ &= \frac{1}{Z} \int \mathrm{D}V \int \mathrm{D}H \, \mathcal{O}[V] \mathrm{e}^{-S_{\mathrm{eff}}[V,H]} \\ S_{\mathrm{eff}} &= S_W^{\mathrm{orb.}}[V] + u(H) + (1/N) \mathrm{Re} \operatorname{tr} \{HV\} \\ \mathrm{e}^{-u(H)} &= \int \mathrm{D}U \, \mathrm{e}^{(1/N) \mathrm{Re} \operatorname{tr} \{UH\}} \end{aligned}$$

Saddle point solution: background (or vev)

$$H \longrightarrow \overline{H} = \overline{h}_0 \mathbf{1}, \quad V \longrightarrow \overline{V} = \overline{v}_0 \mathbf{1}, \quad S_{\text{eff}}[\overline{V}, \overline{H}] = \text{minimal}$$

Mean-field expansion

Mean-field background non-trivial profile [FK, Bunk and Irges, 2005]

 $\overline{V}(n,\mu) = \overline{v}_0(n_5) \mathbf{1}$ $\overline{V}(n,5) = \overline{v}_0(n_5 + 1/2) \mathbf{1}$

vev is not along the algebra different vev's \leftrightarrow colors

Fluctuations

$$v(n) = (\overline{v}_0 + v_0(n)) \mathbf{1} + iv^A(n)\sigma^A$$

pertubative limit: $\overline{v}_0 \rightarrow 1$

Monte Carlo simulations

Validity of mean-field expansion

- Propagator $\langle v_i v_j
 angle = (K^{-1})_{ij}$ [Irges, FK and Yoneyama, 2012]
- Observables $\langle \mathcal{O}[U] \rangle = \mathcal{O}[\overline{V}] + 1/2(\delta^2 \mathcal{O}/\delta V^2|_{\overline{V}})_{ij}(K^{-1})_{ij} + \dots$
- \blacktriangleright Mean-field expansion is expected to be reliable in D=5 dimensions
- Is the mean-field saddle point the dominant one?

Monte Carlo simulations on a (super)computer

- ▶ Sample gauge configurations $\{U^{(i)}\}$, i = 1, ..., N according to probability $e^{-S^{orb.}_W[U]}$
- \blacktriangleright can be done by local algorithms (heatbath and over-relaxation) for U(1) and SU(2)
- Observables $\langle \mathcal{O}(U) \rangle = (1/N) \sum_{i=1}^{N} \mathcal{O}(U^{(i)}) + O(1/\sqrt{N})$

Mean-field phase diagram

 $\overline{v}_0(n_5) = 0$, $\overline{v}_0(n_5 + 1/2) = 0$: confined phase (white) $\overline{v}_0(n_5) \neq 0$, $\overline{v}_0(n_5 + 1/2) \neq 0$: deconfined phase $\overline{v}_0(n_5) \neq 0$, $\overline{v}_0(n_5 + 1/2) = 0$: layered phase [Fu and Nielsen, 1984] $\overline{v}_0(n_5=0) \neq 0, \ \overline{v}_0(n_5=N_5/2) = 0$: hybrid phase

Second order phase transition

- the mean-field sees only bulk phase transitions
- critical exponent from $M_H = a_4 m_H(\beta) = (1 \beta_c/\beta)^{\nu}$
- for $\gamma > 0.6$ we measure $\nu = 1/4$ in the deconfined phase
- for $\gamma \leq 0.6$:
 - layered phase appears
 - approaching the phase boundary deconfined/layered ν is 1/2
 - and the background goes to zero: second order phase transition

(Our definition of) Dimensional reduction

boundary potential can be (locally) fitted by 4d Yukawa

$$V(r) = -b\frac{\exp(-m_Z r)}{r} + \text{const.}$$

with $m_Z \neq 0$:

$$y' \simeq -m_Z$$
, $y = \ln(r^2 V'(r))$

• $M_H = a_4 m_H$ and $M_Z = a_4 m_Z$ are < 1 • $m_H R < 1$ and $\rho_{HZ} = m_H/m_Z > 1$

