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HIggs boson branching fractions

* Large number of observable SM Higgs decays
* We will consider WW*,Z/*.
* /77 1s 3%, before BR to observable mode.

* [41°M=4 MeV.




The lifetime (total width) of the Higgs boson

Particle | Width[MeV] | Lifetimels]
t ~ 1,300 ~ 5 x 1072
W ~ 2.000 ~ 3 x 1072°
~ 2.500 ~ 2.6 x 1072°
h 4.21 +0.16 ~ 1.65 x 10722
44x1071% | ~1.5x 10712

* Higgs boson lives longer than the t,W or Z, but not
long enough to measure the lifetime directly.

* Width is very much less than experimental resolution
~1 GeV.

* Direct scan of the Higgs boson width will (only) be
possible at a muon collider.



Narrow width approximation

* In the limit I/Mn =0 we may replace the Breit-Wigner
distribution by a delta function.

1 7
~ 5(§ — M7) .
(5 — M2)2 + M?T2 ~ M,T, (8 = My)

* For the standard model Higgs, '/Mn = 1/30,000 so
narrow width approximation should apply.



Rescaling properties of the cross section on the peak

* |In the narrow width
approximation

h— X) 9797

L'y, L'y,
* Measurements on the Higgs
peak, are only sensitive to the
ratio, g?g?c
L'y
* Performing the rescaling 9i — &Y
leaves the measurement gr — &95

unchanged. g — &Tg



Signal strength measurements

* Signal strength measurements, (that assume a value
for the total width), confirm that %9:/T» is close to its
standard model value.
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Basic process for this talk: pp—=2ZZ—eetup?

p+p—H — ZZ

l—) o+ pt

e +et .

p+p = ZIy+ 2/

|—> w4+t

s T +eT

* Consider the contributing Feynman diagrams.

Technically, only non-identical fermions although identical fermion
effects are known to be small, except in the singly resonant region.



Narrow width approximation for Higgs boson

* How can it fail?

* 1 / Mu=1/30,000 e
a)

* |t fails spectacularly for 95 (
gg—H—-2ZZM—-e ety pt.

100 I | I I I I I I I | L I
4—lepton production, CMS cuts, Vs=8 TeV

g8 - h - 4leptons

* At least 15% of the cross section 10*
comes from ms>130GeV.

Kauer, Passarino,arXiv:1206.4803

* Similar tail for H=>WW. 10°
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op—eetuut In the standard model

* Mishmash of orders in perturbation theory

(@) : g(—=p1) + 9(=p2) = H — e (p3) + e (pa) + = (ps) + 1" (ps) O(gze*)
(0) : q(=p1) + g(—p2) = H — e~ (p3) + e*(pa) + 1~ (ps) + 1T (ps) + q(pr) |O(g2e?)
(¢) : q(=p1) + G(—p2) — € (p3) + et (ps) + 1~ (ps) + 1T (ps) O(e*)
(d) : q(=p1) + g(=p2) — e~ (p3) + e (pa) + = (ps) + 1" (ps) + q(p7) O(gse*)
(e) : g(=p1) + g(—p2) — e (p3) + et (pa) + 1~ (p5) + 1t (ps) O(gze)
Ro_
* Representative A> _____ {i
diagrams are:- -
+@and (@), ()and (@) - o
can interfere. !
" —_—— 5060
* (b-d) interference M ©

does not overwhelm (a-e)
see |ater.

(e)



The big picture @ 8TeV

pru > 5 GeV, |n,| <24,
pre > 7 GeV, |n.| <25,
my >4 GeV, mypy > 100 GeV .

* Peak at Z mass due
to singly resonant
diagrams.

* Interference Is an
important effect.

* Destructive at large
mass, as expected.

* With the standard
model width, 'y,
challenging to see
enhancement/deficit
due to Higgs
channel.
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Higgs being Higgs
* Consider right hand side of gluon-gluon initiated
diagrams.

* tt = ZZ, longitudinal modes of Z-bosons.

E > ----- -é:i
N\NNNY - L’L

——

aoE’+(b1+a))miE  -aoE?+(ci-a)miE -(b1+C1) M

* Higgs tail has to be there to cancel bad high energy
behavior of continuum diagrams.

* Observation of this cancellation, (if possible) is as
interesting as longitudinal WW,ZZ scattering.



