One-to-two transition amplitudes in a finite volume

Maxwell T. Hansen

Institut für Kernphysik and Helmholz Institute Mainz Johannes Gutenberg-Universität Mainz November 12th, 2014

Based on: R. A. Briceño, MTH, A. Walker-Loud arXiv:1406.5965

Transition amplitudes

(rare B decays)

e.g., $B^0 \to K^{*0} \ell^+ \ell^-$

LHCb collaboration (2013)

First unquenched LQCD calculation: <u>Horgan, Liu, Meinel & Wingate (2013)</u>

Caution: unfortunately, this is not the full story.

Must calculate matrix elements of QCD eigenstates $\langle \pi K, \mathrm{out} | \mathcal{J}_\mu | B
angle$

How can one use numerical Lattice QCD to determine $\langle \phi_1(p), \phi_2(P_f - p), \text{out} | \widetilde{\mathcal{J}}_A(x_0 = 0, \mathbf{Q}) | \Phi, P_i \rangle$?

How can one use numerical Lattice QCD to determine $\langle \phi_1(p), \phi_2(P_f - p), \text{out} | \widetilde{\mathcal{J}}_A(x_0 = 0, \mathbf{Q}) | \Phi, P_i \rangle$?

$|\Phi,P_i angle\,\,$ single scalar particle instate

 $\langle \phi_1(p), \phi_2(P_f - p), \text{out} |$ two scalar particle outstate

 $\widetilde{\mathcal{J}}_A(x_0=0,\mathbf{Q})$ generic operator insertion

How can one use numerical Lattice QCD to determine $\langle \phi_1(p), \phi_2(P_f - p), \text{out} | \widetilde{\mathcal{J}}_A(x_0 = 0, \mathbf{Q}) | \Phi, P_i \rangle$?

$|\Phi,P_i angle$ single scalar particle instate

 $\langle \phi_1(p), \phi_2(P_f - p), \text{out} |$ two scalar particle outstate

How can one use numerical Lattice QCD to determine $\langle \phi_1(p), \phi_2(P_f - p), \text{out} | \widetilde{\mathcal{J}}_A(x_0 = 0, \mathbf{Q}) | \Phi, P_i \rangle$?

$|\Phi,P_i angle$ single scalar particle instate

 $\langle \phi_1(p), \phi_2(P_f - p), \text{out} |$ two scalar particle outstate

 $\begin{aligned} \widetilde{\mathcal{J}}_A(x_0 = 0, \mathbf{Q}) & \text{generic operator insertion} \\ \text{With arbitrary momentum injection} \\ \widetilde{\mathcal{J}}_A(x_0 = 0, \mathbf{Q}) \equiv \int d^3x \, e^{-i\mathbf{x}\cdot\mathbf{Q}} \, J_A(x) \bigg|_{x_0 = 0} \end{aligned}$

How can one use numerical Lattice QCD to determine $\langle \phi_1(p), \phi_2(P_f - p), \text{out} | \widetilde{\mathcal{J}}_A(x_0 = 0, \mathbf{Q}) | \Phi, P_i \rangle$?

Relevant for many decays

$$K \to \pi \pi$$
$$\pi \gamma \to \pi \pi$$
$$B^0 \to K \pi \ell^+ \ell^-$$

How can one use numerical Lattice QCD to determine $\langle \phi_1(p), \phi_2(P_f - p), \text{out} | \widetilde{\mathcal{J}}_A(x_0 = 0, \mathbf{Q}) | \Phi, P_i \rangle$?

Relevant for many decays

Outline

Difficulties in extracting matrix elements from LQCD

Introduction to finite vs infinite-volume matrix elements

Two-to-two scattering via LQCD

One-to-two transition amplitudes via LQCD

What can we extract from LQCD?

We are trying to evaluate a difficult integral numerically

$$\langle T\phi_1\cdots\phi_n\rangle = \int \mathcal{D}\phi \, e^{iS} \, \phi_1\cdots\phi_n$$

What can we extract from LQCD?

