Bounding the Higgs width at LHC

Edinburgh & Aachen, March, 2014

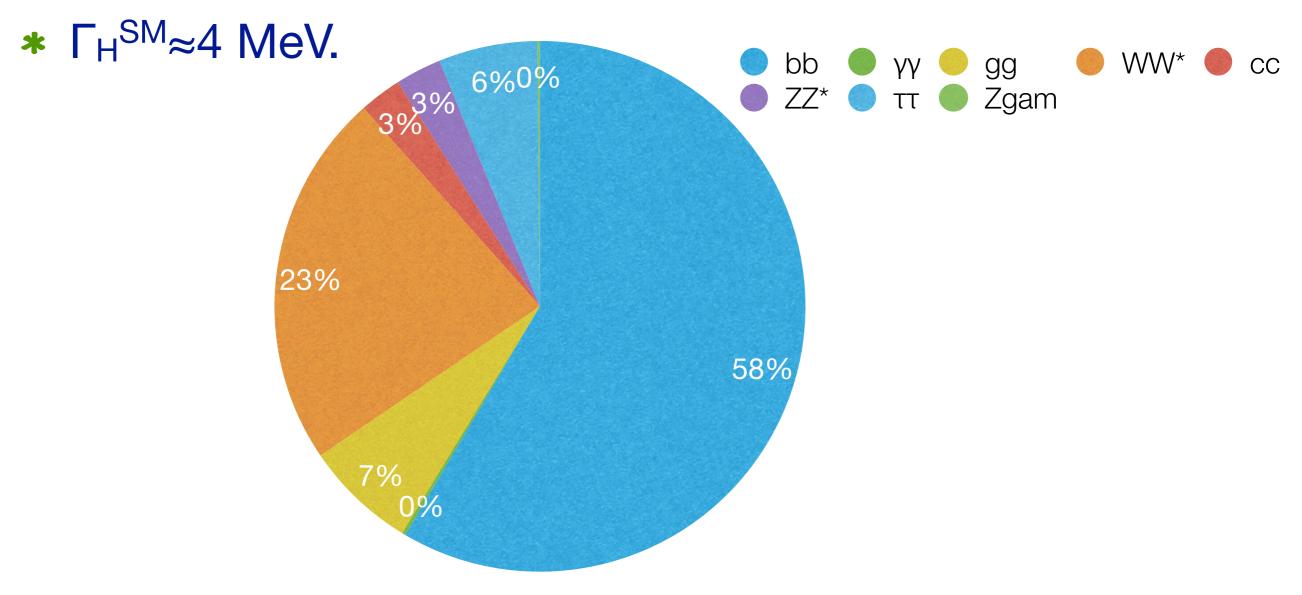
Keith Ellis, Fermilab

J.M.Campbell, R.K.Ellis and Ciaran Williams, Gluon-Gluon Contributions to W⁺ W⁻ Production and Higgs Interference Effects, arXiv:1107.5569 Bounding the Higgs width at the LHC using full analytic results for $gg \rightarrow e^-e^+\mu^-\mu^+$, arXiv:1311.3589 Bounding the Higgs width at the LHC: Complementary results from $H \rightarrow WW$, arXiv:1312.1628

(see also, J.M.Campbell, R.K.Ellis, W. Giele and Ciaran Williams, Finding the Higgs boson in decays to Zγ using the matrix element method at Next-to-Leading Order, arXiv:1301.7086 J.M.Campbell, R.K.Ellis and Ciaran Williams, Hadronic production of a Higgs boson and two jets at next-to-leading order, arXiv:1001.4495.)

Higgs boson branching fractions

- * Large number of observable SM Higgs decays
- We will consider WW*,ZZ*.
- * ZZ* is 3%, before BR to observable mode.



The lifetime (total width) of the Higgs boson

Particle	Width[MeV]	Lifetime[s]
t	$\sim 1,300$	$\sim 5 \times 10^{-25}$
W	$\sim 2,000$	$\sim 3 \times 10^{-25}$
Z	$\sim 2,500$	$\sim 2.6\times 10^{-25}$
h	4.21 ± 0.16	$\sim 1.65 \times 10^{-22}$
b	4.4×10^{-10}	$\sim 1.5 \times 10^{-12}$

- Higgs boson lives longer than the t,W or Z, but not long enough to measure the lifetime directly.
- Width is very much less than experimental resolution ~1 GeV.
- Direct scan of the Higgs boson width will (only) be possible at a muon collider.

Narrow width approximation

* In the limit Γ/M_h →0 we may replace the Breit-Wigner distribution by a delta function.

$$\frac{1}{(\hat{s} - M_h^2)^2 + M_h^2 \Gamma_h^2} \approx \frac{\pi}{M_h \Gamma_h} \,\delta(\hat{s} - M_h^2) \;.$$

For the standard model Higgs, Γ/M_h = 1/30,000 so narrow width approximation should apply. Rescaling properties of the cross section on the peak

 In the narrow width approximation

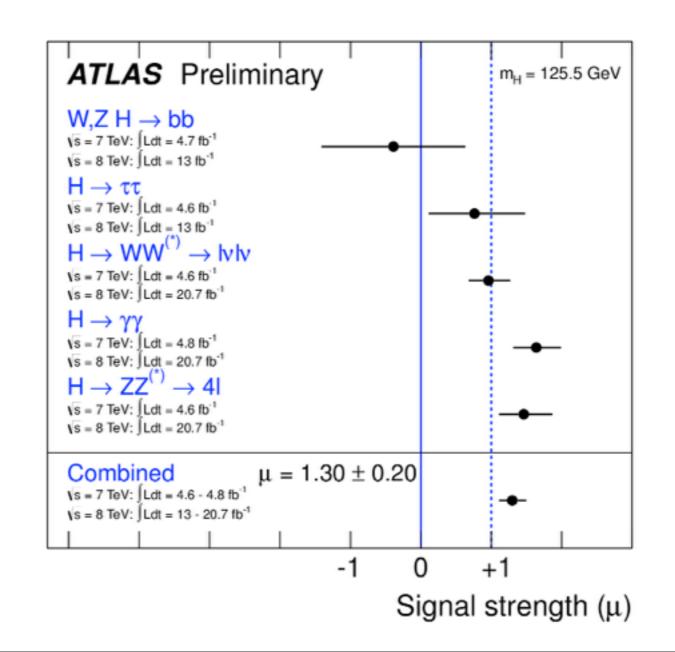
$$\sigma(i \to H) \times BR(H \to X) = |M(i \to h)|^2 \frac{\Gamma(h \to X)}{\Gamma_h} \sim \frac{g_i^2 g_f^2}{\Gamma_h}$$

- * Measurements on the Higgs peak, are only sensitive to the ratio, $\frac{g_i^2 g_f^2}{\Gamma_h}$
- Performing the rescaling leaves the measurement unchanged.

$$egin{array}{ccc} g_i &
ightarrow & \xi g_i \ g_f &
ightarrow & \xi g_f \ \Gamma_H &
ightarrow & \xi^4 \Gamma_H \end{array}$$

Signal strength measurements

* Signal strength measurements, (that assume a value for the total width), confirm that $g_i^2 g_f^2 / \Gamma_h$ is close to its standard model value.



Basic process for this talk: $pp \rightarrow ZZ \rightarrow e^-e^+\mu^-\mu^+$

$$p + p \to H \to ZZ$$

$$\downarrow \downarrow \to \mu^- + \mu^+$$

$$\downarrow e^- + e^+.$$

$$\begin{array}{cccc} p+p & \rightarrow & Z/\gamma^* + Z/\gamma^* \\ & & & \downarrow & \downarrow & \downarrow & \mu^- + \mu^+ \\ & & \rightarrow & e^- + e^+ \end{array}$$

Consider the contributing Feynman diagrams.

Technically, only non-identical fermions although identical fermion effects are known to be small, except in the singly resonant region.

Narrow width approximation for Higgs boson

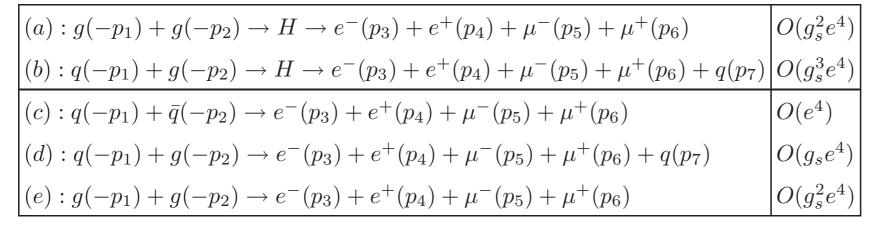
* How can it fail?

