The gradient flow and the determination of α_s

Alberto Ramos <alberto.ramos@desy.de>

NIC, DESY

[M. Lüscher. arXiv:1006.4518] [M. Lüscher, P. Weisz. arXiv:1101.0963]

[Patrick Fritzsch, Alberto Ramos. arXiv:1301.4388] [Alberto Ramos. arXiv:1308.4558] Special Thanks to: Rainer Sommer.

Motivation

Computing the strength of fundamental interactions

- Take some experimental observable $O(\mu; p)$.
- Work hard to get

$$O(\mu; p) = A(p)\alpha_{MS}(\mu) + B(p)\alpha_{MS}^{2}(\mu) + \dots$$

• Determine $\alpha_{MS}(\mu)$ by comparing experiment and theory computation

$$g_e - 2: \alpha_{em} = 7.297\,352\,5698(24) \times 10^{-3} \qquad \tau: \alpha_s(M_Z) = 0.1198(15)$$

recoil :
$$\alpha_{em} = 7.297352585(48) \times 10^{-3} e^+e^- : \alpha_s(M_Z) = 0.1172(37)$$

- Caveats:
 - What about higher orders in PT?.
 - What about non-perturbative contributions?

The lattice alternative: Non-perturbative running coupling

- **()** Non-perturbative (physical) coupling definition: $\alpha_O(\mu) = O(\mu; p)/A(p)$
- Pinite size scaling [Lüscher, Weisz, Wolff.1991].
- Schrödinger Functional (SF) [Lüscher, Narayanan, Weisz, Wolff. arXiv:9207009].
- Gradient flow [M. Lüscher. arXiv:1101.0963].

The strength of YM

• Take
$$O(\mu)=rac{3r^2}{4}F(r)\Big|_{\mu=1/2}$$

• This defines the "potential scheme". NP coupling definition.

$$\alpha_{qq}(\mu) = \frac{3r^2}{4}F(r)\Big|_{\mu=1/r}$$

• Perturbation theory tells

$$\alpha_{qq}(\mu) = \alpha_{MS}(\mu) + c_1 \alpha_{MS}^2(\mu) + \dots$$

Physical couplings

"Any" observable can be used for a non perturbative definition of the strong coupling, but...

... We need to evaluate $O(\mu)$ in the lattice: precision, easy to evaluate, ...

Gradient flow: basics

• Add "extra" (flow) time coordinate $t \ (\neq x_0)$. Define gauge field $B_{\mu}(x,t)$

$$\begin{array}{lll} \frac{dB_{\mu}(x,t)}{dt} &=& D_{\nu}G_{\nu\mu}(x,t)\\ G_{\nu\mu}(x,t) &=& \partial_{\nu}B_{\mu}(x,t) - \partial_{\nu}B_{\mu}(x,t) + [B_{\nu}(x,t),B_{\mu}(x,t)], \quad D_{\mu} = \partial_{\mu} + [B_{\mu},...] \end{array}$$

with initial condition $B_{\mu}(x, t = 0) = A_{\mu}(x)$. (Lagenvin without noise!)

Since

$$rac{dB_{\mu}(x,t)}{dt} = D_{
u} G_{
u\mu}(x,t) \quad \left(\sim -rac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}}
ight)$$

The flow field tends to a smooth classical solution of the system. UV fluctuations are more and more suppressed (more precise statement later) as t increases.

• Correlation functions of the "smooth" field $B_{\mu}(x,t)$

$$G(x_1, x_2, \dots) = \langle B(x_1, t) B(x_2, t) \cdots \rangle$$

are finite after the usual bare parameter renormalization [Lüscher, Weisz. arXiv:1101.0963].

• For example, in pure YM

$$\langle E(x,t) \rangle = \frac{1}{4} \langle G^a_{\mu\nu}(x,t) G^a_{\mu\nu}(x,t) \rangle$$

is finite (for t > 0) after the usual coupling renormalization.

