High multiplicity QCD at NLO

Simon Badger (CERN) 5th February 2014

University of Edinburgh

Outline

- On-shell methods for loop amplitudes
- NLO computations with NJET + SHERPA
- $pp \rightarrow 5 jets$ SB, Biedermann, Uwer, Yundin [arXiv:1309.6585]
- pp $\rightarrow \gamma\gamma + 3$ jets

SB, Guffanti, Yundin [arXiv:1312.5927]

On-shell amplitudes in gauge theory

simple final expressions

MHV(
$$i^-$$
, j^-) = $\frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$

Parke, Taylor (1986)

amplitude structure

colour ordered primitive amplitudes

fixed external legs and propagators

One-loop amplitudes

$$A_n^{(1)} = \sum_{p=2}^4 \sum_{1 \le \langle i_1 < \dots < i_p \le n} c_{p;i_1\dots i_p} \int \frac{d^D k}{(2\pi)^D} \frac{1}{l_{i_1} l_{i_2} \cdots l_{i_p}}$$

$$l_i = k - p_{1,i}$$

Unitarity and Discontinuities

$$I = SS^{\dagger} = (1 + iT)(1 - iT^{\dagger}) \Rightarrow TT^{\dagger} = i(T^{\dagger} - T)$$
$$A = \langle i|T|f \rangle \qquad 1 = \sum \int d\text{LIPS}|k\rangle\langle k|$$

Cutkosky rules: imaginary part obtained from $\frac{1}{k^2 + iO^+} \longrightarrow i\delta^{(+)}(k^2)$

$$\Rightarrow \operatorname{Disc}_{P_{i,j-1}}(A^{(1)}) = \sum \int d\operatorname{LIPS}(k, P_{i,j-1})\delta^{(+)}(k)\delta^{(+)}(k - P_{i,j-1})$$
$$A^{(0)}(k, p_i, \dots, p_{j-1}, -k - P_{i,j-1})A^{(0)}(k + P_{i,j-1}, p_j, \cdots, p_{i-1}, -k)$$

Classic S-matrix theory perform dispersion integral to obtain full amplitude

Modern unitarity method use cuts to find coefficient of basis integrals Bern, Dixon, Dunbar, Kosower (1994)

Generalized Unitarity

generalized discontinuities: put more propagators on-shell

$$\begin{aligned} A_n^{(1)}|_{\operatorname{cut}(1234)} &= \sum_{p=2}^4 \sum_{1 \le < i_1 < \cdots < i_p \le n} c_{p;i_1 \dots i_p} \int \frac{d^D k}{(2\pi)^D} \frac{l_1^2 l_2^2 l_3^2 l_4^2 \delta^{(+)}(l_1^2) \delta^{(+)}(l_2^2) \delta^{(+)}(l_3^2) \delta^{(+)}(l_4^2)}{l_{i_1} l_{i_2} \cdots l_{i_p}} \\ &= c_{4;1234} I_{4;1234}|_{\operatorname{cut}(1234)} \\ &= \frac{I_{4;1234}|_{\operatorname{cut}(1234)}}{n_s} \sum_{s \in \mathcal{Z}(l_i^2)} A^{(0)}(-l_1^{(s)}, 1, l_2^{(s)}) A^{(0)}(-l_2^{(s)}, 2, l_3^{(s)}) A^{(0)}(-l_3^{(s)}, 3, l_4^{(s)}) A^{(0)}(-l_4^{(s)}, 4, l_1^{(s)}) \end{aligned}$$

isolate integral coefficients

complex momentum solutions

Britto, Cachazo, Feng (2004)

Generalized Unitarity

top down: subtract leading singularities and perform further multiple cuts

I -d integral: drop box contribution and find direct formula for triangle coefficient from product of 3 trees

Forde (2007)

 $C_{p;i_1...i_p}$ rational functions - algebraic procedure

Integrand reduction

Ossola, Papadopoulos, Pittau (2006) Ellis, Giele, Kunszt, (2007)