***** Γ_H / M_H=1/30,000 It fails spectacularly for (a) $gg \rightarrow H \rightarrow ZZ^{(*)} \rightarrow e^-e^+\mu^-\mu^+$. 10 4-lepton production, CMS cuts, $\sqrt{s=8}$ TeV 10 **4leptons** * At least 15% of the cross section 10-iơ/dm₄[fb/GeV] comes from m_{4l} >130GeV. 10 11111 Kauer, Passarino, arXiv:1206.4803 10 Similar tail for $H \rightarrow WW$. 10 * 10-10 200 2000 100 1000 500

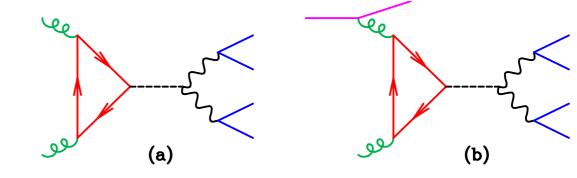
m₄[GeV]

$pp \rightarrow e^-e^+\mu^-\mu^+$ in the standard model

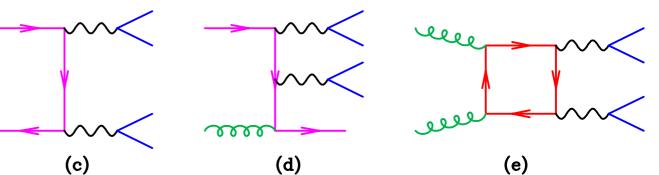
* Mishmash of orders in perturbation theory



 Representative diagrams are:-

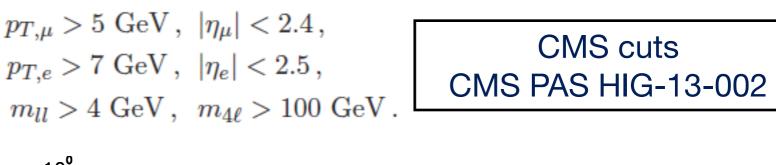


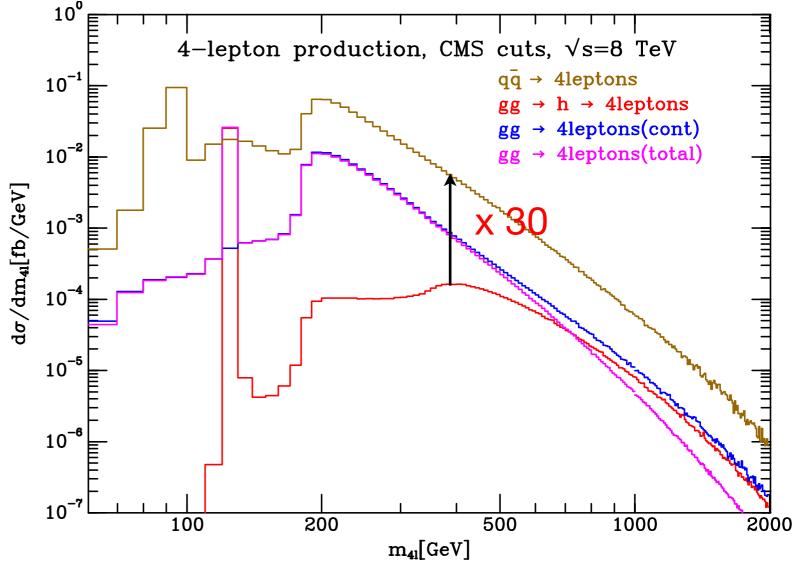
- (a) and (e), (b) and (d) can interfere.
- * (b-d) interference does not overwhelm (a-e) see later.



The big picture @ 8TeV

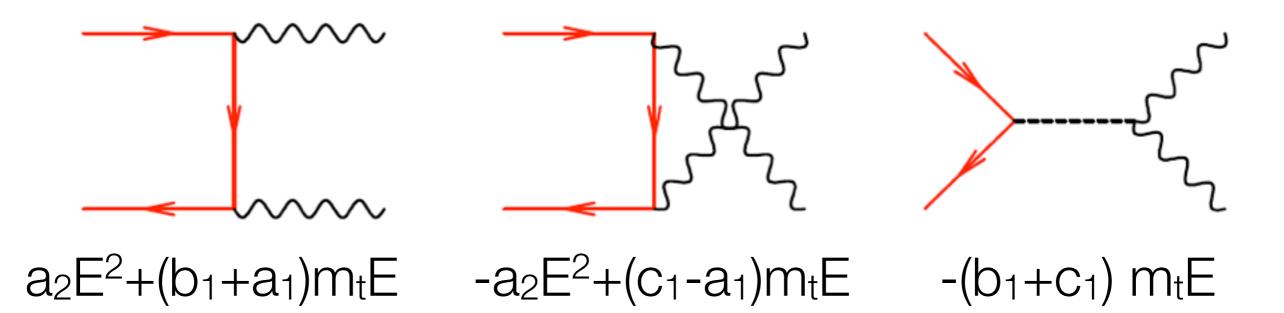
- Peak at Z mass due to singly resonant diagrams.
- Interference is an important effect.
- Destructive at large mass, as expected.
- With the standard model width, Γ_H, challenging to see enhancement/deficit due to Higgs channel.





Higgs being Higgs

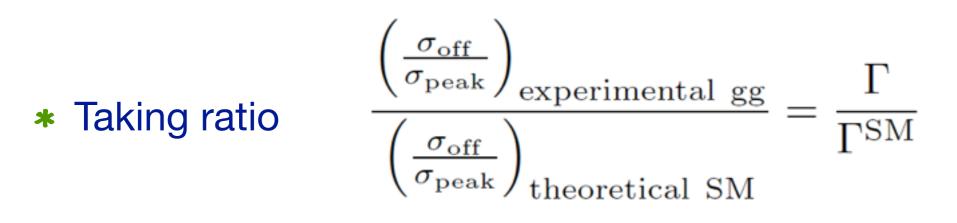
- Consider right hand side of gluon-gluon initiated diagrams.
- * tt \rightarrow ZZ, longitudinal modes of Z-bosons.



- Higgs tail has to be there to cancel bad high energy behavior of continuum diagrams.
- Observation of this cancellation, (if possible) is as interesting as longitudinal WW,ZZ scattering.

Caola-Melnikov method for Higgs width

- * Higgs cross under the peak, section depends ratio of couplings and width. $\sigma_{\rm peak} \propto \frac{g_i^2 g_f^2}{\Gamma}$
- * Measurements at the peak cannot untangle couplings and width.
- * Off-peak cross section is independent of the width, but still depends on $g_i^2 g_f^2$ (modulo interference, see later). $\sigma_{
 m off} \propto g_i^2 g_f^2$

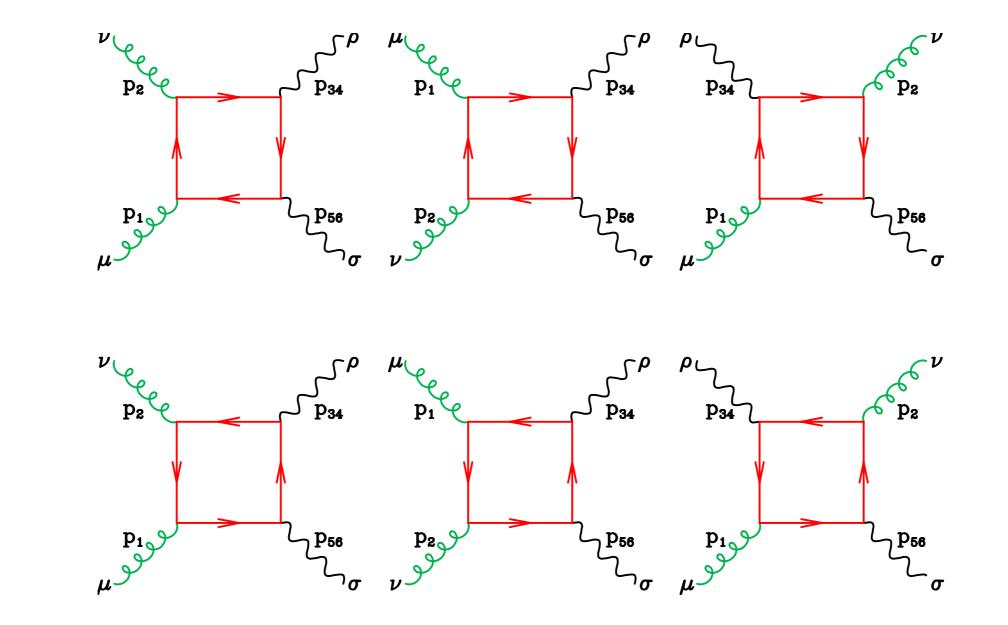


Ratio depends linearly on the Higgs boson width.

Caola-Melnikov method

- Although the interference has to be there, it is not essential for the CM method.
- Destructive interference actually weakens the bound that is obtained.
- CM method relies on accurate theoretical values for 4-charged lepton cross section (including the interference) both on and off-peak.

Diagrams for $gg \rightarrow Z/g^* + Z/g^*$



 Classify by the chirality of coupling to Z, i.e. LL, LR (and the related RR and RL).

History: $gg \rightarrow ZZ \rightarrow e^-e^+\mu^-\mu^+$

- Calculation requires VV or AA piece or equivalently LL and LR piece.
- * VV piece calculated in 1971, dispersive technique Constantini, de Tollis, Pistoni Nuovo Cim A2 1971
- (AA-VV) piece calculated for on-shell Z's, (inadequate for year>2012 purposes) Glover and van der Bij NPB321 (1989)
- Extension to off-shell Z's (no analytic formula for VV) Zecher et al, hep-ph/ 9404295
- * gg2VV code, Kauer and Passarino, 1206.4803
- * No published analytic form for the VV(LL) piece since 1971.
- Our aim: to obtain fast, stable code, to include in MCFM, using modern methods. Publish formula with value at a given phase space point, so it is feasible for other authors to implement. Campbell, Ellis, Williams 1311.3589

NLO revolution

- Dramatic advances in both analytic and numeric calculations, (including interplay between the two). Key ingredients
 - * First modern use of unitarity for one-loop calculations (Bern,Dixon,Kosower)
 - * Generalized unitarity for box diagrams(Britto, Cachazo, Feng)
 - * OPP reduction, (Ossola, Papadopoulos, Pittau)
 - * Melding of OPP with the Unitarity method (Ellis, Giele, Kunzst).
 - * Development of techniques for both cut-constructible and rational parts, (OPP, Giele, Kunszt, Melnikov, Badger...)
 - * Standard tabulation of all integrals (including divergent), (Ellis, Zanderighi)
 - Development of "Madgraph" style codes for NLO, (Gosam, aMC@NLO.).

Ingredients of a one-loop calculation

* Any one-loop amplitude expressible as a sum of box,triangle,bubble,tadpole scalar integrals+rational piece

$$A = \Sigma d_j + \Sigma c_j + \Sigma b_j + E a_j + R$$

- Scalar integrals, finite and divergent are all known.
 - Scalar integral=loop integral with 1 in numerator
 - * We use the ff and QCDLoop libraries, (see qcdloop.fnal.gov).
- * *R* (rational part) is a finite vestige of the regularization procedure.
- Coefficients determined using analytic unitarity, (Bern-Dixon-Kosower, Britto, Cachazo, Feng, Forde, Badger....)