Gradient Flow: Some intuition

In the gradient flow equation

$$\frac{dB_{\mu}(x,t)}{dt} = D_{\nu}G_{\nu\mu}(x,t); \quad B_{\mu}(x,0) = A_{\mu}(x)$$

Expand the flow field in powers of g_0 .

$$B_{\mu}(x,t) = \sum_{n=1}^{\infty} B_{\mu,n}(x,t) g_0^n$$

To leading order, $GF \equiv$ Heat equation (+ gauge terms)

$$rac{dB_{\mu,1}(x,t)}{dt}=\partial_{
u}^2B_{\mu,1}(x,t)$$

that has solution

$$B_{\mu,1}(x,t)=\int rac{d^4p}{16\pi^2}e^{-p^2t}e^{\imath p imes} ilde{A}_{\mu}(p).$$

In space representation

$$B_{\mu,1}(x,t) = rac{1}{(4\pi t)^2} \int d^4 y \, e^{-rac{(x-y)^2}{4t}} A_\mu(y)$$

We are "looking" at world with a resolution $\sim \sqrt{8t}$.

Gradient flow: Perturbative analysis

$$\frac{dB_{\mu}(x,t)}{dt} = D_{\nu}G_{\nu\mu}(x,t) + \alpha D_{\mu}\partial_{\nu}B_{\nu}(x,t) = \partial_{\nu}\partial_{\nu}B_{\mu} + (\alpha-1)\partial_{\mu}\partial_{\nu}B_{\nu} + R_{\mu}$$

Has as solution

$$B_{\mu}(x,t) = \int d^{4}y \left\{ K_{t}(x-y)_{\mu\nu}A_{\nu}(y) + \int_{0}^{t} ds \, K_{t-s}(x-y)_{\mu\nu}R_{\nu}(y,s) \right\}$$

with the heat kernel

$$K_t(z)_{\mu\nu} = \int \frac{d^4p}{(2\pi)^4} \, \frac{e^{ipz}}{p^2} \left\{ e^{-tp^2} (\delta_{\mu\nu} p^2 - p_{\mu} p_{\nu}) + p_{\mu} p_{\nu} e^{-\alpha tp^2} \right\}$$

We can write $\tilde{B}^a_\mu(p)$ as

Overview Gradient Flow Running coupling Conclusions

Perturbation theory Coupling

Gradient Flow: Proof of finiteness

We can see the theory as a 5d local field theory [Zinn-Justin '86, Zinn-Justin, Zwanziger '88]

$$t$$

$$Lagrange multiplier$$

$$S_{\text{bulk}} = \int_{0}^{t} ds \int d^{4}x L_{\mu}^{a}(x, t) \left\{ \partial_{t} B_{\mu}^{a} - D_{\nu} G_{\mu\nu}^{a} \right\}$$

$$S_{\text{boundary}} = \int d^{4}x \frac{1}{4g^{2}} G_{\mu\nu}^{a} G_{\mu\nu}^{a}$$

$$4 \text{d space-time}$$

$$S_{\text{Total}} = S_{\text{bulk}} + S_{\text{boundary}}$$

Theory finite to all orders of perturbation theory

- Power counting
- Theory has BRS invariance
- No extra counterterms \Rightarrow Theory is finite after usual renormalization.

Gradient flow: coupling

Take the Energy density as a candidate observable

$$\langle E(t) \rangle = \frac{1}{4\mathcal{Z}} \int \mathcal{D}A_{\mu} G^{a}_{\mu\nu}(x,t) G^{a}_{\mu\nu}(x,t) e^{-S[A]}$$

In perturbation theory we have:

$$\langle E(t)
angle = rac{3g_{\overline{MS}}^2}{16\pi^2 t^2} (1 + c_1 g_{\overline{MS}}^2 + \mathcal{O}(g_{\overline{MS}}^4))$$

and in terms of the running coupling $\alpha(\mu)$ at scale $\mu = 1/\sqrt{8t}$.

$$t^2 \langle E(t)
angle = rac{3}{4\pi} lpha_{\overline{MS}}(\mu) \left[1 + c_1' lpha_{\overline{MS}}(\mu) + \mathcal{O}(lpha_{\overline{MS}}^2)
ight]$$

Therefore one can define the strong coupling at a scale $\mu=1/\sqrt{8t}$

$$\alpha(\mu) = \frac{4\pi}{3} t^2 \langle E(t) \rangle$$

- Non-perturbative definition.
- Easy to evaluate on the lattice.
- precise (smooth observable).