 $A_n^{(1)} = \sum_{p=2}^4 \sum_{1 \le \langle i_1 < \dots < i_p \le n} c_{p;i_1\dots i_p} \int \frac{d^D k}{(2\pi)^D} \frac{1}{l_{i_1} l_{i_2} \cdots l_{i_p}} \longrightarrow A_n^{(1)} = \sum_{p=2}^4 \sum_{1 \le \langle i_1 < \dots < i_p \le n} \int \frac{d^D k}{(2\pi)^D} \frac{\Delta_{p;i_1\dots i_p}(k)}{l_{i_1} l_{i_2} \cdots l_{i_p}}$

$$\Delta_{4;1234}(k) = c_{4;1234} + c'_{4;1234} \, k \cdot \omega_{1234}$$

 $\Delta_{4;1234}(\bar{k},\mu_{11}) = c_{4;1234}^{[0]} + c_{4;1234}^{[1]} \bar{k} \cdot \omega_{1234}$ $+ \mu_{11} \left(c_{4;1234}^{[2]} + c_{4;1234}^{[3]} \bar{k} \cdot \omega_{1234} \right) + \mu_{11}^2 c_{4;1234}^{[4]}$ introduce spurious vectors to span loop space

dimensional regulated (with mass shift) Giele, Kunszt, Melnikov (2008) SB (2009)

stable numerical algorithm -purely algebraic

Loop integrals: QCDLoop/FF (Ellis, Zanderighi), OneLoop (Van Hameren), ...

Dealing with colour

 $SU(N_c)$ colour matrices

$$\mathcal{A}_{n}^{(L)} = \sum_{j} c_{j}^{(L)} \mathcal{A}_{n;j}^{(L)}$$
partial amplitude

$$\sum_{\text{colours}} \left(c_i^{(L_1)} \right)^T c_j^{(L_2)} = \mathcal{C}_{ij}^{(L_1,L_2)}(N_c)$$

$$d\sigma^{\mathrm{B}}(s) = d\Phi \sum_{i,j} [A_{n;j}^{(0)}(s)]^{\dagger} \mathcal{C}_{ij}^{(0,0)} A_{n;j}^{(0)}(s) \qquad d\sigma^{\mathrm{V}}(s) = d\Phi \sum_{i,j} [A_{n;j}^{(0)}(s)]^{\dagger} \mathcal{C}_{ij}^{(0,1)} A_{n;j}^{(1)}(s)$$

partial amplitudes are a linear combination of primitive amplitudes

$$A_{n;j}^{(L)} = \sum_{k} a_{k,j} A_n^{[m]} + b_{k,j} A_n^{[f]}$$

Dealing with colour

Feynman diagram matching algorithm

diagrams

Ellis, Kunszt, Melnikov, Zanderighi [1105.4319] Ita, Ozeren [1111.4193] SB, Biedermann, Uwer, Yundin [1209.0100]

invert to find independent set of primitives

match topology only

4-gluon vertex not needed

diagrams symmetries reduce independent set of primitives (e.g. Furry's theorem)

matching matrix {0,+1,-1}

 $P_i = \sum_{j=1}^{\widehat{N}} M_{ij} K_i$

 $A_{n;j}^{(L)} = \sum_{i=1}^{N} D_i = \sum_{i=1}^{\widehat{N}} C_i K_i$

combinatorical approaches: Melia [1304.7809,1312.0599]; Schuster [1311.6296]; Weinzierl, Reuschle [1310.0413]

Dealing with colour

Process	$N_{\sf pri}^{[0]}$	$N_{\rm pri}^{[m]}$	$N_{pri}^{[f]}$
8g	720	2520	2520
$\overline{u}u + 6g$	720	5040	1800
$\overline{u}u\overline{d}d + 4g$	360	3360	671
$\boxed{\overline{u}u\overline{d}d\overline{s}s + 2g}$	120	1344	194
$\overline{u}u\overline{d}d\overline{s}s\overline{c}c$	30	384	65

large numbers of primitive amplitudes for high multiplicity

use phase space symmetry to reduce computational cost

$$\sigma_{gg \to n(g)}^{V} = \int \mathrm{d}PS_n \, A^{(0)\dagger} \cdot \mathcal{C}_{n! \times (n+1)!/2} \cdot A^{(1)}$$
$$= (n-2)! \, \int \mathrm{d}PS_n \, A^{(0)\dagger} \cdot \mathcal{C}_{n! \times (n+1)}^{\mathrm{dsym}} \cdot A^{(1),\mathrm{dsym}}$$

factor of (final state gluons)!/2

retain full colour information

Automation with NJET

Numerical implementation in C++

Trees	off-shell recursion (Berends-Giele)
Loops	generalized unitarity
Colour	full (via primitive matching), de-symmetrized, leading/sub-leading
Interface	Binoth Les Houches Accord (python)

building on NGLUON [1011.2900]