QCDLoop.fnal.gov

 RKE, Giulia Zanderighi, Loopfest 2008

General one-loop integral, finite or divergent as a Laurent series in $\boldsymbol{\epsilon}$

EZ Enterprises are proud to present:-

QCDLoop™

Never calculate a scalar one-loop integral ever again!

One stop shopping for all your one-loop needs!

Operators are standing by, call 1-800-QCDLoop today

"If you need one-loop, do yourself a favor, make it EZ"

but wait, there's even more ...

One loop diagrams

* We want to consider tensor integrals of the form, where d_i are propagator factors

$$I^{\mu_1...\mu_M} = \int \frac{d^D l}{i\pi^{D/2}} \, \frac{l^{\mu_1}...l^{\mu_M}}{d_1 d_2...d_N}$$

 Passarino and Veltman wrote a form factor expansion for one loop integrals, e.g.

$$\int \frac{d^D l}{i\pi^{D/2}} \frac{l^{\mu}}{l^2(l+p_1)^2(l+p_1+p_2)^2} = C_1(p_1,p_2)p_1^{\mu} + C_2(p_1,p_2)p_2^{\mu}$$

* Contracting with p_1 and p_2 and using the identities

$$l \cdot p_1 = \frac{1}{2} [(l+p_1)^2 - l^2 - p_1^2], l \cdot p_2 = \frac{1}{2} [(l+p_1+p_2)^2 - (l+p_1)^2 - p_2^2 - 2p_1 \cdot p_2]$$

One loop diagrams (continued)

* We derive a linear equation expressing C_1, C_2 as scalar integrals

$$\begin{pmatrix} 2p_1 \cdot p_1 & 2p_1 \cdot p_2 \\ 2p_2 \cdot p_1 & 2p_2 \cdot p_2 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix} \qquad R_1 = \begin{bmatrix} B_0(p_1 + p_2) - B_0(p_2) - p_1^2 C_0(p_1, p_2) \end{bmatrix} \\ R_2 = \begin{bmatrix} B_0(p_1) - B_0(p_1 + p_2) - (p_2^2 + 2p_1 \cdot p_2) C_0(p_1, p_2) \end{bmatrix}$$

$$C_0(p_1, p_2) = \int [dl] \frac{1}{l^2(l+p_1)^2(l+p_1+p_2)^2}, B_0(p_1) = \int [dl] \frac{1}{l^2(l+p_1)^2}$$

* Solution involves the inverse of the Gram matrix $G_{ij} \equiv 2p_i \cdot p_j$

$$G^{-1} = \begin{pmatrix} +p_2 \cdot p_2 & -p_1 \cdot p_2 \\ -p_1 \cdot p_2 & +p_1 \cdot p_1 \end{pmatrix} / [2(p_1 \cdot p_1 \, p_2 \cdot p_2 - (p_1 \cdot p_2)^2)]$$

Apparent singularity as when p₁ parallel to p₂ cancels because of relationships between integrals in this limit.

One loop amplitudes

 General strategy: One loop amplitude expressed in terms of scalar box, triangle, bubble integrals + rational part

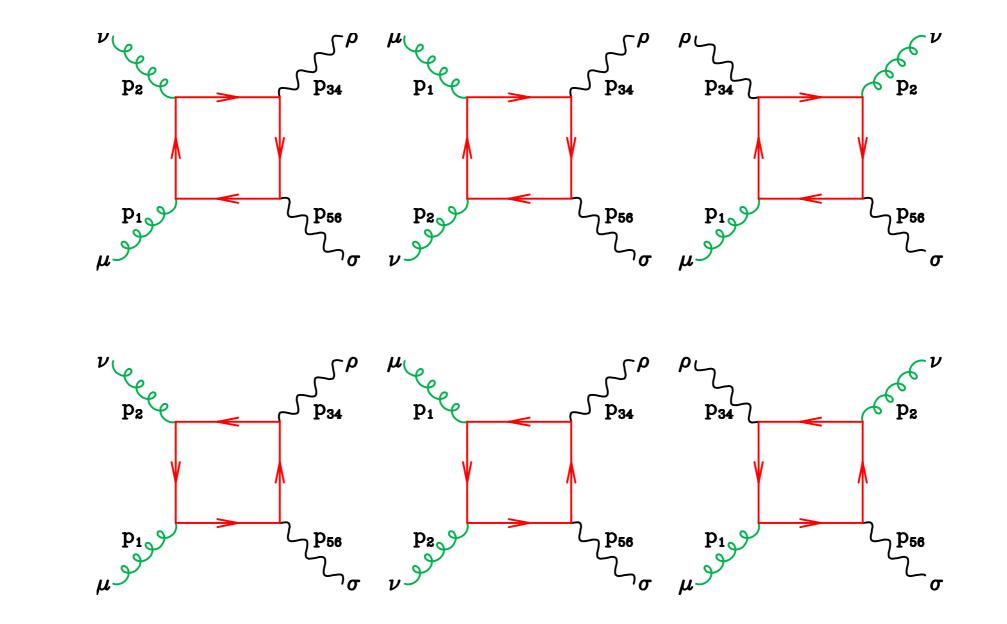
$$A = \sum_{j=1}^{3} d_j (1^{h_1}, 2^{h_2}) D_0(j) + \sum_{j=1}^{6} c_j (1^{h_1}, 2^{h_2}) C_0(j) + \sum_{j=1}^{6} b_j (1^{h_1}, 2^{h_2}) B_0(j) + R(1^{h_1}, 2^{h_2})$$

 As a general rule this reduction generates inverse Gram determinants giving apparent singularities.

* In our case $\Delta(p_1, p_2, p_{34}) = \frac{1}{2} p_1 \cdot p_2 [4p_1 \cdot p_{34} p_2 \cdot p_{34} - 2p_1 \cdot p_2 p_{34} \cdot p_{34}]$ $= \frac{1}{2} p_1 \cdot p_2 \langle p_1 | (p_3 + p_4) | p_2] [p_2 | (p_3 + p_4) | p_1 \rangle$ $= (p_1 \cdot p_2)^2 p_T^2$

★ Apparent singularities at p_T=0 are particularly trying in this case,since cuts are placed on the p_T of the leptons not of the Z.

Diagrams for $gg \rightarrow Z/g^* + Z/g^*$



 Classify by the chirality of coupling to Z, i.e. LL, LR (and the related RR and RL).

LR piece (easy!)

- ★ Hard to improve on the 1989 treatment of Glover-van der Bij, apart from extension to $p_{34}^2 \neq p_{56}^2$
- * Vanishes for $m \rightarrow 0$.
- * Tensor satisfying QCD gauge invariance, (indices µ and v)

$$\begin{split} P_{LR}^{\mu\nu\rho\sigma} &= A_1 g^{\rho\sigma} \Big(g^{\mu\nu} - \frac{p_1^{\nu} p_2^{\mu}}{p_1 \cdot p_2} \Big) \\ &+ A_2 g^{\rho\sigma} \Big(g^{\mu\nu} + \frac{2}{p_T^2} p_{34}^{\mu} p_{34}^{\nu} + \frac{p_{34}^2}{p_T^2 p_1 \cdot p_2} p_1^{\nu} p_2^{\mu} - \frac{2p_1 \cdot p_{34}}{p_T^2 p_1 \cdot p_2} p_2^{\mu} p_{34}^{\nu} - \frac{2p_2 \cdot p_{34}}{p_T^2 p_1 \cdot p_2} p_1^{\nu} p_{34}^{\mu} \Big) \\ &+ A_3 \Big(g^{\mu\sigma} g^{\nu\rho} + \frac{g^{\mu\nu} p_1^{\sigma} p_2^{\rho}}{p_1 \cdot p_2} - \frac{g^{\nu\rho} p_1^{\sigma} p_2^{\mu}}{p_1 \cdot p_2} - \frac{g^{\mu\sigma} p_1^{\nu} p_2^{\rho}}{p_1 \cdot p_2} \Big) \\ &+ A_4 \Big(g^{\mu\rho} g^{\nu\sigma} + \frac{g^{\mu\nu} p_1^{\rho} p_2^{\sigma}}{p_1 \cdot p_2} - \frac{g^{\nu\sigma} p_1^{\rho} p_2^{\mu}}{p_1 \cdot p_2} - \frac{g^{\mu\rho} p_1^{\nu} p_2^{\sigma}}{p_1 \cdot p_2} \Big) \\ &+ A_5 \frac{1}{p_1 \cdot p_2} \Big(g^{\mu\sigma} p_1^{\rho} p_{34}^{\sigma} - g^{\mu\rho} p_1^{\sigma} p_{34}^{\nu} + g^{\nu\sigma} p_2^{\rho} p_{34}^{\mu} - g^{\nu\rho} p_2^{\sigma} p_{34}^{\mu} \\ &+ \frac{p_2 \cdot p_{34}}{p_1 \cdot p_2} g^{\mu\rho} p_1^{\nu} p_1^{\sigma} - \frac{p_2 \cdot p_{34}}{p_1 \cdot p_2} g^{\mu\sigma} p_1^{\nu} p_1^{\rho} + \frac{p_1 \cdot p_{34}}{p_1 \cdot p_2} g^{\nu\rho} p_2^{\mu} p_2^{\sigma} - \frac{p_1 \cdot p_{34}}{p_1 \cdot p_2} g^{\nu\sigma} p_2^{\mu} p_2^{\rho} \Big) \\ &+ A_6 \frac{1}{p_1 \cdot p_2} \Big(g^{\mu\sigma} p_1^{\rho} p_{34}^{\nu} - g^{\mu\rho} p_1^{\sigma} p_{34}^{\nu} + g^{\mu\rho} p_1^{\nu} p_1^{\sigma} \frac{p_2 \cdot p_{34}}{p_1 \cdot p_2} - g^{\mu\sigma} p_1^{\nu} p_1^{\rho} \frac{p_2 \cdot p_{34}}{p_1 \cdot p_2} \Big) \end{split}$$

Form factors for LR

Form factors expressed in terms of Scalar Integrals C₀, D₀ and sixdimensional box integrals.