Why is a good choice? $N_f = 2$ and SU(3) simulations

L/a eta $N_{ m meas}$	6 5.2638 0.135985 12160	8 5.4689 0.136700 8320	10 5.6190 0.136785 8192	12 5.7580 0.136623 8280	16 5.9631 0.136422 8460
$\overline{g}_{\rm SF}^2(L_1)$	4.423(75)	4.473(83)	4.49(10)	4.501(91)	4.40(10)
$ \overline{\overline{g}}_{GF}^{2}(\mu) (c = 0.3) \overline{\overline{g}}_{GF}^{2}(\mu) (c = 0.4) \overline{\overline{g}}_{GF}^{2}(\mu) (c = 0.5) $	4.8178(46) 6.0090(86) 7.106(14)	4.7278(46) 5.6985(86) 6.817(15)	4.6269(47) 5.5976(97) 6.761(19)	4.5176(47) 5.4837(97) 6.658(19)	4.4410(53) 5.410(12) 6.602(24)

Alberto Ramos <alberto.ramos@desy.de> The gradient flow and the determination of α_s

Lattice YM in one slide

Lattice field theory \longrightarrow Non Perturbative definition of QFT.

$$= \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] \mathcal{D}\overline{\psi} \mathcal{D}\psi O(U, \overline{\psi}, \psi) e^{-S_G[U] - S_F[U, \overline{\psi}, \psi]}$$
$$= \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] O(U)_{\text{Wick}} e^{-S_G[U]} \det(D)$$

- Compute the integral numerically \rightarrow Monte Carlo sampling of $e^{-S_G[U]} \det(D) \ge 0$.
- Observable computed averaging over samples

$$\langle O
angle = rac{1}{N_{ ext{conf}}} \sum_{i=1}^{N_{ ext{conf}}} O(U_i) + \mathcal{O}(1/\sqrt{N_{ ext{conf}}})$$

$$S_G[U] = rac{eta}{2N} \sum_{p \in ext{Plaquettes}} Tr(1 - U_p - U_p^+)$$

One to one relation between a and β .

$$lpha(\mu) = rac{4\pi}{3} t^2 \langle E(t)
angle \Big|_{\sqrt{8t}=1/\mu}$$

Huge computer resources

 $L/a \sim 100 - 1000.$

Conditions:

Small cutoff effects:

$$r/a \gg 1 ~(\sim 10)$$

- I want to change μ from perturbative to non-perturbative: Change r by a factor 10.
- FV effects small:

$$L/a \gg r/a$$
 (~ 10)

Huge lattices

L/a > 1000

Finite volume effects part of the scheme:

Fix

 $\mu L = \text{constant}$

- No FV corrections.
- Only condition

 $L/a \gg 1~(\sim 10)$

• Coupling only depends on one scale: L

 $g^2(\mu) \operatorname{notation}: g^2(L)$

• Step scaling function: How much change the coupling when we change the renormalization scale:

$$\sigma(u) = g^2(2\mu)\Big|_{g^2(\mu)=u}$$

achieved by simple changing L/a!