Caola-Melnikov 1307.4935

Caola-Melnikov method for Higgs width

* Higgs cross under the peak, section depends ratio of couplings
and width. gfg%
P ( F

* Measurements at the peak cannot untangle couplings and width.

* Off-peak cross sectlon is independent of the width, but still
depends on (/, (/j (modulo interference, see later).

2 2
Ooff X G; gf
( (Toff )
o " “peak / experimental gg I
* Taking ratio ~ SN
g ( O off ) Fbl\[
Ipeak / theoretical SM

* Ratio depends linearly on the Higgs boson width.

12



Caola-Melnikov method

* Although the interference has to be there, it is not
essential for the CM method.

* Destructive interference actually weakens the bound
that is obtained.

* CM method relies on accurate theoretical values for
4-charged lepton cross section (including the
interference) both on and off-peak.

13



Diagrams for gg—Z2/g*+Z/g”

o f;i” %{ fpff p}&

i Lhc, ,,ﬁy Lhc, ,f :

e .rfjp Nﬁﬁq .rfjp pi%
Pz - P34 - P34 P34

4

e LHW ,ﬁ Lhc, ,ﬁ :

* Classify by the chirality of coupling to Z, i.e. LL, LR (and the
related RR and RL).

14



History: gg—=/Z/—eetuput

* Calculation requires VV or AA piece or equivalently LL and LR
piece.

* VV piece calculated in 1971, dispersive technique

Constantini, de Tollis, Pistoni Nuovo Cim A2 1971

* (AA-VV) piece calculated for on-shell Z’s, (inadequate for
year>2012 pu FpOSGS) Glover and van der Bij NPB321 (1989)

* Extension to off-shell Z’s (no analytic formula for VV) zecher et al, hep-ph/
9404295

* 992VV COde, Kauer and Passarino, 1206.4803
* No published analytic form for the VV(LL) piece since 1971.

* Qur aim: to obtain fast, stable code, to include in MCFM, using
modern methods. Publish formula with value at a given phase

space point, so it is feasible for other authors to implement. camper,
Ellis, Williams 1311.3589

15



NLO revolution

* Dramatic advances in both analytic and numeric
calculations, (including interplay between the
two). Key ingredients

* First modern use of unitarity for one-loop calculations

(Bern,Dixon,Kosower)
* Generalized unitarity for box diagramsgritto, Cachazo, Feng)
* OPP reduction, (0ssola, Papadopoulos, Pittau)
* Melding of OPP with the Unitarity method (eiis, Giele, Kunzst)

* Development of techniques for both cut-constructible
and rational parts, (OPP, Giele,Kunszt, Melnikov, Badger...)

* Standard tabulation of all integrals (including divergent),
(Ellis, Zanderighi)

* Development of “Madgraph” style codes for NLO,
(Gosam, aMC@NLO. ....).

16



Ingredients of a one-loop calculation

* Any one-loop amplitude expressible as a sum of
box,triangle,bubble,tadpole scalar integrals+rational piece

|

=

* Scalar integrals, finite and divergent are all known.

* Scalar integral=loop integral with 1 in numerator
* We use the ff and QCDLoop libraries, (see gcdloop.fhal.gov).

* R (rational part) is a finite vestige of the regularization procedure.

* Coefficients determined using analytic unitarity,

(Bern—Dixon—Kosower, Britto,Cachazo,Feng,Forde,Badger....)

17



QC

- RKE, Giulia Zanderighi,

DLoop.fnal.gov Loopfest 2008

General one-loop integral, finite or divergent as a
Laurent series in €

EZ Enterprises are proud to present:-

QCDLoop™

Never calculate a scalar one-loop integral ever again!

One stop shopping for all your one-loop needs!

Operators are standing by, call 1-800-QCDLoop today

]
VISA

Free shipping! but wait, there’s even more ...