SB, Biedermann, Uwer, Yundin [1209.0100]

Accuracy

dimension scaling test

$$A(p_i, m_i, \mu_R) = x^{4-n} A(xp_i, xm_i, x\mu_R) := A_{\text{NJET}}(x)$$

#digits =
$$\log_{10} \left(\frac{A_{\text{NJET}}(s_1) + A_{\text{NJET}}(s_2)}{2(A_{\text{NJET}}(s_1) - A_{\text{NJET}}(s_2))} \right)$$

2 calls for the price of I using explicit vectorization with Vc

reliable but statistical: add ~2 digits on min. accuracy

Performance

primitives scale $\sim n^6$ for $n \leq 20$

process	$T_{sd}[s]$	$T_{4 \text{ digits}}[s]$	(% fixed)	process	$T_{sd}[s]$	$T_{4 \text{ digits}}[s]$	(% fixed)
4g	0.030	0.030	(0.00)	5g	0.22	0.22	(0.22)
2u2g	0.032	0.032	(0.00)	2u3g	0.34	0.35	(0.06)
2u2d	0.011	0.011	(0.00)	2u2d1g	0.11	0.11	(0.00)
4u	0.022	0.022	(0.00)	4u1g	0.22	0.22	(0.03)
process	$T_{sd}[\mathbf{s}]$	$T_{4 \text{ digits}}[s]$	(% fixed)	process	$T_{sd}[\mathbf{s}]$	$T_{4 \text{ digits}}[s]$	(% fixed)
6g	6.19	6.81	(1.37)	7g	171.3	276.7	(8.63)
2u4g	7.19	7.40	(0.38)	2u5g	195.1	241.2	(3.25)
2u2d2g	2.05	2.06	(0.08)	2u2d3g	45.7	48.8	(0.88)
4u2g	4.08	4.15	(0.21)	4u3g	92.5	101.5	(1.29)
2u2d2s	0.38	0.38	(0.00)	2u2d2s1g	7.9	8.1	(0.23)
2u4d	0.74	0.74	(0.00)	2u4d1g	15.8	16.2	(0.29)
6u	2.16	2.17	(0.02)	6u1g	47.1	48.6	(0.41)

full colour sums a few seconds for $2 \rightarrow 4$

	$gg \rightarrow 2g$	$gg \rightarrow 3g$	$gg \rightarrow 4g$	$gg \rightarrow 5g$
standard sum	0.03	0.22	6.19	171.31
de-symmetrized	0.03	0.07	0.57	3.07

Monte-carlo interface

• BLHA - Binoth Les Houches Accord ([1001.1307], updated [1308.3462])

NJET + Sherpa

 $\sigma_n^{\text{NLO}} = \sigma^{\text{LO}} + \int_n d\sigma_n^{\text{V}} + \int_n d\sigma_n^{\text{I+fac.}} + \int_{n+1} \left(d\sigma_{n+1}^R - d\sigma_{n+1}^S \right)$ Sherpa MC v2.0.0 NJET V2.C

leading/sub-leading colour de-symmetrized colour sums

$$\begin{array}{l} pp \rightarrow \leq 5j \\ pp \rightarrow \gamma\gamma + 4j \\ pp \rightarrow W^{[\rightarrow l^{\pm}\nu_l]} + \leq 5j \\ pp \rightarrow Z/\gamma^{*} \ ^{[\rightarrow l^{+}l^{-}]} + \leq 5j \\ pp \rightarrow \gamma + \leq 4j \\ pp \rightarrow \gamma\gamma + \leq 4j \end{array}$$

Comix [Gleisberg, Hoeche (2008)] CS subtraction [Gleisberg, Krauss (2007)] ROOT Ntuple event generation

also:

FastJet [Caccari, Salam, Soyez (2008)] LHAPDF [Whalley, Bourilkov, Group (2005)]

Multi-jet production at the LHC

full colour $N_f = 5$ flavour scheme no top loops

ATLAS cuts [1107.2092]

NLO QCD corrections

 $p_{T,j_1} > 80 \text{ GeV}$ anti-kt R = 0.4 $p_{T,j} > 60 \text{ GeV}$ $|\eta_j| < 2.8$ $\mu_R = \mu_F = \widehat{H}_T/2$