• Recursive procedure allows study orders of magnitude change in renormalization scale *without* using large lattices.

$$lpha(\mu) = rac{4\pi}{3} t^2 \langle E(t)
angle \Big|_{\sqrt{8t}=1/\mu}$$

Huge computer resources

 $L/a \sim 100 - 1000.$

Finite volume renormalization schemes

- Identify finite volume with the renormalization scale $\mu = 1/\sqrt{8t} = 1/cL$.
- Coupling $\alpha(\mu)$ depends on no other scale but L (Notation: $\alpha(L)$).
- Finite Volume effects part of the scheme [Lüscher, Weisz, Wolff. 1991].
- $a \ll 1/\mu = \sqrt{8t}$ easily achieved: $L/a \sim 10-40$
- Boundary conditions
 - Periodic b.c: Coupling non analytic in g^2 , non universal β -function, difficult P.T. [Fodor et al. [arXiv1208.1051:]]
 - Avoided with Schrödinger functional (SF) [P. Fritzsch, A.Ramos [arXiv:1301.4388]]....
 - ...and Twisted b.c. [A.Ramos [arXiv:1308.4558]]
- One has to re-do the computation

$$\alpha(L) = \mathcal{N} t^2 \langle E(t) \rangle \Big|_{\sqrt{8t} = cL}$$

Boundary conditions

With periodic b.c., dynamics is dominated by fluctuations constant in space

• Leading order contribution of zero momentum modes is not quadratic [A. Gonzalez-Arroyo et al. 1983]

 $S \sim [\tilde{A}_{\mu}(0), \tilde{A}_{\nu}(0)]^2.$

With periodic b.c. these are not gauge degrees of freedom.

• One has to solve these integrals to define a "propagator"

$$\langle A_{\mu}A_{
u}
angle\sim\int \mathcal{D}A\;A_{\mu}A_{
u}e^{-A_{\mu}MA_{
u}-[ilde{A}_{\mu}(0), ilde{A}_{
u}(0)]^2}$$

- Convergence properties of these integrals depend on d and SU(N).
- Difficult (but, in fact has been solved! [Z. Fodor et al. 2012. arXiv:1208.1051]).
- Coupling definition α_{PT} non analytic in α_{MS} .

Moral: periodic b.c. in small volume leads to

- Non analytic coupling:
 - SU(N) and N > 2: $\alpha = \alpha_{\rm MS}(1 + \sqrt{\alpha_{\rm MS}} + \dots)$
 - SU(2): $\alpha = \alpha_{\rm MS}(1 + \log \alpha_{\rm MS} \dots)$

Boundary conditions

Make constant gauge field configurations incompatible with boundary conditions.

• Gauge field periodic modulo g.t.

 $egin{array}{rcl} A_\mu(x+L\hat
u)&=&\Omega_
u(x)A_\mu(x)\Omega^+_
u(x)\ &+&\imath\Omega_
u(x)\partial_\mu\Omega^+_
u(x). \end{array}$

• If Ω_{μ} chosen wisely \Rightarrow Unique gauge configuration with minimum action.

Task in <u>life</u>

Compute in perturbation theory

$$t^2 \langle E(t)
angle = rac{1}{4} \langle G_{\mu
u}(t) G_{\mu
u}(t)
angle = \mathcal{N}(t) lpha_0 + \mathcal{O}(lpha_0^2)$$

- Compute $B_{\mu}(x, t)$ to leading order.
- ② Compute The observable.

Key idea

In a periodic world only gauge invariant quantities need to be periodic.

$$A_{\mu}(x+L\hat{\nu})=\Omega_{\nu}(x)A_{\mu}(x)\Omega_{\nu}^{+}(x)+\Omega_{\nu}(x)\partial_{\mu}\Omega_{\nu}^{+}(x)=A_{\mu}^{[\Omega_{\nu}(x)]}(x).$$

Consistency requires

$$\begin{aligned} A_{\mu}(x+L\hat{\nu}+L\hat{\rho}) &= A_{\mu}^{[\Omega_{\nu}(x+L\hat{\rho})\Omega_{\rho}(x)]}(x) = A_{\mu}^{[\Omega_{\rho}(x+L\hat{\nu})\Omega_{\nu}(x)]}(x) \\ \Omega_{\rho}(x+L\hat{\nu})\Omega_{\nu}(x) &= e^{2\pi i n_{\rho\nu}/N}\Omega_{\nu}(x+L\hat{\rho})\Omega_{\rho}(x) \end{aligned}$$

- $\Omega_{\mu}(x)$ are *twist matrices*. They change under gauge transformation.
- $n_{\mu\nu}$ is the *twist tensor*. Invariant under gauge transformations. Encodes physics of the twist.