18



One loop diagrams

* We want to consider tensor integrals of the form, where di
are propagator factors JDl e
JH1---BM — / S

imD/2 dida ...dy

* Passarino and Veltman wrote a form factor expansion for
one loop integrals, e.q.

dP1 [H
= C1(p1,p2)pt + C2(p1, p2)ph
/ imP/2 12(1 4 p1)2(l + p1 + p2)? (p1,p2)Py + C2(p1, P2)P3

* Contracting with pyand p2 and using the identities

L-pr = 5[l +p1)? =12 —pil,l-p2 = 5[l + p1 + p2)® — (1 + p1)* — p3 — 2p1 - p2)]

19



One loop diagrams (continued)

* We derive a linear equation expressing ¢, C»as scalar integrals

( 2p1-p1 2p1-po ) ( Cq ) _ ( Ry ) Ry = [Bo(p1 + p2) — Bo(p2) — p? Co(p1,p2)]
2p2 -p1 2p2 - p2 Co R Ry = [Bo(p1) — Bo(p1 + p2) — (p3 + 2p1 - p2) Co(p1,p2)]
Colpr.p2) = [ lal) 1 Bo(py) = ldl) 75—
, Mn.nD — aL| — ; —, L ) - L p :
o Rl+p)2(+p1+p2)2 O 21 + p1)?

* Solution involves the inverse of the Gram matrix Gij = 2pi - pj

V_ +p2 P2 —P1 P2 ‘
Gl = ( —p1-p2 4p1-p1 ) /[2(p1 - p1p2 - P2 — (p1 - p2)?)]

* Apparent singularity as when p1 parallel to p2 cancels
because of relationships between integrals in this limit.

20



One loop amplitudes

* (General strategy: One loop amplitude expressed in terms of scalar box,
triangle, bubble integrals + rational part
3 6 6
A=) d;(1",2"2) Do(j) +) " ¢;(1",2"2) Co(j) + ) b;(1",2"2) Bo(j) + R(1"™,2"2)
7=1 j=1 7=1

* As a general rule this reduction generates inverse Gram
determinants giving apparent singularities.

1 |
* Inourcase A(pi.p2.p3a) = 5P1 P2 4p1 - p3ap2 - P34 — 2p1 - P2 P34 - P34

1 |
= 5P1°Pp2 (p1|(p3 + pa)|p2| [p2|(p3s + pa)|p1)

= (p1-p2)? p>

* Apparent singularities at pr=0 are particularly trying in this
case,since cuts are placed on the pr of the leptons not of the Z.

21



Diagrams for gg—Z2/g*+Z/g”

o f;i” %{ fpff p}&

i Lhc, ,,ﬁy Lhc, ,f :

e .rfjp Nﬁﬁq .rfjp pi%
Pz - P34 - P34 P34

4

e LHW ,ﬁ Lhc, ,ﬁ :

* Classify by the chirality of coupling to Z, i.e. LL, LR (and the
related RR and RL).

22



LR piece (easy!)
* Hard to improve on the 1989 treatment of Glover-van der Bij,
apart from extension 1o pz4? # pse?

* Vanishes for m—0.

* Tensor satisfying QCD gauge invariance, (indices p and v)

-
P}f};’” — Algpo(g;u/ o 'plps )
P12

, . 2 , 3. , 2p1 P34 4,  202°P34 , u
+ Azg™ (g#l + 71?5.11)&.1 + =5 - pllps s B p{g P3q — 2+p11 ])}31)
Pr PrpP1 - P2 PrpP1 - P2 PrpP1 - P2
+ Agghmg + 9pivh  9piph 9““1)’1’1)3)
P1-P2 P1-P2 P1-P2

LA < PG 4 g"'Pips 97y gMpY pfz’)
! pi-P2 P1-P2 P1-DPo

1 1/ 1/ /

t+ Asm— (g‘“’p’fpéﬁ — " pipis + 9" PPy — 9" P3Py
P2 - P34 mp v, o P2 - P34 po, v, . p P1 - P34 VP T P1-P34 vo p p)
prope ) PIPL T 9 PP g Pap3 pr-ps o P2P2

1 y Y P2 P34 , pP2 " P34
+ As— (g“"l)ﬁ’ Psa — ¢7PTPs + 9" PPl ———— — ¢ PP )
P1-P2 P1 D2 P1-DP2

23



Form factors for LR

* Form factors expressed in terms of Scalar Integrals Co, Do and six-
dimensional box integrals.
The six form factors A; are given by, (Y = .s']-gp% = 4dp3s.p1P34.P2 — S$12834)

m?2
A1 = 3 [‘25134('0(3) + 28934Cp(4) + 25156C0(5) + 25256C0(6)

2812

2Y Do(1) + s12(s12 — 4m?)(Do(1) + Do(2) + 1)0(3))]