Non-perturbative GHL

Results

Mean-field continuum limit

Line of constant physics (LCP) [Irges, FK and Yoneyama, 2013]

- ▶ bare parameters are β , γ and N_5 (we take $T, L \rightarrow \infty$)
- three observables

 $M_H(\beta, \gamma, N_5), \quad M_Z(\beta, \gamma, N_5), \quad M_{Z'}(\beta, \gamma, N_5)$

at fixed N_5 : tune β and γ to fix

 $F_1 = m_H R = 0.61, \quad \rho_{HZ} = 1.38$

 $N_5
ightarrow \infty$: continuum limit of

$$\rho_{HZ'}(N_5) = m_H/m_{Z'}$$

• Symanzik: expect
$$O(a_4 m_H \sim \gamma/N_5)$$
 effects

Mean-field continuum limit

- finiteness ($\neq 0$) of Higgs mass without supersymmetry
- prediction $m_{Z'} \simeq 1 \,\mathrm{TeV}$
- a LCP with $\rho_{HZ} = 1.38$ at $\gamma \ge 1$ does not exist

Outline

Monte Carlo phase diagram for $N_5 = 4$

- 1. "end-point" of the 1st order line emanating from $\gamma=1?$ plaquette susceptibility $\approx {\rm constant}$ for 12^4 and 16^4
- 2. transition visible only in the boundary 4d plaquette (not in the bulk) \rightarrow boundary transition (BT)

F. Knechtli, Non-perturnative Gauge-Higgs Unification

29/35

Ion-perturbative GH

Result

Monte Carlo phase diagram

Boundary transition (BT) [Dziennik, 2013, master thesis]

- ▶ hysteresis becomes visible on $16^4 \times 5$ volume
- In the vicinity of BT, orbifold with N₅ = 8 shows 4d layers static potential at n₅ = 4 has string tension a²₄σ ≃ 0.003

Result

Monte Carlo spectrum

Higgs and Z boson [Dziennik, Irges, FK and Yoneyama, work in progress] $64 \times 32^3 \times 5$ lattices at $\gamma = 1$ $m_Z \neq 0$ does not decrease with L (Higgs mechanism!) and $m_Z > m_H$ Excited states for the Higgs and the Z-boson $m_{Z'} \approx m_{H'}$

F. Knechtli, Non-perturnative Gauge-Higgs Unification

Monte Carlo static potential Boundary potential [Dziennik, Irges, FK and Yoneyama, work in progress] $64 \times 32^3 \times 5$ lattice at $\beta = 1.66$, $\gamma = 1$ 4d Yukawa is preferred global fit fitted Yukawa mass agrees well with directly measured m_Z

F. Knechtli, Non-perturnative Gauge-Higgs Unification

Boundary potential [Dziennik, Irges, FK and Yoneyama, work in progress] Yukawa fits (SSB) hint at dimensional reduction

Is the orbifold a 5d superconductor slab?

Mean-field background

- orbifold projection induces SSB of translation invariance
- mean-field background defines a "crystal" in coordinate and gauge space

- gauge fluctuations around the mean-field background are like phonons
- ▶ Polyakov loop (Higgs) with U(1) charge 2 is like a Cooper pair
- SSB due to gauge-Higgs interaction happens like in a superconductor

Results

Conclusions and outlook

Conclusions

- \blacktriangleright non-perturbative Gauge-Higgs Unification on orbifold in pure SU(2) gauge theory
- ▶ meanfield ($\gamma < 1$) : SSB, 2nd order, LCP with finite m_H and $\rho_{HZ} = m_H/m_Z = 1.38$
- ▶ Monte Carlo ($\gamma = 1$, $N_5 = 4$) : SSB, 1st order, $\rho_{HZ} < 1$, static potential fitted by 4d Yukawa with mass m_Z

Outlook

- ▶ nature of Monte Carlo phase transition(s) at $\gamma < 1$
- look for $\rho_{HZ} > 1$ and (effective) LCP
- $\blacktriangleright SU(N > 2)$

This work was supported by the Alexander von Humboldt Foundation, by the Deutsche Forschungsgemeinschaft (German Research Foundation) and by STRONGnet