Our particular setup (similar to "TPL" scheme)

• Use constant twist matrices $\Omega_{\mu}(x) = \Omega_{\mu}$.

$$A_{\mu}(x+L\hat{\nu}) = \Omega_{\nu}A_{\mu}(x)\Omega_{\nu}^{+}$$

and $A_{\mu}(x) = 0$ compatible with bc.

• We choose to twist only the plane $x_1 - x_2$ and $n_{12} = 1$.

$$\Omega_{3,4}(x) = 1; \quad \Omega_1 \Omega_2 = e^{2\pi i m/N} \Omega_2 \Omega_1$$

Notation: i, k = 1, 2 and $\mu, \nu = 1, 2, 3, 4$.

$$A_{\mu}(x+L\hat{k})=\Omega_kA_{\mu}(x)\Omega_k^+\,,$$

Define N^2 matrices $(\tilde{p}_i = \frac{2\pi \tilde{n}_i}{NL}$ with $n_i = 0, \dots, N-1)$.

$$\Gamma(\tilde{p}) = e^{\imath \alpha(\tilde{p})} \Omega_1^{-\tilde{n}_2} \Omega_2^{\tilde{n}_1}$$

They are traceless (except $\tilde{p} = 0$), linearly independent and

$$\Omega_i \Gamma(\tilde{p}) \Omega_i^+ = e^{iL\tilde{p}_i} \Gamma(\tilde{p}) \,.$$

Therefore any gauge connection compatible with bc. can be expanded

$$A^{a}_{\mu}(x)T^{a} = \sum_{ ilde{
ho}}^{\prime} \hat{A}_{\mu}(x, ilde{
ho})e^{i ilde{
ho}x}\hat{\Gamma}(ilde{
ho}).$$

with $\hat{A}_{\mu}(x, \tilde{p})$ (numbers) periodic in x!. $p_{\mu} = rac{2\pi n_{\mu}}{L}$ $(n_{\mu} \in \mathbb{Z})$.

$$\mathcal{A}^{\mathfrak{s}}_{\mu}(x)\mathcal{T}^{\mathfrak{s}}=rac{1}{L^{4}}\sum_{ ilde{
ho}}^{\prime} ilde{\mathcal{A}}_{\mu}(p, ilde{
ho})e^{\imath(p+ ilde{
ho})x}\hat{\Gamma}(ilde{
ho})=rac{1}{L^{4}}\sum_{P}^{\prime} ilde{\mathcal{A}}_{\mu}(P)e^{\imath Px}\hat{\Gamma}(P)\,.$$

"Total" momentum: $P_i = p_i + \tilde{p}_i$, $P_{3,4} = p_{3,4}$. Color dof \Leftrightarrow momentum dof (Large *N*, reduction, . . .). Only constant connection: $A_{\mu}(x) = 0!$

$$\begin{split} \dot{B}_{\mu}(x,t) &= D_{\nu} G_{\nu\mu}(x,t), \qquad B_{\mu}(x,0) = A_{\mu}(x), \\ G_{\mu\nu} &= \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu} + [B_{\mu},B_{\nu}] \end{split}$$

 $B_{\mu}(x,t)$ has an asymptotic expansion in g_0

$$B_{\mu}(x,t) = \sum_{n} B_{\mu,n}(x,t) g_0^n$$

After gauge fixing and to leading order

$$\dot{B}_{\mu,1}(x,t) = \partial_{\nu}^2 B_{\mu,1}(x,t) \quad (B_{\mu,1}(x,0) = A_{\mu}(x))$$

with solution

$$B_{\mu,1}(x,t)=\frac{1}{L^4}\sum_{\rho,\tilde{\rho}\neq 0}e^{-P^2t}\tilde{A}_{\mu}(P)e^{\imath Px}\hat{\Gamma}(P).$$