We are trying to evaluate a difficult integral numerically

$$\langle T\phi_1\cdots\phi_n\rangle_{\text{Euc, latt, fv}} = \int \prod_i^N d\phi_i \, e^{-S} \, \phi_1\cdots\phi_n$$

To do so we have to make three compromises

What can we extract from LQCD? Not possible to directly calculate $\langle \pi\pi | \pi\pi \rangle \qquad \langle \pi\pi\pi | \pi\pi\pi \rangle$

 $\langle K\pi\pi | \mathcal{J} | B \rangle$

 $\langle \overline{K\pi} | \mathcal{J} | B \rangle$

 $\langle \underline{\pi\pi} | \mathcal{H} | K \rangle$

 $\langle \pi \pi | \mathcal{J} | \pi \rangle$

What can we extract from LQCD? Instead we can only access $H_{QCD}|n,L\rangle = |n,L\rangle E_n(L)$ $\langle n',L, "\pi\pi" | \mathcal{H} | n,L, "K" \rangle$ finite-volume energies and matrix elements labels in quotes indicate quantum numbers What can we extract from LQCD? Instead we can only access $H_{\text{QCD}}|n,L\rangle = |n,L\rangle E_n(L) \qquad \langle n',L, ``\pi\pi" | \mathcal{H}|n,L, ``K" \rangle$ finite-volume energies and matrix elements labels in quotes indicate quantum numbers How can we determine $\langle \pi(p')\pi(k'), \operatorname{out}|\pi(p)\pi(k), \operatorname{in}\rangle \& \langle \pi(p)\pi(-p), \operatorname{out}|\mathcal{H}|K\rangle$ from $E_n(L) \& \langle n, L, ``\pi\pi" | \mathcal{H} | n, L, ``K" \rangle$?

Cannot understand transitions without first understanding scattering Lellouch-Lüscher trick is to access transitions like

Cannot understand transitions without first understanding scattering Lellouch-Lüscher trick is to access transitions like

by considering it as an intermediate state in scattering

We thus begin by describing how to determine scattering amplitudes from numerical Lattice QCD

Finite volume

Infinite volume

Include all vertices with even number of legs

Finite volume

cubic, spatial volume (extent L) periodic boundary conditions $\vec{p} \in (2\pi/L)\mathbb{Z}^3$ time direction infinite

Take L large enough to ignore e^{-1} Take space to be continuous

dropped throughout!

lattice spacing set to zero

$$C_L(P) \equiv \int_L e^{-iPx} \langle 0|T\mathcal{O}(x)\mathcal{O}^{\dagger}(0)|0\rangle$$

At fixed $L, \vec{P},$ poles in C_L give finite-volume spectrum

Calculate $C_L(P)$ to all orders in perturbation theory and determine locations of poles.

Lüscher, M. Nucl. Phys B354, 531-578 (1991)

Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Key observation:

If particles in summed loops cannot all go on shell, then replace

Since $E^* < 4m$, only two particles with total momentum (E, \vec{P}) can go on-shell

Next we introduce an important identity

Now regroup by number of F cuts

Now regroup by number of F cuts $C_L(P) = C_\infty(P) +$ [A]A'(iK) + (iK) (iK) $+\cdots$ + $(i\mathcal{N}$ two F cuts **As Promised!** infinite-volume on-shell two-to-two scattering amplitude

 $C_L(P) = C_\infty(P)$ $(i\mathcal{M})$ (A') + 0+(. F \overline{F} $\underbrace{i\mathcal{M}}_{F} \underbrace{i\mathcal{M}}_{F} \underbrace{A'}_{F} + \cdots$ F ∞ $C_L(P) = C_{\infty}(P) + \sum A' i F[i\mathcal{M}_{2\to 2}iF]^n A$ n=0

$$\begin{split} C_L(P) &= C_{\infty}(P) \\ &+ (A) + (A) + (A) + (A) + (A') \\ &+ (A) + (A') + (A')$$

 $C_L(P) = C_{\infty}(P) + A' i F \frac{1}{1 - i \mathcal{M}_{2 \to 2} i F} A$

Quantization Condition

$\Delta_{L,P}(E) = \det[1 - i\mathcal{M}_{2\to 2}iF] = 0$...is it useful?