The six form factors A_i are given by, $(Y = s_{12}p_T^2 = 4p_{34}.p_1p_{34}.p_2 - s_{12}s_{34})$

$$\begin{aligned} A_1 &= \frac{m^2}{2s_{12}} \Big[2\bar{s}_{134}C_0(3) + 2\bar{s}_{234}C_0(4) + 2\bar{s}_{156}C_0(5) + 2\bar{s}_{256}C_0(6) \\ &- 2YD_0(1) + s_{12}(s_{12} - 4m^2)(D_0(1) + D_0(2) + D_0(3)) \Big] \\ A_2 &= 2m^2 \Big[D_0^{d=6}(3) + D_0^{d=6}(2) + C_0(2) + m^2 \Big(D_0(3) + D_0(2) - D_0(1) \Big] \\ A_3 &= \frac{1}{2}m^2s_{12} \Big[D_0(3) - D_0(2) - D_0(1) \Big] \\ A_4 &= \frac{1}{2}m^2s_{12} \Big[D_0(2) - D_0(3) - D_0(1) \Big] \\ A_5 &= \frac{m^2s}{2s_{234}s_{134}} \Big[2s_{134}D_0^{d=6}(3) + 2s_{234}D_0^{d=6}(2) - s_{234}s_{134}D_0(1) \\ &+ 4m^2 \Big(s_{134}D_0(3) + s_{234}D_0(2) \Big) + 2(s_{234} + s_{134})C_0(2) \Big] \\ A_6 &= -\frac{m^2s_{12}}{Y} \Big[\bar{s}_{134}C_0(3) - \bar{s}_{234}C_0(4) + \bar{s}_{156}C_0(5) - \bar{s}_{256}C_0(6) \Big] \equiv 0 \end{aligned}$$

 Six-dimensional box (sum of 4-dim boxes and triangles) collects factors of Y or (1/pT²)

$$D_0^{d=6}(2) = \frac{s_{134}}{2Y} \Big[\bar{s}_{134} C_0(3) + \bar{s}_{256} C_0(6) + s_{12} C_0(1) \\ + \Big(s_{12} - s_{34} - s_{56} + 2 \frac{s_{34} s_{56}}{s_{134}} \Big) C_0(2) - \Big(s_{12} s_{134} + \frac{4m^2 Y}{s_{134}} \Big) D_0(2) \Big]$$

Expression for LL pieces (harder!)

 * (Slight) generalization of integral basis to aid with numerical stability

$$A = \sum_{j=2}^{3} d_j(1^{h_1}, 2^{h_2}) D_0^{d=6}(j) + \sum_{j=1}^{3} d_j(1^{h_1}, 2^{h_2}) D_0(j) + \sum_{j=1}^{6} c_j(1^{h_1}, 2^{h_2}) C_0(j) + \sum_{j=1}^{6} b_j(1^{h_1}, 2^{h_2}) B_0(j) + R(1^{h_1}, 2^{h_2})$$

 Complete analytic forms for integral coefficients in terms of spinor products, e.g.

$$d_2^{d=6}(1^-, 2^+) = \frac{-1}{[34]\langle 56\rangle s_{134}} \frac{\langle 1|(3+4)|2]}{\langle 2|(3+4)|1]^3} \Big[\langle 2|(1+3)|4]^2 \langle 5|(3+4)|1]^2 + s_{134}^2 \langle 25\rangle^2 [14]^2 \Big] + \frac{1}{(34)^2} \Big[\langle 2|(3+4)|1]^3 - \frac{1}{(34)^2} \Big] \Big] + \frac{1}{(34)^2} \Big[\langle 2|(3+4)|1]^3 - \frac{1}{(34)^2} \Big] \Big] + \frac{1}{(34)^2} \Big[\langle 2|(3+4)|1]^3 - \frac{1}{(34)^2} \Big] \Big] + \frac{1}{(34)^2} \Big] + \frac{1}{(34)^2} \Big[\langle 2|(3+4)|1]^3 - \frac{1}{(34)^2} \Big] \Big] + \frac{1}{(34)^2} \Big] + \frac{1}{(34)^2} \Big[\langle 2|(3+4)|1]^3 - \frac{1}{(34)^2} \Big] \Big] + \frac{1}{(34)^2} \Big[\langle 2|(3+4)|1]^3 - \frac{1}{(34)^2} \Big] \Big] + \frac{1}{(34)^2} \Big] + \frac{1}{(34)^2} \Big] + \frac{1}{(34)^2} \Big] + \frac{1}{(34)^2} \Big[\langle 2|(3+4)|1]^3 - \frac{1}{(34)^2} \Big] + \frac{1}{(34)^2}$$

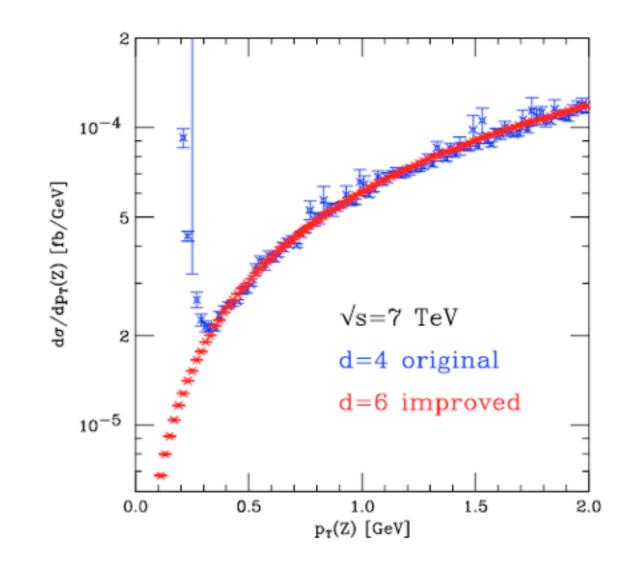
* Relatively simple formulae for each presented in paper.

P_T=0

Translating back to Bjorken-Drell notation,

 $\langle 2|(3+4)|1] = \bar{u}_+(p_1)(\not p_3 + \not p_4)v_+(p_2)$

- Singular when 3+4 is a linear combination of 1 and 2.
- Pernicious in this case,
 because we cut of p_T's of
 leptons, not p_T(Z)=p₃+p₄,
- The singularity is only apparent, but it can cause numerical problems.
- Clear improvement when moving to new d=6 basis.



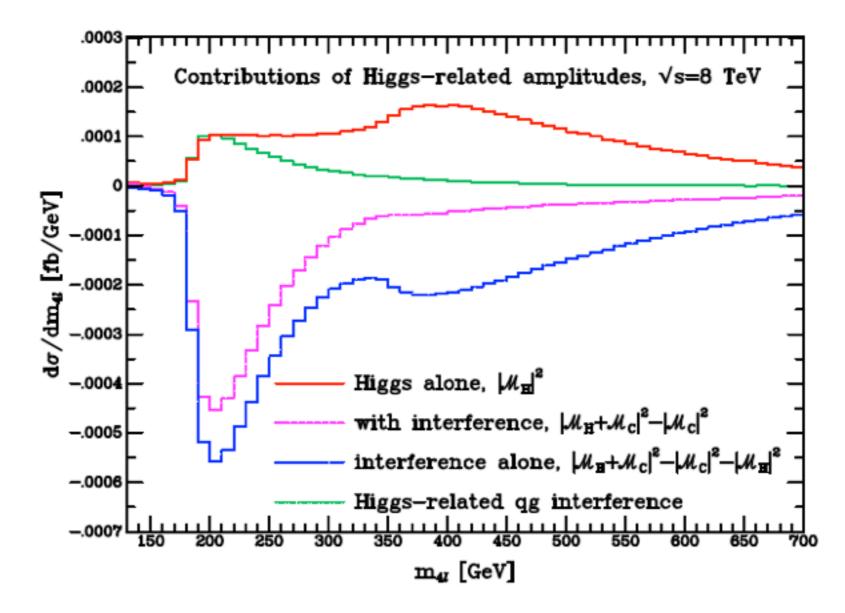
Why not just cut out the low p⊤ region?

 $\sigma(p_T(Z) < p_T^{eut}) / \sigma(total) [\%]$

- * 8% of the $gg \rightarrow H \rightarrow ZZ^* \rightarrow e^-e^+\mu^-\mu^+$ cross section, comes from the region where $p_T^Z < 7$ GeV.
- We impose a cut of pT^Z<0.1GeV, (i.e. less than 0.01% of cross section.

20 √s=8 TeV 15 $gg \rightarrow H \rightarrow ZZ$ (Higgs) $gg \rightarrow ZZ$ (continuum) 10 5 2 8 10 0 prut [GeV]

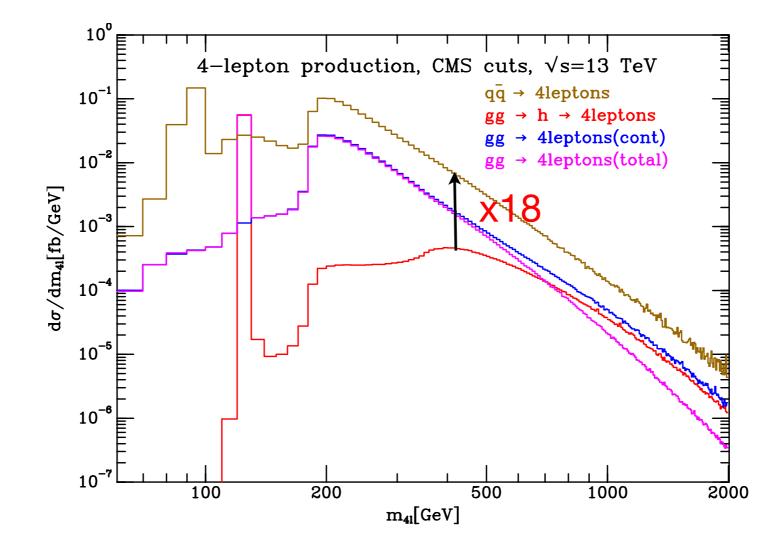
Size of interference @ 8 TeV



* Impossible to predict correct rate without correct accounting for interference.