Ay = 2m? [1)3=“(3) + DE=8(2) + Co(2) + 7712(1)()(3) + Do(2) — Do(1)
1 |
A = 37712513[1)0(3) — Do(2) — 1)0(1)]

l
Ay = 3,71-’31-_,[00(2)—00(3) —Do(l)]

)
4 m-s . d=6 ¢ ¢ d—6 /¢
Ay = Y [331341)0 (3) + 28934 D577 (2) — 82348134 Dp(1)
289345134

+ 4m? (.9131D0(3) ~ 823.100(‘2)) + 2(s234 + 813-1)C'0(2)]

m2sy9 o , . o
Ag = — v [9134(0(3) — 5234C0(4) + 5156C0(5) — -"256(0(6)] =0

* Six-dimensional box (sum of 4-dim boxes and triangles) collects factors
of Y or (1/pt?)

/ 2 s
834856\ 4m*-Y
+ (812 — 834 — S56 + 2 )CO(Q) - (8128134 - )DO(Q)]
5134 S134

24



—xpression for LL pieces (harder!)

* (Slight) generalization of integral basis to aid with

N

umerical stablllty
3
A = 3 dh, 9 DESG) + 3 a1, 2) Doy
J=2 71=1
6
4+ ZC] 1h1 Qh CO Z 1h1 c)h )-’r-R(].hl Qh )
7=1 7=1

* Complete analytic forms for integral coefficients in
terms of spinor products, e.qg.

d5=%(17,2%) =

* R

—1 (13 +4)2]
[34](56)s134 (2[(3 +4)[1]°

7| @I(1+3)[42(5](3 + |12 + sTay(25)2[1 4|

elatively simple formulae for each presented in paper.

25



D —

* Translating back to Bjorken-
Drell notation,

2[(3+4)|1] = uy(p1)(P3 + Pa)v4(p2)

* Singular when 3+4 is a linear
combination of 1 and 2.

* Pernicious in this case,
because we cut of pr’s of
leptons, not pr(Z)=p3+pa4,

* The singularity is only
apparent, but it can cause
numerical problems.

* Clear improvement when
moving to new d=6 basis.

2 1 1 ! ] L 1 1
l

10-4 —
- X

do/dp.(Z) [fb/GeV]

| | l 1 |

Vs=7 TeV
d=4 original

d=6 improved

| l ] 1 1 1 l 1 ] ]

|
0.0 0.5

1.0 1.5
pr(Z) [GeV]

|
2.0

26



Why not just cut out the low pr region?

* 8% of the
Qo H-2 2 —=eetuput
Cross section, comes

from the region where
pré<7GeV.

* We impose a cut of
pt4<0.1GeV, (i.e. less
than 0.01% of cross

Vs=8 TeV

o(p(Z) < pT*) / o(total) [%]

20 LA B | T I 1 LI ] L | LI

section.

|
10

27



Size of interference @ 8 TeV

0003 llllllllllllllllllll'lllllllllllllllllllllllllllllllll

Contributions of Higgs-related amplitudes, Vs=8 TeV

.

| T

0001

M
/

—
i———
IRR—

-

do/dmygy [fb/GeV]
s &

Higgs alone, g’
- ywith interference, I#n+-4¢c|a-|-“c|.

' l 1 l 1 l 1 l ' I | I 1
1 l 1 l L l 1 l 1 l 1 l

—-.0005
interference alone, Mg+dc)'— el
~.0008
— Higgs—related qg interference
-.0007 L4 00

my [GeV]

* Impossible to predict correct rate without correct accounting for interference.

* Higgs-related qg interference is not so big, especially above m41>300GeV
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3ig picture @ 13 TeV

0

10

107

107°

10

—4

10

do/dmy[fb/GeV]

-5

10

10

-7

10

4—lepton production, CMS cuts, Vs=13 TeV

JJL—

__I_,_,-f'

qq - 4leptons

gg > h - 4leptons

gg - 4leptons(cont)
gg - 4leptons(total)

100 200 500 1000 2000
my[GeV]

* Oggb (Ma=400)/0"yg (M4=400) =~ 18 at /s=13 TeV
* (c.f. ~30 at \/s=8 TeV).

* Measurement should improve at higher energy.

29



Quantifying the interference-comparison with CM

* Our results for interference differ (slightly) from CM

paper.

* We believe that the reason is that CM used the double
precision version of the Kauer code gg2VV, that
contains a cut at pr<7GeV, for continuum related

pieces.