 $\begin{array}{ll} pp \rightarrow \leq 3j & \mbox{Nagy (NLOJet++) [hep-ph/0307268]} \\ pp \rightarrow \leq 4j & \mbox{Bern et al. (BlackHat) [1112.3940]} \\ & \mbox{SB, Biedermann, Uwer, Yundin [1209.0098]} \\ pp \rightarrow \leq 5j & \mbox{SB, Biedermann, Uwer, Yundin [1309.6585]} \\ \end{array}$

Virtual matrix elements

leading part: best case of de-sym. and leading colour fermion loops included in sub-leading part

Virtual part	Time per event	QP	QP2	OP
leading subleading	17 s 112 s	2% 2.5%	0.5% 1%	$0.01\% \\ 0.05\%$

average evaluation time on cluster

possibility to switch to octuple precision - not necessary in practice

Total cross-sections

 $\sigma_5^{7\text{TeV-LO}}(\mu = \hat{H}_T/2) = 0.699(0.004)^{+0.530}_{-0.280} \text{ nb},$ $\sigma_5^{7\text{TeV-NLO}}(\mu = \hat{H}_T/2) = 0.544(0.016)^{+0.0}_{-0.177} \text{ nb}.$

NNPDF2.1 LO $\alpha_s(M_z) = 0.119$ NNPDF2.3 NLO $\alpha_s(M_z) = 0.118$

Scale dependence

LO PDF: MSTW2008Io $\alpha_s(M_z) = 0.139$

NLO PDF: MSTW2008nlo $\alpha_s(M_Z) = 0.120$

Dynamical scale attempting include large logarithms

Scale dependence

Majority of NLO corrections are coming from 2-loop running of α_s

Jet Ratios

Reliable quantities for both theory and experiment

 $\alpha_S(M_Z) = 0.1148 \pm 0.0014 \text{ (exp.)} \pm 0.0018 \text{ (PDF)} \pm 0.0050 \text{ (theory)}$

Jet Ratios

4/3 and 5/4 ratios more stable QCD corrections

large NLO corrections to 3/2 ratio all PDF sets in good agreement with data

p_T distributions

more distributions at https://bitbucket.org/njet/njet/wiki/Results/Physics

PDF dependence

Generally weak dependence on the choice of PDF fit (excluding choice for $\alpha_s(M_z)$)

comparison using all sets with

 $\alpha_s(M_Z) = 0.118$

some dependence on pT

significant deviation in normalization of ABM11

Heavy quark loops preliminary top quark loop effects are small (<1%)

di-jets seem to have additional kinematic suppression

matrix elements checked against MadLoop

corrections grow at very large pT - still negligible

Efficient Event Generation

- Leading/sub-leading expansion sample dominant contributions more often
- Separate contributions by number of fermion lines
- ROOT Ntuples make the most out of the integration run
 - Re-weighting PDFs and renormalization/factorization scales (also jet algorithms with suitable event generation)
- APPLgrid extremely fast and flexible analysis (very useful for PDF error analyses)

Tancredi et al. [0911.2985]

Vector boson production Validation/feasibility test only

comparison with

$$W^{\pm}[\to e^{\pm}\nu_e] + \le 4j$$
$$Z/\gamma^*[\to e^+e^-] + \le 4j$$

good agreement on total cross sections

Bern et al. [1304. 1253]

 $pp \to \leq W^{\pm} + 5j$

Vector boson production

ATLAS JHEP 1307 (2013) 032 [1304.7098]

 $\begin{array}{l} p_{T,j} > 30 \ {\rm GeV} \\ p_{T,e} > 20 \ {\rm GeV} \\ |\eta_e| < 2.47 \qquad 1.37 < |\eta_e| < 1.52 \end{array}$ anti-kt R=0.4

$$|\eta_j| < 4.4$$

66 < $m_{ee} < 116 \text{ GeV}$

 $\mu_R = \mu_F = \left(\sqrt{m_{ee}^2 + p_{T,ee}^2} + \hat{H}_T\right)/2$

Ita, Bern, Dixon, Febres Cordero, Kosower, Maitre [1108.2229]

 $Z/\gamma^* [\to e^+ e^-] + \le 4j$

Di-photon plus jets

Backgrounds to Higgs measurements $pp \rightarrow H \rightarrow \gamma \gamma$

 $pp \rightarrow \gamma\gamma$ NNLO Catani, Cieri, de Florian, Ferrera, Grazzini [1110.2375]