Higgs-related qg interference is not so big, especially above m4l>300GeV

Big picture @ 13 TeV



- * $\sigma_{qqb} (m_{4l}=400)/\sigma_{gg}^{H} (m_{4l}=400) \approx 18$ at $\sqrt{s}=13$ TeV
- * (c.f. ~30 at √s=8 TeV).
- * Measurement should improve at higher energy.

Quantifying the interference-comparison with CM

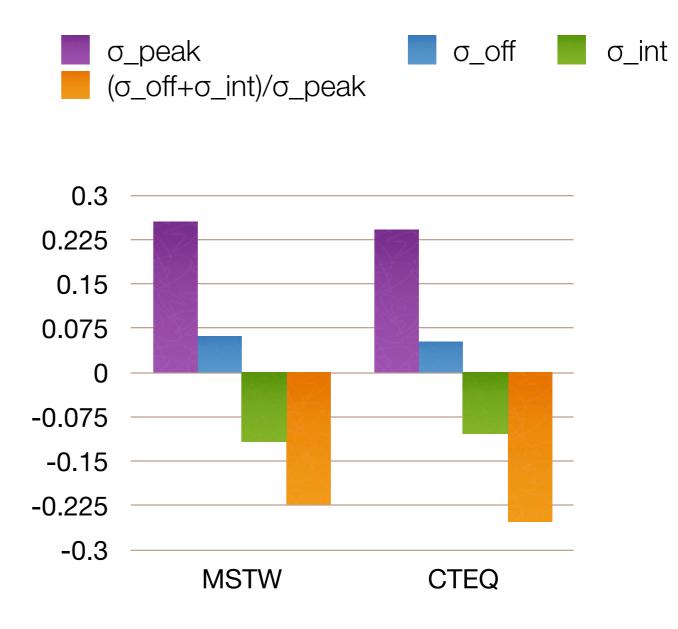
- Our results for interference differ (slightly) from CM paper.
- We believe that the reason is that CM used the double precision version of the Kauer code gg2VV, that contains a cut at p_T<7GeV, for continuum related pieces.

Energy	σ^{H}_{peak}	$\sigma_{off}^H(m_{4l} > 130 \text{ GeV})$	$\sigma_{off}^{int}(m_{4l} > 130 \text{ GeV})$
$7 { m TeV}$	0.203	0.044	-0.086
8 TeV	0.255	0.061	-0.118
Energy	σ^{H}_{peak}	$\sigma_{off}^H(m_{4l} > 300 \text{ GeV})$	$\sigma_{off}^{int}(m_{4l} > 300 \text{ GeV})$
Energy 7 TeV	$\sigma^H_{peak} = 0.203$	$\sigma_{off}^{H}(m_{4l} > 300 \text{ GeV})$ 0.034	$\sigma_{off}^{int}(m_{4l} > 300 \text{ GeV})$ -0.050

Quantifying the interference (pdf dependence).

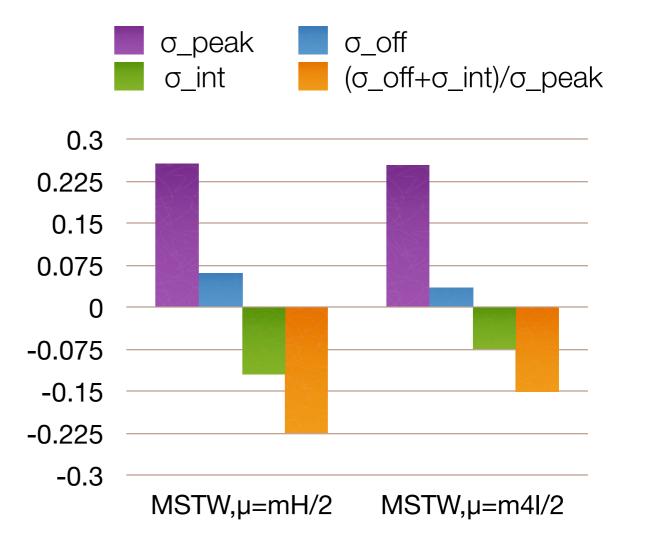
- Choosing scale=M_H/2
- Cross sections in fb

 ~10% dependence on parton (gluon) distribution, in ratio, shown in orange.



Quantifying the interference-scale dependence.

- * Choosing scales, m_H/2 and more natural scale $m_{41}/2$
- * Large dependence on choice of scale $\sim 50\%$, in off-peak/on-peak ratio (shown in orange)
- Adopt scale m₄₁ /2 for best prediction.



			$m_{4l} > 130 { m ~GeV}$		$m_{4l} > 300 { m ~GeV}$	
	Energy pdf	σ^{H}_{peak}	σ^{H}_{off}	σ_{off}^{int}	σ^{H}_{off}	σ_{off}^{int}
Best prediction CMS cuts	7 TeV MSTW	0.203	0.025	-0.053	0.017	-0.025
	CTEQ	0.192	0.021	-0.047	0.015	-0.021
	8 TeV MSTW	0.255	0.034	-0.073	0.025	-0.036
	CTEQ	0.243	0.031	-0.065	0.022	-0.031
	13 TeV MSTW	0.554	0.108	-0.215	0.085	-0.122
	CTEQ	0.530	0.100	-0.199	0.077	-0.111

32

Rough and ready estimate of current bound on Γ_{H}

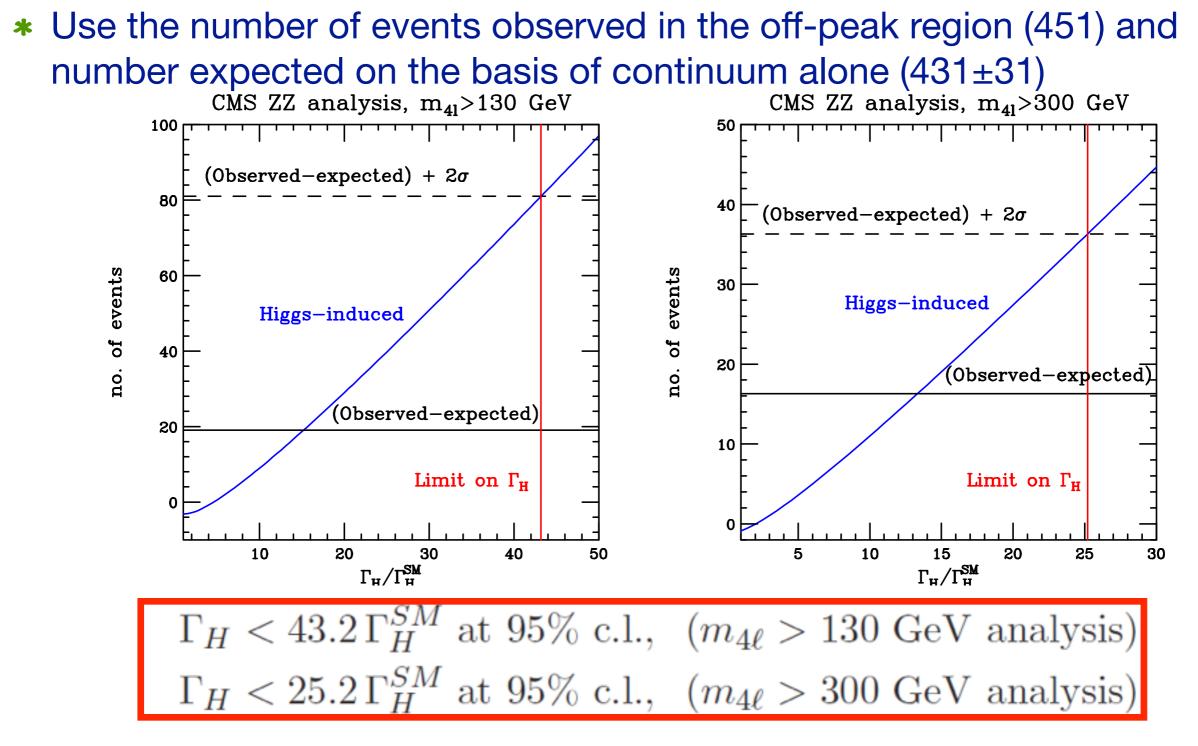
- * Update of Caola-Melnikov analysis, using our best prediction.
- * Using the results from our best prediction we find for $\sigma_{off} \equiv \sigma_{off}^{H} + \sigma_{off}^{int}$ at 8TeV.

$$\sigma_{off}(m_{4\ell} > 130 \text{ GeV}) = 0.034 \left(\frac{\Gamma_H}{\Gamma_H^{SM}}\right) - 0.073 \sqrt{\frac{\Gamma_H}{\Gamma_H^{SM}}}$$
$$\sigma_{off}(m_{4\ell} > 300 \text{ GeV}) = 0.025 \left(\frac{\Gamma_H}{\Gamma_H^{SM}}\right) - 0.036 \sqrt{\frac{\Gamma_H}{\Gamma_H^{SM}}}$$

 Therefore normalizing to the number of events observed at the peak we can estimate number of Higgs-related events off-peak (appropriately weighting to combine 7 and 8 TeV data).

$$\begin{split} N_{off}^{4\ell}(m_{4\ell} > 130 \ \text{GeV}) \ &= \ 2.78 \left(\frac{\Gamma_H}{\Gamma_H^{SM}}\right) - 5.95 \sqrt{\frac{\Gamma_H}{\Gamma_H^{SM}}} \\ N_{off}^{4\ell}(m_{4\ell} > 300 \ \text{GeV}) \ &= \ 2.02 \left(\frac{\Gamma_H}{\Gamma_H^{SM}}\right) - 2.91 \sqrt{\frac{\Gamma_H}{\Gamma_H^{SM}}} \end{split}$$

Updated limit on Higgs width



This analysis is indicative only and needs to be repeated by the experiments.