At low energies, s-wave dominates

$$[\mathcal{M}_{2\to 2}^{s}(E_{n}^{*})]^{-1} = -F^{s}(E_{n}, \vec{P}, L)$$

$$\left(F^{s}(E,\vec{P},L) \equiv \frac{1}{2} \left[\frac{1}{L^{3}} \sum_{\vec{k}} -\int \frac{d^{3}k}{(2\pi)^{3}}\right] \frac{1}{2\omega_{k} 2\omega_{P-k} (E - \omega_{k} - \omega_{P-k} + i\epsilon)}\right)$$

 $p_n \cot \delta_{J=1}(p_n) = -16\pi E_n^* \operatorname{Re} F_{10;10}(E_n, \dot{P}, L)$

from Dudek, Edwards, Thomas in Phys. Rev. D87 (2013) 034505

Scattering of multiple two-particle channels $\pi\pi \to \overline{K}K \qquad \pi K \to \eta K$

Make following replacements

Scattering of multiple two-particle channels $\pi\pi \to \overline{K}K \qquad \pi K \to \eta K$

One finds

 $\det \begin{bmatrix} 1 - \begin{pmatrix} i\mathcal{M}_{1\to 1} & i\mathcal{M}_{1\to 2} \\ i\mathcal{M}_{2\to 1} & i\mathcal{M}_{2\to 2} \end{pmatrix} \begin{pmatrix} iF_1 & 0 \\ 0 & iF_2 \end{pmatrix} \end{bmatrix} = 0$

MTH, S. R. Sharpe, *Phys.Rev. D86* (2012) 016007 R. A. Briceño, Z. Davoudi, *Phys.Rev. D88* (2013) 094507

Already implemented in LQCD calculation $\pi K \to \eta K$

from Dudek, Edwards, Thomas, Wilson in arXiv:1406:4158

$$C_L(x_0 - y_0, \mathbf{P}) \equiv \int_L d^3x \int_L d^3y \, e^{-i\mathbf{P} \cdot (\mathbf{x} - \mathbf{y})} \langle 0 | T\mathcal{O}(x)\mathcal{O}^{\dagger}(y) | 0 \rangle$$

$$C_L(x_0 - y_0, \mathbf{P}) \equiv \int_L d^3x \int_L d^3y \, e^{-i\mathbf{P} \cdot (\mathbf{x} - \mathbf{y})} \langle 0 | T \mathcal{O}(x) \mathcal{O}^{\dagger}(y) | 0 \rangle$$

before P_0, \mathbf{P}
now $x_0 - y_0, \mathbf{P}$

$$C_L(x_0 - y_0, \mathbf{P}) \equiv \int_L d^3x \int_L d^3y \, e^{-i\mathbf{P} \cdot (\mathbf{x} - \mathbf{y})} \langle 0 | T\mathcal{O}(x)\mathcal{O}^{\dagger}(y) | 0 \rangle$$

$$= L^3 \int \frac{dP_0}{2\pi} e^{iP_0(x_0 - y_0)} \left[C_\infty(P) + A' \frac{1}{(iF)^{-1} - i\mathcal{M}_{2\to 2}} A \right]$$

$$C_L(x_0 - y_0, \mathbf{P}) \equiv \int_L d^3x \int_L d^3y \, e^{-i\mathbf{P} \cdot (\mathbf{x} - \mathbf{y})} \langle 0 | T\mathcal{O}(x)\mathcal{O}^{\dagger}(y) | 0 \rangle$$