 $pp \rightarrow \gamma \gamma + 1j$ NLO Gehrmann, Greiner, Heinrich [1303.0824] Del Duca, Maltoni, Nagy, Trocsanyi [hep-ph/0303012]

 $pp \rightarrow \gamma \gamma + 2j$ NLO

Gehrmann, Greiner, Heinrich [1308.3660] Bern, Dixon, Febres Cordero, Hoeche, Ita, Kosower, Lo Presti, Maitre [1312.0592]

 $pp \rightarrow \gamma \gamma + 3j$ NLO

SB, Guffanti, Yundin [1312.5927]

Isolating hard photons

[Frixione (1998)]

Infra-red safe definition of a hard photon must include QCD partons

keep soft gluons

discard partons collinear to photon

Smooth cone isolation

$$E_{\text{hadronic}}(r_{\gamma}) \le \epsilon p_{T,\gamma} \left(\frac{1 - \cos r_{\gamma}}{1 - \cos R}\right)^n$$

$pp \rightarrow \gamma\gamma + jets at NLO$

SB, Guffanti, Yundin [1312.5927]

$p_{T,j} > 30 \mathrm{GeV}$	$ \eta_j \le 4.7$	
$p_{T,\gamma_1} > 40 \mathrm{GeV}$	$p_{T,\gamma_2} > 25 \mathrm{GeV}$	$ \eta_{\gamma} \le 2.5$
$R_{\gamma,j} = 0.5$	$R_{\gamma,\gamma} = 0.45$	

Frixione smooth cone

photon isolation

CTIO NLO PDF set

anti- $k_T R = 0.5$ (Fast]et)

 $\sigma_{\gamma\gamma+3j}^{LO}(\hat{H}'_T/2) = 0.643(0.003)^{+0.278}_{-0.180} \,\mathrm{pb}$ $\sigma_{\gamma\gamma+3j}^{NLO}(\hat{H}'_T/2) = 0.785(0.010)^{+0.027}_{-0.085} \,\mathrm{pb}$

 $\epsilon = 0.05, R = 0.4 \text{ and } n = 1$

Scale dependence

NLO predictions reduce uncertainty from 50% to 20% Fairly wide range of predictions with different dynamical scales

Scale dependence

5.0

1

l r

0.6

0.4

0.2

$$\begin{aligned} \widehat{H}_{T} &= p_{T,\gamma_{1}} + p_{T,\gamma_{2}} + \sum_{i \in \text{partons}} p_{T,i} \\ \widehat{H}_{T}^{\prime} &= m_{\gamma\gamma} + \sum_{i \in \text{partons}} p_{T,i} \\ \widehat{\Sigma}^{2} &= m_{\gamma\gamma}^{2} + \sum_{i \in \text{jets}} p_{T,i}^{2} \\ H_{T}^{\prime} &= m_{\gamma\gamma} + \sum_{i \in \text{jets}} p_{T,i}^{2} \\ \Sigma^{2} &= m_{\gamma\gamma}^{2} + \sum_{i \in \text{jets}} p_{T,i}^{2} \\ \Sigma^{2} &= m_{\gamma\gamma}^{2} + \sum_{i \in \text{jets}} p_{T,i}^{2} \\ p_{T,j_{1}} &> 100 \text{ GeV} \end{aligned}$$

 $p_{T,j_1} > 30 \text{ GeV}$

 $\mu_{R;0} = H'_T/2$ $\mu_{R;0} = \hat{H}'_T/2$ $\mu_{R;0} = \sqrt{\Sigma^2}/2$ $\mu_{R;0} = \sqrt{\widehat{\Sigma}^2}/2$ $\mu_{R;0} = \hat{H}_T/2$

4

 $x^{2}, \mu_{R} = x \mu_{R;0}^{3}$

PDF dependence

Conclusions

- On-shell methods do a good job at keeping theoretical complexity of highmultiplicity amplitudes under control
- NLO computations with NJET + SHERPA

https://bitbucket.org/njet/njet/

- First computations of NLO QCD corrections to $pp \rightarrow 5j$ and $pp \rightarrow \gamma\gamma + 3j$
- Precision QCD for I3TeV / I4TeV LHC runs (as well as current data)
 - matching/merging with parton shower (still hard for pure jets)