Improvement by matrix element method

* Associate a probabilistic weight to each input event.

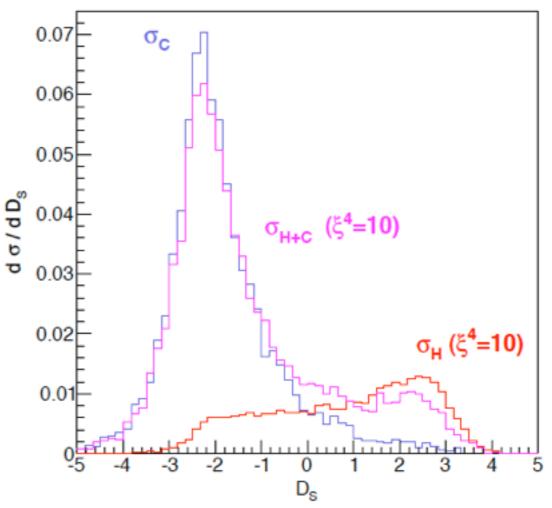
$$P_{LO}(\phi) = \frac{1}{\sigma_{LO}} \sum_{i,i} \int dx_1 dx_2 \,\delta(x_1 x_2 s - Q^2) f_i(x_1) f_j(x_2) \hat{\sigma}_{ij}(x_1, x_2, \phi)$$

- $P_{q\overline{q}}$: $q\overline{q}$ initiated background.
- P_{gg} : gg initiated pieces, including Higgs signal, box diagrams and interference.

 P_H : gg initiated Higgs signal squared.

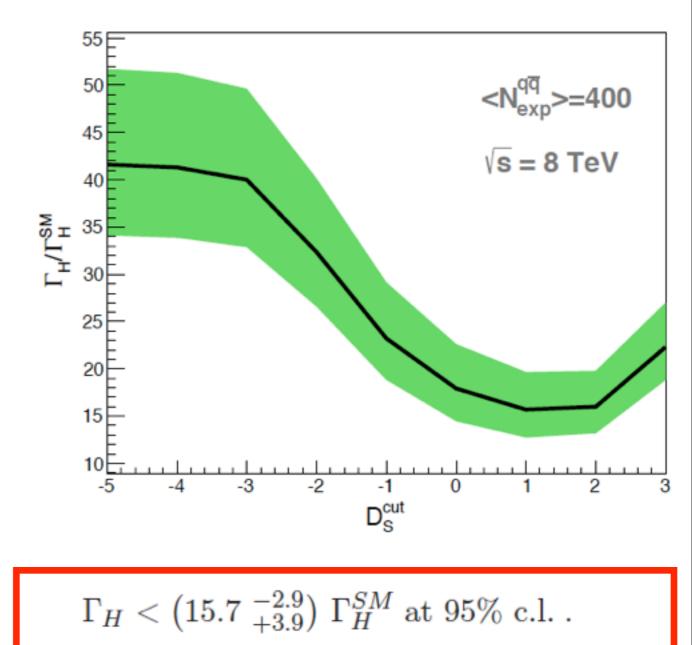
$$D_S = \log\left(\frac{P_H}{P_{gg} + P_{q\overline{q}}}\right)$$

 Test of discriminant on different components.



Application to Monte Carlo pseudo-data

- Rescale Monte Carlo to give 400 N_{qq} events.
- Attempt to choose statistical errors to match CMS analysis.
- Without using discriminant, we obtain limits in line with cut and count analysis.
- Cutting at D_s=1 we obtain
- Limit is 1.6 times better than result for m_{4l}>300GeV cut.
- To be repeated by experiment!



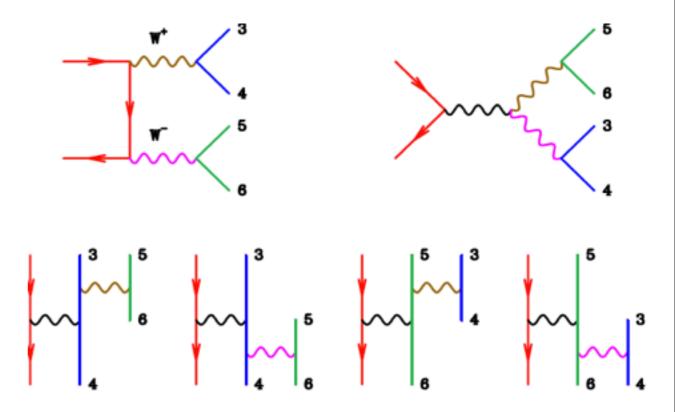
Theoretical improvements

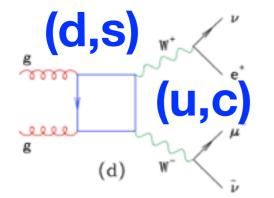
- Because of large scale uncertainty, we need a campaign to calculate the complete gg-initiated contributions at NLO, (Higgs portion is already known).
- Helpful to complete the full NNLO cross section.
- It may be experimentally helpful to separate the data in jet bins: this too will also require further theoretical work to calculate rates in 1-jet, 2-jet..

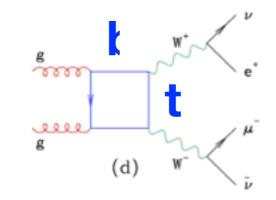
$pp \rightarrow W^+W^- \rightarrow ve^+\mu^-v$

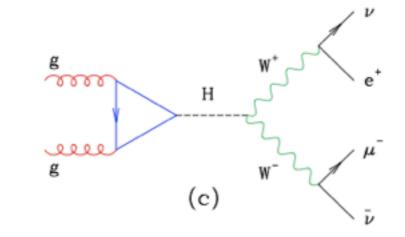
WW production in MCFM

- * Includes both doubly resonant and singly resonant diagrams with Z/γ^* .
- Full NLO-Virtual corrections from DKS, (hep-ph/9803250)
- Includes gg fermion loop contributions, that are formally higher order, using compact analytic formulae, mt≠0,mb=0



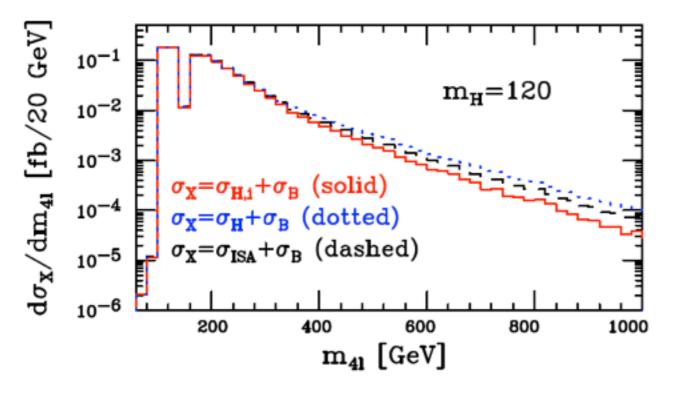






Bounding Γ_H with for $H \rightarrow WW$

- WW* channel has advantages over ZZ*.
 - * Threshold for real WW production is closer
 - ***** BR(H→WW*)xBr(W→Iv)²≈100 BR(H→ZZ*)xBr(Z→I⁻I+)²
- Disadvantages
 - Larger backgrounds especially top need jet veto.
 - * No 5σ "discovery" of Higgs boson in this channel yet.
 - Mass resolution for m₄₁?



Sizable off-resonant cross section in this channel too.

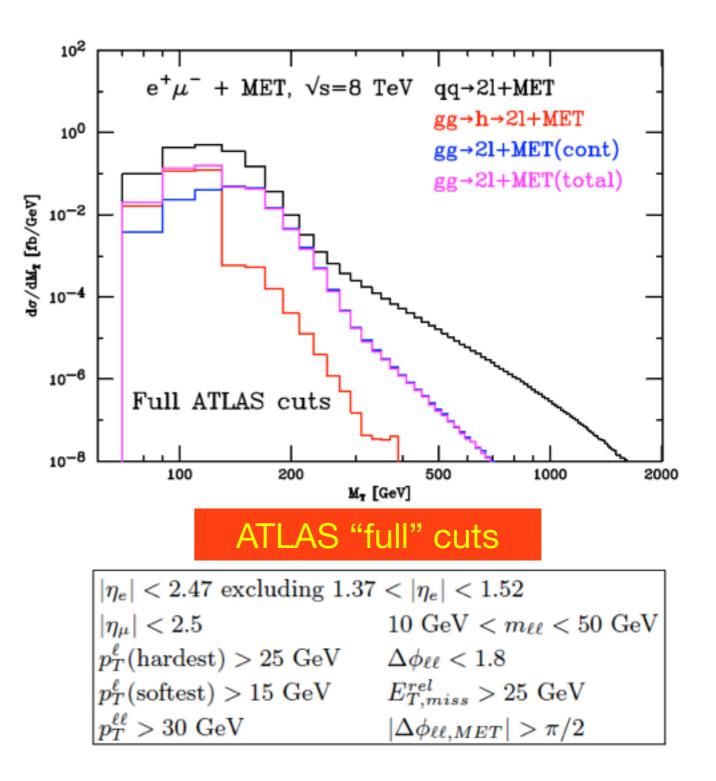
arXiv1107.5569

Big picture for WW events.