And finally $\langle E(t)
angle = rac{1}{4} \langle G_{\mu\nu}(t) G_{\mu\nu}(t)
angle = \mathcal{E}(t) + \mathcal{O}(g_0^4)$

$$\mathcal{E}(t) = rac{g_0^2(d-1)}{2L^4} \sum_{p, ilde{p}
eq 0} e^{-P^2 t}$$

Boundary conditions

Arbitrary matter content \Rightarrow Same coupling definition.

Lattice computations

Lattice: Different discretization for simulation, flow and observable:

$$\begin{split} S_{a}[\tilde{A}_{\mu}] &= \frac{1}{2}\sum_{P}^{\prime}\tilde{A}_{\mu}(P)K_{\mu\nu}^{(a)}(P)\tilde{A}_{\nu}(P) + \mathcal{O}(g_{0}^{2}) \\ S_{f}[\tilde{A}_{\mu}] &= \frac{1}{2}\sum_{P}^{\prime}\tilde{A}_{\mu}(P)K_{\mu\nu}^{(f)}(P)\tilde{A}_{\nu}(P) + \mathcal{O}(g_{0}^{2}) \\ S_{O}[\tilde{A}_{\mu}] &= \frac{1}{2}\sum_{P}^{\prime}\tilde{A}_{\mu}(P)K_{\mu\nu}^{(O)}(P)\tilde{A}_{\nu}(P) + \mathcal{O}(g_{0}^{2}) \,. \end{split}$$

Inverse of $K^{(a,f,O)}_{\mu\nu}$ are $D^{(a,f,O)}_{\mu\nu}$. Flow field:

$$ilde{B}_{\mu,1}(P) = \left(\exp\{tK^{(f)}(P)\}\right)_{\mu
u} ilde{A}_{
u}(P),$$

and energy density

$$\mathcal{E}(t, a/L) = \frac{g_0^2}{L^3} \sum_{P}' \operatorname{Tr} \left[K^{(O)}(P) \exp\{tK^{(f)}(P)\} D^{(a)}(P) \exp\{K^{(f)}_{\nu\beta}(P)\} \right]$$
(1)

Example: Wilson, Wilson, Clover

$$(\hat{P}_{\mu} = \frac{2}{a} \sin\left(a\frac{P_{\mu}}{2}\right); \hat{P}_{\mu} = \frac{1}{a} \sin\left(aP_{\mu}\right); C_{\mu} = \cos\left(a\frac{P_{\mu}}{2}\right))$$

$$\hat{\mathcal{E}}_{clover}(t, a/L) = \frac{g_0^2}{2L^4} \sum_{\substack{z,z/0 \\ z \neq z}} e^{-\hat{P}^2 t} \frac{\hat{P}^2 C^2 - \sum_{\mu} (\mathring{P}_{\mu} C_{\mu})^2}{\hat{P}^2},$$

Alberto Ramos <alberto.ramos@desy.de>

The gradient flow and the determination of α_s

Risks of partial improvement (SF, c = 0.3)

Risk of partial Improvement. Comparison of

- Wilson, Wilson, Clover.
- Lüscher-Weisz (TL improved), Wilson, Clover.
- Iwasaki, Wilson, Clover.