Energy aﬁ?ak af”(m.u > 130 GeV )Iaf)’}tf(mu > 130 GeV)
7 TeV | 0.203 ' 0.044 ~0.086

8 TeV 0.255 0.061 0.118
Energy q ol (ma > 300 GeV)[a™ (my; > 300 GeV)
7 TeV 0.203 0.034 ~0.050

8 TeV 0.255 0.049 | -0.071

30



Quantifying the interference (pdf dependence).

* Choosing scale=Mn/2 B o peak Booi M oint
" (o_off+o_int)/o_peak

* Cross sections in fb 0.3
0.225
0.15

0.075 I
0)
* ~10% dependence on -0.075
parton (gluon) distribution,  -0.15
In ratio, shown in orange. -0.225
-0.3

MSTW CTEQ

31



Quantifying the interference-scale dependence.

* Choosing scales,mn/2
and more natural scale o
Ma) /2 o.2§5
0.15
* Large dependence on 0075
choice of scale ~50%, 0
in off-peak/on-peak 0075

_ _ -0.15
ratio (shown in orange) 0.995

* Adopt scale may /2 for e

B o peak
W o int

-I!r
A L

W o off

.| (o_off+o_int)/o_peak

'

L‘_!.
SAAC ¢

MSTW,u=mH/2  MSTW,u=m4l/2
best prediction.

my > 130 GeV my > 300 GeV
Energy pdf d :),cak o;i, f ‘7:}'1 Uff f U;’}'f
7 TeV MSTW 0.203 0.025 70.053 0.017 20.025
e CTEQ 0.192 0.021 -0.047 0.015 -0.021
P ' 8 TeV MSTW 0.255 0.034 -0.073 0.025 -0.036
CMS cuts CTEQ 0.243 0.031 -0.065 0.022 -0.031
s |13 TeV MSTW 0.554 0.108 -0.215 0.085 -0.122
CTEQ 0.530 0.100 -0.199 0.077 -0.111

32



Rough and ready estimate of current bound on [ H

* Update of Caola-Melnikov analysis, using our best prediction.

* Using the results from our best prediction we find for o,s; = o, + o7
at 8TeV.

S 'y - 'y
Toff(mye > 130 GeV) = 0.034 (FSM> — 0.073 =

H

T 3}
Toff(mae > 300 GeV) = 0.025 (Psfj [) —0.036, [ —=

H

* Therefore normalizing to the number of events observed at the
peak we can estimate number of Higgs-related events off-peak
(appropriately weighting to combine 7 and 8 TeV data).

4 / r r
AT4L ¢ aV) — H a
N,sp(mye > 130 GeV) = 2.78 (Ff;”) —9.95 oM

Y S FH I“H
A"j;f(mg‘g > 300 GeV) = 2.02 (F‘;}M) —2.91 Fffw

33



Updated limit on Higgs width

* Use the number of events observed in the off-peak region (451) and

number expected on the basis of continuum alone (431+31)
CMS ZZ analysis, m4,4>130 GeV CMS ZZ analysis, m4,>300 GeV

100 _l ) ) ) | ) ) ) ) | ) ) ) | ) ) ) ) | ) ) 50 i LU | LI | LI | LI | LI | i
. (Observed—expected) + 20 / i g
soFm—~—~—~—~— — - - - - - - = - = 40 — —]
- . | (Observed—expected) + 2¢ _
2 e[~ ] 2 a0 ~
o . . O - Higgs—induced
> - Higgs—induced >
S 40| — S oo L B
g i g I (Observed—expected)
20 (Observed—expected) I
/ Limit on Ty ] Limit on Ty
or— — | i
1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 ] L1 1 | L1 1 1 | L1 1 1 | L1 1 1 | L1 1 1 | L1 1 I—
10 20 30 40 50 5 10 15 20 25 30
Tw/To! Tu/TH'

'y <43.2 F;] at 95% c.l., (mypy > 130 GeV analysis)

'y < 25.21“?,‘” at 95% c.l., (myp > 300 GeV analysis)

* This analysis is indicative only and needs to be repeated by the
experiments.
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Improvement by matrix element method

* Associate a probabillistic weight to each input event.
Pro(o) = p Z/ dxidzg o zlzgs—Q ) fi(x1) fi(x2)0ii (21, 22, @)