- Follow an ATLAS analysis, ATLAS-CONF-2013-030
- Plotted vs MT

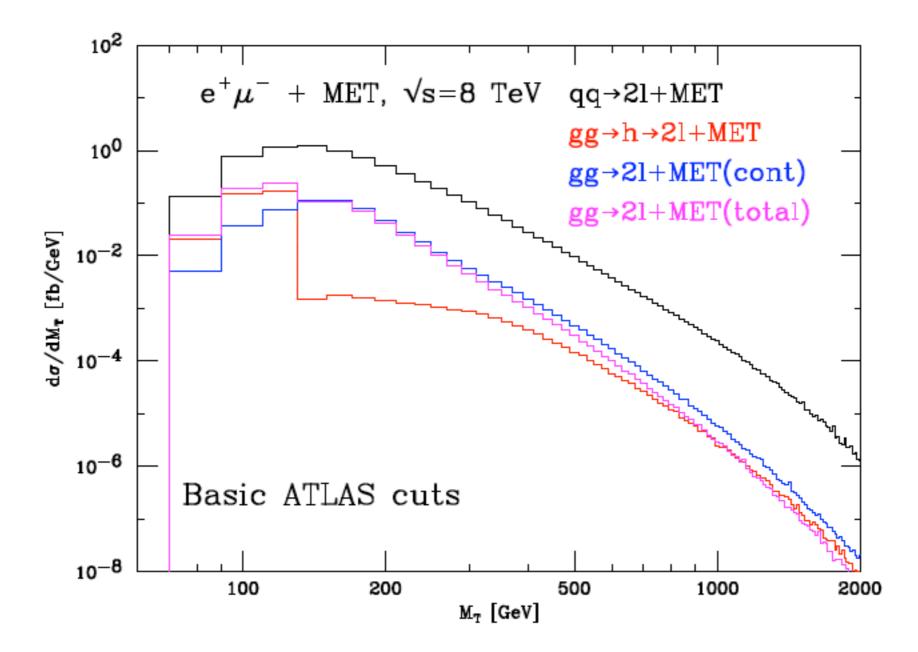
$$\begin{split} M_T^2 &= (E_T^{miss} + E_T^{\ell\ell})^2 - |\mathbf{p}_T^{\ell\ell} + \mathbf{E}_T^{miss}|^2 \\ E_T^{\ell\ell} &= (|\mathbf{p}_T^{\ell\ell}|^2 \!+\! m_{\ell\ell}^2)^{1/2} \end{split}$$

- Analysis targeted at signal peak, not at the resonant tail.
- * Edge near Higgs peak clearly visible, but resonant tail strongly suppressed.



Big picture with "basic" cuts

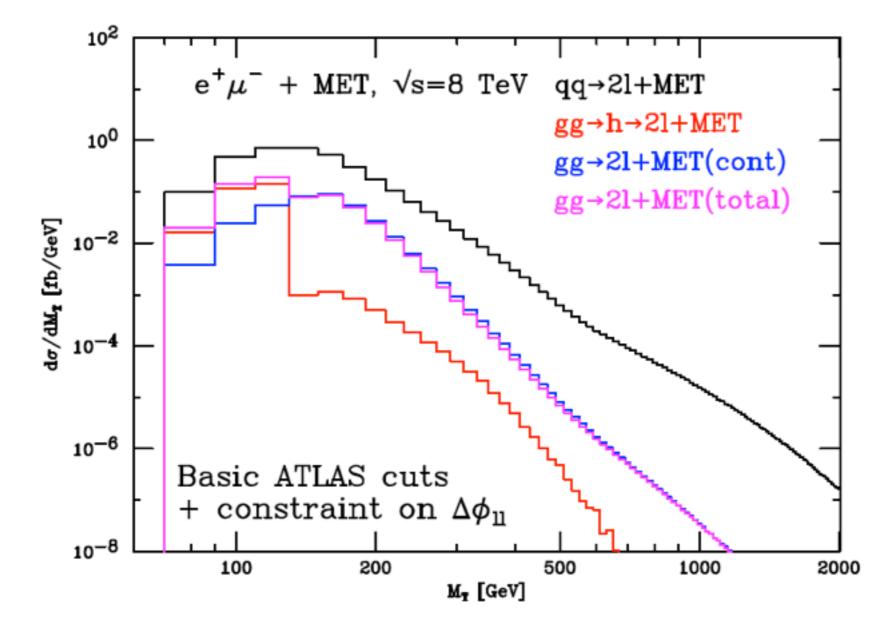
* "Basic" cuts = "full" cuts - ($m_{\ell\ell} < 50 \,\text{GeV}$, $\Delta \phi_{\ell\ell} < 1.8$)



★ M_T variable adequate to separate peak and off-peak.

Big picture with basic cuts + $\Delta \Phi_{\parallel} < 1.8$

* $\Delta \Phi_{\parallel}$ cut alone provides suppression of continuum background, without strong suppression of gg tail.



Numbers @ 8 and 13 TeV.

15.2

basic

	$M_T < 130 \text{ GeV}$		$M_T > 1$	$30 \mathrm{GeV}$	$M_T > 300 \text{ GeV}$	
Cuts	σ^H	σ^{I}	σ^{H}	σ^{I}	σ^H	σ^{I}
full	5.06	-0.0778	0.0262	-0.173	-	-
basic + $\Delta \phi_{\ell \ell}$	5.52	-0.0924	0.0844	-0.483	0.0021	-0.00888
basic	6.85	-0.117	0.328	-1.07	0.104	-0.240
	$M_T < 130 \text{ GeV}$		$M_T > 130 \text{ GeV}$		$M_T > 300 \text{ GeV}$	
Cuts	σ^{H}	σ^{I}	σ^{H}	σ^{I}	σ^{H}	σ^{I}
full	11.3	-0.195	0.0658	-0.431	-	-0.000185
basic + $\Delta \phi_{\ell \ell}$	12.3	-0.233	0.222	-1.25	0.00698	-0.0283

 $\sigma^{H}: |\mathcal{M}_{H}|^{2}, \quad \sigma^{I}: |\mathcal{M}_{H} + \mathcal{M}_{C}|^{2} - |\mathcal{M}_{C}|^{2} - |\mathcal{M}_{H}|^{2}$

-0.296

* Interference is primarily an off-resonant phenomenon.

1.04

-3.15

0.393

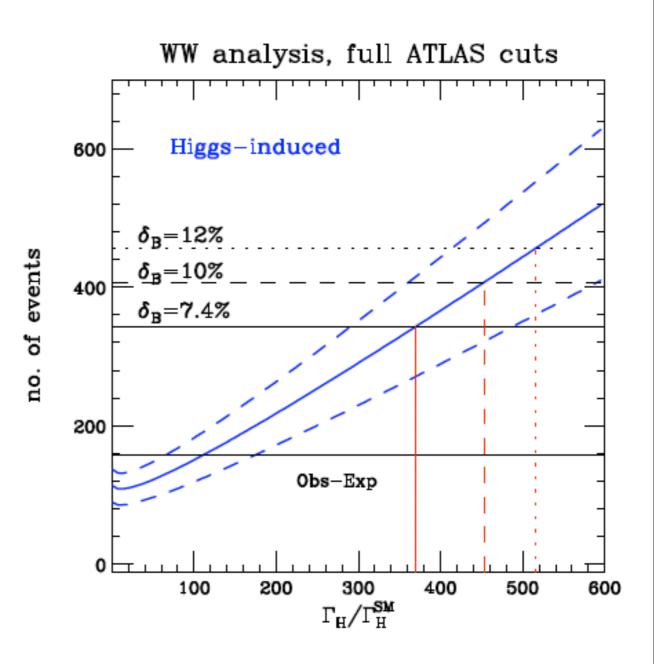
-0.893

- Interference relatively more important than for ZZ
- With the basic cuts σ^{peak}(13TeV)≈ 2 σ^{peak}(8TeV) whereas σ^{off-peak}(13TeV)≈ 3 σ^{off-peak}(8TeV), so method will improve with energy.

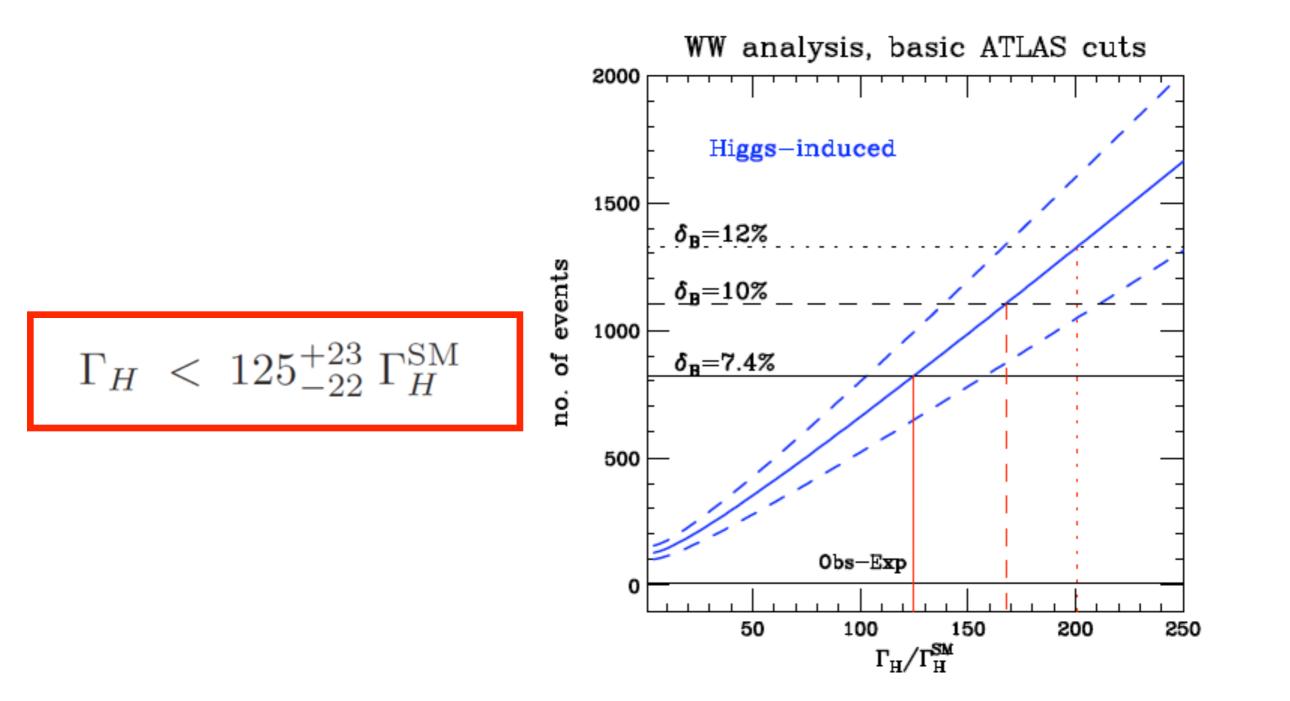
"Extraction" of limit from ATLAS data-full cuts