Coupling definition

Reading the value of $\langle E(t) \rangle$ at $\sqrt{8t} = cL$, we define

$$\mathcal{N}_{T}(c) = \frac{(d-1)c^{4}}{128} \sum_{P}' e^{-\frac{c^{2}L^{2}}{4}P^{2}} = \frac{g_{0}^{2}(d-1)c^{4}}{128} \sum_{n_{\mu}=-\infty}^{\infty} \sum_{\tilde{n}_{i}=0}^{N-1'} e^{-\pi^{2}c^{2}(n^{2}+\tilde{n}^{2}/N^{2}+2\tilde{n}_{i}n_{i}/N)}$$

Twisted gradient flow coupling

$$g_{TGF}^2(L) = \mathcal{N}_T^{-1}(c) t^2 \langle E(t) \rangle \Big|_{\sqrt{8t}=cL} = g_{\overline{\mathrm{MS}}}^2 + \mathcal{O}(g_{\overline{\mathrm{MS}}}^4)$$

- Different c's: different schemes.
- Larger *c* smaller cutoff effects (more smooth).
- Larger c larger autocorrelations.
- Larger c smaller signal to noise.
- $c \in [0.3, 0.5]$ reasonable range.

-

SF $N_f = 2$ and SU(3) simulations: L = constant

$L/a \ eta \ \kappa_{ m sea} \ N_{ m meas}$	6	8	10	12	16
	5.2638	5.4689	5.6190	5.7580	5.9631
	0.135985	0.136700	0.136785	0.136623	0.136422
	12160	8320	8192	8280	8460
$\overline{g}_{\rm SF}^2(L_1)$	4.423(75)	4.473(83)	4.49(10)	4.501(91)	4.40(10)
$\overline{\overline{g}_{\text{GF}}^2}(\mu) (c = 0.3)$ $\overline{\overline{g}_{\text{GF}}^2}(\mu) (c = 0.4)$ $\overline{\overline{g}_{\text{GF}}^2}(\mu) (c = 0.5)$	4.8178(46)	4.7278(46)	4.6269(47)	4.5176(47)	4.4410(53)
	6.0090(86)	5.6985(86)	5.5976(97)	5.4837(97)	5.410(12)
	7.106(14)	6.817(15)	6.761(19)	6.658(19)	6.602(24)

Alberto Ramos <alberto.ramos@desy.de> The gradient flow and the determination of α_s

Running coupling

SU(2) YM running coupling

- Simulations for L/a = 10, 12, 15, 18, 20, 24, 30, 36 at $\beta \in [2.75, 12]$.
- Modest statistics: 2048 independent measurements of g_{TGF}^2 .
- Between 0.15-0.25% precision in g_{TGF}^2 for all L/a.
- Padè fit (constrain to PT), 4 parameters, $\chi^2/\mathrm{ndof} = 5.9/7$.
- Example: *L*/*a* = 36

Step scaling function

• Modest cutoff effects. Starting recursion with u = 7.5.

Step scaling function

• Modest cutoff effects. Starting recursion with u = 7.5.

 $g_{TGF}^2(L)$ for pure gauge SU(2)

Since
$$\Lambda = \mu (b_0 g^2(\mu))^{-b1/2b_0^2} e^{-1/2b_0 g^2(\mu)} e^{-\int_0^{g^2(\mu)} \left\{ \frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right\}}$$
 and $\mu = 1/cL$.
 $\Lambda L_{\max} = 1.509(44) \quad (@g_{TGF}^2(L) = 1.7948(93))$
Determine $M_0 L_{\max} = (aM_0)(L_{\max}/a)$ and use $M_0^{\exp} = 938 \text{ MeV} \Rightarrow L_{\max}$ in MeV.

Conclusions

Gradient flow

New tool to study non-perturbative aspects of strongly coupled gauge theories:

- Renormalization is simplified.
- Composite operators do not need renormalization.
- Flow fermions [M. Lüscher. arXiv:302.5246]: No operator mixing

$$(\partial_t - D_\mu D_\mu)\psi = 0$$

- Solid theoretical understanding.
- Applications outside lattice? Effective field theories? Large N? Reduction?
- For any renormalization problem: Can I solve at positive t?

Gradient flow running couplings

- Theoretically appealing method to compute strength of interactions.
- From the perturbative to the non-perturbative regimes.
- May lead to a precise determination of α_s.
- Applications BSM: Conformal field theories, walking technicolor, etc...