Py @ ¢q initiated background.
P,s :  gg initiated pieces, including Higgs signal, box diagrams and interference.
Py :  ¢gg initiated Higgs signal squared.
007 o,
Py 006 J
Dg = log ( ) - J §
Fog + Fyg o_osf— }
S oo 1 G..... (£*=10)
0 0 " -~ . | i H+C ‘= ™
* Test of discriminant on S
- F 3
different components. S
002 ] | ., (E*=10)
O'O“E_ {J ‘LLLJ,\_IJ‘{F
O:rHTﬁl.AMT'j.l....l....|....|“,.T.’mr.u.1£ el
% 4 3 2 1 0 1 2 3 4 5
Ds
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Application to Monte Carlo pseudo-data

55

S0

* Rescale Monte Carlo to give
400 Ngg events.

45

H
w
o

* Attempt to choose statistical 3

errors to match CMS analysis. = =
* Without using discriminant,

we obtain limits in line with s
cut and count analysis. oE

* Cutting at Ds=1 we obtain

* Limitis 1.6 times better than
result for m4>300GeV cut.

* To be repeated by
experiment!
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Theoretical Improvements

* Because of large scale uncertainty, we need a
campaign to calculate the complete gg-initiated
contributions at NLO, (Higgs portion is already known).

* Helpful to complete the full NNLO cross section.

* |t may be experimentally helpful to separate the data in
jet bins: this too will also require further theoretical
work to calculate rates in 1-jet, 2-jet..

37



op—=>WW-—vetuv

38



WW production in MCFM ~ — 1<

* |Includes both doubly resonant _._VJ\A<°
and singly resonant diagrams ¢

with Z/y”. 3 6 3
, m{ v
* Full NLO-Virtual corrections ’N\ e vM mr
from DKS, (hep-ph/9803250) ‘ o e

* |Includes gg fermion loop
contributions, that are formally
higher order, using compact
analytic formulae, mi=0,mp=0

;v
(d J s) w </ l w <’/ g
vg. ey \\\ ¢ g. . N\ .
| (u,c) It |
a2l ’ § |~
R0 —— s M 28 — —— p
g // g // 2 0 y
( d) w ‘\\\\ ( d) W \ 4
\ v




BSounding ['w with for H=>WW

* WW?™* channel has advantages over ZZ".

* Threshold for real WW production is closer

* BR(H—=WW*xBr(W-—Iv)2~100 BR(H—ZZ*)xBr(Z—I'*)?

* Disadvantages

* Larger backgrounds especially top - need jet veto.

* No 50 “discovery” of Higgs boson in this channel yet.

* Mass resolution for mai?

10~1
10~2
10—3
10~4

105

doy/dmy [fb/20 GeV]

:W-'-

ox=0y +0p (solid)
ox=0xg+0p (dotted)

ox=0a+0p (dashed)

1 l 1 Ll 1 I 1 j — 1 I 1 1 1 1 I 1 1 L

106 L—

200 400 600 800 1000
mag [GeV]

Sizable off-resonant cross

section in this channel
too.
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* Follow an ATLAS analysis,
ATLAS-CONF-2013-030

* Plotted vs M+t

ME = (Ep's + Eff)? - |pff + i’

BYf = (IpftP+m) 2

* Analysis targeted at signal
peak, not at the resonant
talil.

* Edge near Higgs peak
clearly visible, but resonant
tail strongly suppressed.

S1g picture for WW events.
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ATLAS “full” cuts

2000

M| < 2.47 excluding 1.37 < |n.| < 1.52

nu| < 2.5 10 GeV < mye < 50 GeV
pr(hardest) > 25 GeV Agee < 1.8

pr(softest) > 15 GeV Erel . > 25 GeV

p%‘ > 30 GeV \A¢ee. MmET| > T/2




S1g picture with “basic” cuts

* “Basic” cuts = “full” cuts - ( me <50GeV,  Agy < 1.8)

102 I I I I I I | | I I | | |
e*u” + MET, Vs=8 TeV qqg-R1+MET
ol gg->h-21+MET -
gg—-21+MET(cont)
e gg->R1+MET(total)
3 1072 —
N
=
3
S 1074 —
o
1078 —
Basic ATLAS cuts
lo—a | | I | | 1 | | | | | |

100 200 500 1000 2000
M, [GeV]

* My variable adequate to separate peak and off-peak.