- Using a series of plausible assumptions about errors....
- * 7.4% ATLAS error on WW background.

$$\Gamma_H < 365^{+118}_{-79} \Gamma_H^{\rm SM}$$



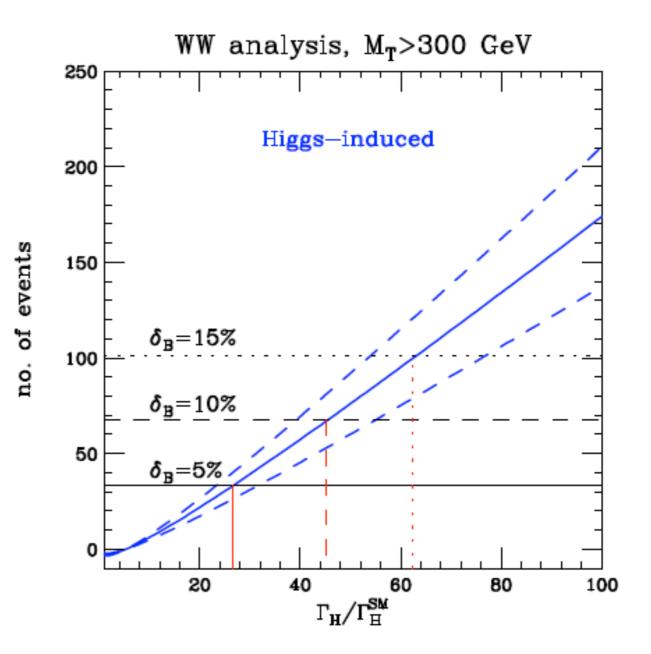
ATLAS data - basic cuts.



ATLAS data, M_T>300GeV

 For example the expected 95% confidence limit for a 10% background uncertainty

$$\Gamma_H < 45^{+9}_{-7} \, \Gamma_H^{\rm SM}$$



Mass shift due to interference in $H \rightarrow \gamma \gamma$.

- S. Martin 1208.1533,1303.3342, De Florian et al 1303.1397, Dixon Li 1305.3854
- * Expected inclusive mass shift is of order 70MeV at NLO
- Relies on mass shift due to interference in γγ channel and control channel ZZ^{*}→I⁺I⁻I⁺I⁻
- * Experiments do not agree on the sign of this shift.
- ***** ATLAS: $m_h^{\gamma\gamma}-m_h^{ZZ} = +2.3^{+0.6}-0.7 \pm 0.7 \text{GeV}$
- * CMS: $m_h^{\gamma\gamma}-m_h^{ZZ} = -0.4 \pm 0.7 \pm 0.6 \text{ GeV}$
- * "What we can say is that taking Γ_h=200Γ_{SM} =800MeV would result in a mass shift of order 1GeV, in the same range.." as given above. • Dixon Li 1305.3854

Summary on (potential) current bounds on Higgs width

Measurement methods,

- * Width convoluted with resolution
- * Mass shift in γγ mode due to interference (c.f Lance Dixon, Edinburgh, Jan2014)
- * Comparison of on-shell-off-shell rate (CM method)
- Other methods involve theoretical assumptions, typically that the Higgs coupling to electroweak vector bosons does not exceed the SM value, (eg. Dobrescu, Lykken, 1210.3342 and CMS PAS HIG-13-005, Γ_H / Γ_H SM < 2.8)

Method	Measured quantity	$\Gamma_H [MeV]$	Γ_H/Γ_H^{SM}
CMS-PAS-HIG-13-016	Width \times resolution	< 6900	< 1600
1312.1628 (CEW)	Off-peak/on-peak $WW, m_T > 130, 300$	< 500 - 180	< 125, 45
1311.3589 (CEW)	Off-peak/on-peak $ZZ, m_{4l} > 130, 300, MEM$	< 170, 100, 60	< 43, 25, 15
1305.3854(Dixon-Li)	Higgs mass in $\gamma\gamma$,	< 800	< 200

A limit of ${\sim}15\Gamma_{\text{SM}}$ with current data

Summary on future bounds on Higgs width

Comparison of methods

Method	Measured quantity	$\Gamma_H \; [\text{MeV}]$	Γ_H/Γ_H^{SM}
1305.3854(Dixon-Li) 3 ab ⁻¹	Higgs mass in $\gamma\gamma$, $\Delta m_H \sim 100 \text{ MeV}$	< 60	< 15
$1307.4935 (CM) \ 3 \ ab^{-1}$	Off-peak/on-peak $ZZ, m_{4l} > 130, 300$	< 40, 20	< 10, 5

CM method appears to be the winner, at least until the start of lepton collider operation.....

Conclusions

- * We have re-calculated the continuum background process $gg \rightarrow ZZ \rightarrow e^-e^+\mu^-\mu^+$ providing compact analytic formula.
- * We have written a fast code that is numerically stable without recourse to multiple precision and is included in MCFM. Released 6-DEC-2013.
- * LHE events are available.
- We essentially confirm the results of Caola and Melnikov, although we differ in details, primarily because of choice of scale m_{4l}/2.
- * The method shows sufficient promise that it merits a concerted effort to calculate (N)NLO/EW corrections to the $Z/\gamma^*Z/\gamma^* \rightarrow e^-e^+\mu^-\mu^+$ process.
- * Matrix element method can lead to a further improvements.
- WW process gives important complementary information and should be pursued too.
- * So ... the ball is in the experimenter's court now.

Snowmass projections for Higgs coupling measurements

Facility	LHC	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC	TLEP (4 IPs)
$\sqrt{s} \; (\text{GeV})$	14,000	14,000	250/500	250/500	250/500/1000	250/500/1000	350/1400/3000	240/350
$\int \mathcal{L} dt \ (\text{fb}^{-1})$	300/expt	3000/expt	250 + 500	1150 + 1600	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000	10,000+2600
κ_{γ}	5-7%	2-5%	8.3%	4.4%	3.8%	2.3%	-/5.5/<5.5%	1.45%
κ_g	6-8%	3-5%	2.0%	1.1%	1.1%	0.67%	3.6/0.79/0.56%	0.79%
κ_W	4-6%	2-5%	0.39%	0.21%	0.21%	0.2%	1.5/0.15/0.11%	0.10%
κ_Z	4-6%	2-4%	0.49%	0.24%	0.50%	0.3%	0.49/0.33/0.24%	0.05%
κ_{ℓ}	6-8%	2-5%	1.9%	0.98%	1.3%	0.72%	$3.5/1.4/{<}1.3\%$	0.51%
$\kappa_d = \kappa_b$	10-13%	4-7%	0.93%	0.60%	0.51%	0.4%	1.7/0.32/0.19%	0.39%
$\kappa_u = \kappa_t$	14-15%	7-10%	2.5%	1.3%	1.3%	0.9%	3.1/1.0/0.7%	0.69%

New in MCFM 6.7, (December 2013)

- * New analytic implementation of $gg \rightarrow ZZ$ box contribution including massive loop.
- Unweighted events for gg→ZZ^{*}→e⁻e⁺µ⁻µ⁺ and gg→H→ZZ^{*}→e⁻e⁺µ⁻µ⁺ including interference available in LHE format.
- Added triphoton production at NLO.
- Added double Higgs production at one-loop (LO).
- Improved PDF uncertainty output.
- Fixed treatment of errors in histograms.

Higgs cross sections

Higgs cross sections in MCFM

Process	Order	Comment
pp ightarrow H	NLO	effective theory $m_t \to \infty$
$pp \rightarrow H + 1$ jet	NLO	effective theory $m_t \to \infty$
$pp \rightarrow H + 2$ jets	NLO	effective theory $m_t \to \infty$
$pp \rightarrow H + 2$ jets	NLO	Vector boson fusion W and Z exchange
$pp ightarrow W^{\pm} H$	NLO	W decay to $l\nu$ included
pp ightarrow ZH	NLO	Z-decay to $l\bar{l}$ included
$pp ightarrow t ar{t} H$	LO	top decay to $bl\nu$ included

- Many of these cross sections are known at NNLO, so MCFM is not state of the art in this regard.
- The most precise theoretical cross sections will be important in the coupling measurement phase.

MCFM

- MCFM is a unified approach to NLO corrections, both to cross sections and differential distributions: <u>http://mcfm.fnal.gov</u> (v6.7, December 6, 2013).
- * Publically available code, J. M. Campbell, R. K. Ellis, C. Williams (main authors) R. Frederix, H. Hartanto, F. Maltoni, F. Tramontano, S. Willenbrock, G. Zanderighi....
- Standard Model processes for di-boson pairs, vector boson+jets, heavy quarks, Higgs, photon processes,... (~160 different processes included at NLO).
- Decays of unstable particles are included, maintaining spin correlations.
- Amplitudes (especially the one-loop contributions), calculated *ab initio* or taken from the literature.
- Operates as a resource for tree and NLO matrix elements.