31g picture with basic cuts + ADy <1.3

* AQDj cut alone provides suppression of continuum
background, without strong suppression of gg tail.

102 L] 1 I I I | 1 1 1 1 I
e~ + MET, Vs=8 TeV qq-Rl+MET
00 L gg~h-21+MET _
gg-21+MET(cont)
gg->2l+MET(total)
% 102
~
&
% 1074 -
o
10-6 |-
Basic ATLAS cuts
+ constraint on A¢y,
10—8 L1 I I 1 L I

100 200 500 1000 2000
My [GeV]



Numbers @ 8 and 13 TeV.

ol (Myg+Mc|*—|Mc|*—| My

bo

ot ]MHQ,

Mt < 130 GeV Mt > 130 GeV Mt > 300 GeV
Cuts oH o! oM o! oH o!
full 5.06 -0.0778 0.0262 -0.173 - -
basic + Agys 5.52 -0.0924 0.0844 -0.483 0.0021 -0.00888
basic 6.85 -0.117 0.328 -1.07 0.104 -0.240
Mr < 130 GeV M7 > 130 GeV Mt > 300 GeV
Cuts O_H 01 OH 01 011 0'1
full 11.3 -0.195 0.0658 -0.431 - -0.000185
basic + Aoy 12.3 -0.233 0.222 -1.25 0.00698 -0.0283
basic 15.2 -0.296 1.04 -3.15 0.393 -0.893

* |nterference is primarily an off-resonant phenomenon.

* |nterference relatively more important than for ZZ

* With the basic cuts oP¢ak(13TeV)= 2 oPeak(8TeV)
whereas o°-Peak(13TeV)= 3 g°f-Peak(8TeV), so method
will improve with energy.
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* Using a series of plausible

assumptions about
errors....

* 7.4% ATLAS error on WW
background.
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ATLAS data, M>300GeV

* For example the
expected 95%
confidence limit for a
10% background
uncertainty

no. of eventis
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WW analysis, M;>300 GeV
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Mass shift due to interference in H— vyy.

» S. Martin 1208.1533,1303.3342,De Florian et al 1303.1397, Dixon Li 1305.3854

k

k

Expected inclusive mass shift is of order 70MeV at NLO

Relies on mass shift due to interference in yy channel
and control channel ZZ* = I*I7I*I-

Experiments do not agree on the sign of this shift.
ATLAS: mnp¥Y-mn%4 =+2.30-65 7+0.7GeV
CMS: mpYY-mn%4=-0.4+0.7+0.6 GeV

“What we can say is that taking ['n=200l sm =800MeV
would result in a mass shift of order 1GeV, in the same
range..” as given above. - Dixon Li 1305.3854



Summary on (potential) current bounds on Higgs width

* Measurement methods,

* Width convoluted with resolution

* Mass shift in yy mode due to interference (c.f Lance Dixon, Edinburgh, Jan2014)

* Gomparison of on-shell-off-shell rate (CM method)

* Other methods involve theoretical assumptions, typically that the Higgs
coupling to electroweak vector bosons does not exceed the SM value,
(eg. Dobrescu, Lykken, 1210.3342 and CMS PAS HIG-13-005, y/MiSM< 2.8)

Method Measured quantity L'y [MeV] L /T5"
CMS-PAS-HIG-13-016 | Width x resolution < 6900 < 1600
1312.1628 (CEW) Off-peak /on-peak WW, mp > 130, 300 < 500 — 180 < 125,45
1311.3589 (CEW) Off-peak /on-peak ZZ, my > 130,300,0MEM | < 170,100,60 | < 43,25,15
1305.3854(Dixon-Li) Higgs mass in 7, < 800 < 200

A limit of ~15[ sum with current data
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Summary on future bounds on Higgs width

s« Comparison of methods

Method Measured quantity Ly [MeV] | Ty /T5Y
1305.3854(Dixon-Li) 3 ab—! | Higgs mass in vy, Amyg ~ 100 MeV < 60 < 15
1307.4935 (CM) 3 ab~! Off-peak /on-peak ZZ, my > 130,300 | < 40,20 < 10,5

s« CM method appears to be the winner, at least until the

start of lepton collider operation
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Conclusions

%k

We have re-calculated the continuum background process
gg—ZZ—e ety providing compact analytic formula.

We have written a fast code that is numerically stable without recourse to
multiple precision and is included in MCFM. Released 6-DEC-2013.

L HE events are available.

We essentially confirm the results of Caola and Melnikov, although we
differ in details, primarily because of choice of scale ma/2.

The method shows sufficient promise that it merits a concerted effort to
calculate (N)NLO/EW corrections to the Z/y*Z/y*—e ety ut process.

Matrix element method can lead to a further improvements.

WW process gives important complementary information and should be
pursued too.

So ... the ball is in the experimenter’s court now.
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Snowmass projections for Higgs coupling
measurements

Facility LHC  HL-LHC ILC500 ILC500-up ILC1000 ILC1000-up CLIC TLEP (4 IPs)
V5 (GeV) 14,000 14,000  250/500  250/500  250/500/1000  250/500/1000  350/1400/3000 240/350
[cdt (b~') 300/expt 3000/expt 2504500 115041600 250+500+1000 1150+1600+2500 5004150042000  10,0004-2600
Ko 5—7%  2—5% 8.3% 4.4% 3.8% 2.3% —/5.5/<5.5% 1.45%

Kq 6—8%  3-5% 2.0% 1.1% 1.1% 0.67% 3.6/0.79/0.56% 0.79%
Kw 4-6% 2-5%  0.39% 0.21% 0.21% 0.2% 1.5/0.15/0.11% 0.10%

Kz 4-6%  2—-4%  0.49% 0.24% 0.50% 0.3% 0.49/0.33/0.24% 0.05%

Ke 6—8%  2—5% 1.9% 0.98% 1.3% 0.72% 3.5/1.4/<1.3% 0.51%

Ka = K 10-13% 4-7%  0.93% 0.60% 0.51% 0.4% 1.7/0.32/0.19% 0.39%

Ky = K 14-15% 7-—10%  2.5% 1.3% 1.3% 0.9% 3.1/1.0/0.7% 0.69%
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New in MCFM 6.7, (December 2013)

* New analytic implementation of gg—ZZ box
contribution including massive loop.

* Unweighted events for gg—Z7Z —ee*yp* and
gg—H—ZZ —eetup* including interference available
In LHE format.

* Added triphoton production at NLO.
* Added double Higgs production at one-loop (LO).
* |mproved PDF uncertainty output.

* Fixed treatment of errors in histograms.



HIggs cross sections

* Higgs cross sections in MCFM

Process Order Comment
pp — H NLO effective theory m; — oc
pp — H + 1 jet | NLO effective theory m; — oc
pp — H + 2 jets | NLO effective theory m; — o
pp — H + 2 jets | NLO | Vector boson fusion W and Z exchange
pp — W*H NLO W decay to lv included
pp — ZH NLO Z-decay to Il included
pp — ttH LO top decay to blv included

* Many of these cross sections are known at NNLO, so MCFM is not
state of the art in this regard.

* The most precise theoretical cross sections will be important in the
coupling measurement phase.



MCFM

* MCFM is a unified approach to NLO corrections, both to
cross sections and differential distributions:
http://mcfm.fnal.gov  (v6.7, December 6, 2013).

* Publically available code, 4. M. campbell, R. K. Eliis, C. Williams (main authors)
R. Frederix, H. Hartanto, F. Maltoni, F. Tramontano, S. Willenbrock, G. Zanderighi....

* Standard Model processes for di-boson pairs,
vector boson+jets, heavy quarks, Higgs, photon
processes,... (~160 different processes included at NLO).

* Decays of unstable particles are included, maintaining spin
correlations.

* Amplitudes (especially the one-loop contributions),
calculated ab initio or taken from the literature.

* Operates as a resource for tree and NLO matrix elements.
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http://mcfm.fnal.gov
http://www.google.ch/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/4/44/Recycle001.svg/250px-Recycle001.svg.png&imgrefurl=http://en.wikipedia.org/wiki/Recycling_symbol&h=236&w=250&sz=11&tbnid=bBDrsbPlu-uOrM:&tbnh=90&tbnw=95&prev=/search%3Fq%3Drecycle%2Bsymbol%26tbm%3Disch%26tbo%3Du&zoom=1&q=recycle+symbol&docid=NjiIQ8eHESJp3M&sa=X&ei=ziSiT6OdJ-j04QTF24nJCA&ved=0CEAQ9QEwAA&dur=423