$$= L^3 \int \frac{dP_0}{2\pi} e^{iP_0(x_0 - y_0)} \left[C_\infty(P) + A' \frac{1}{(iF)^{-1} - i\mathcal{M}_{2\to 2}} A \right]$$

$$C_L(x_0 - y_0, \mathbf{P}) \equiv \int_L d^3x \int_L d^3y \, e^{-i\mathbf{P} \cdot (\mathbf{x} - \mathbf{y})} \langle 0 | T\mathcal{O}(x)\mathcal{O}^{\dagger}(y) | 0 \rangle$$

$$= L^3 \int \frac{dP_0}{2\pi} e^{iP_0(x_0 - y_0)} \left[C_{\infty}(P) + A' \frac{1}{(iF)^{-1} - i\mathcal{M}_{2\to 2}} \right]$$
$$= \sum_n e^{-E_{n,L}(x_0 - y_0)} \langle 0|\mathcal{O}(0, \mathbf{P})|\pi\pi, \mathrm{in} \rangle_n \mathcal{R}_n \langle \pi\pi, \mathrm{out}|\mathcal{O}^{\dagger}(0, -\mathbf{P})|0\rangle_n$$

$$\mathcal{R}_n \equiv ext{Residue of } rac{1}{(iF)^{-1} - i\mathcal{M}_{2
ightarrow 2}}$$
 at $E_{n,L}$

$$C_L(x_0 - y_0, \mathbf{P}) \equiv \int_L d^3x \int_L d^3y \, e^{-i\mathbf{P} \cdot (\mathbf{x} - \mathbf{y})} \langle 0 | T\mathcal{O}(x)\mathcal{O}^{\dagger}(y) | 0 \rangle$$

$$= L^3 \int \frac{dP_0}{2\pi} e^{iP_0(x_0 - y_0)} \left[C_\infty(P) + A' \frac{1}{(iF)^{-1} - i\mathcal{M}_{2\to 2}} A \right]$$

$$=\sum_{n} e^{-E_{n,L}(x_{0}-y_{0})} \langle 0|\mathcal{O}(0,\mathbf{P})|\pi\pi,\mathrm{in}\rangle_{n} \mathcal{R}_{n} \langle \pi\pi,\mathrm{out}|\mathcal{O}^{\dagger}(0,-\mathbf{P})|0\rangle_{n}$$
$$|n,L, ``\pi\pi" \rangle \langle n,L, ``\pi\pi" |$$

$$\mathcal{R}_n \equiv ext{Residue of } rac{1}{(iF)^{-1} - i\mathcal{M}_{2
ightarrow 2}} ext{ at } E_{n,L}$$

Relation on states: Single channel

$$|n, L, ``\pi\pi"\rangle \langle n, L, ``\pi\pi"'| = \left(|\pi\pi, \text{in}, J = 0\rangle |\pi\pi, \text{in}, J = 1\rangle \cdots \right) \left(\mathcal{R}_n \right) \left(\langle \pi\pi, \text{out}, J = 0| \\ \langle \pi\pi, \text{out}, J = 1| \\ \vdots \end{array} \right)$$

$$\mathcal{R}_n \equiv \text{Residue of } \frac{1}{(iF)^{-1} - i\mathcal{M}_{2 \rightarrow 2}} \text{ at } E_{n,L}$$

- Matrix in angular momentum space
- Depends on $\mathcal{M}_{2\rightarrow 2}$, $d\mathcal{M}_{2\rightarrow 2}/dE$, L
- Generalization of the Lellouch-Lüscher factor
- Just a normalization factor in case of a single channel

Relation on states: Coupled channels

$$|n, L\rangle\langle n, L| = (|\phi_1\phi_2, J=0\rangle ||\phi_3\phi_4, J=0\rangle \dots) \begin{pmatrix} \mathcal{R}_n \end{pmatrix} \begin{pmatrix} \langle \phi_1\phi_2, J=0| \\ \langle \phi_3\phi_4, J=0| \\ \langle \phi_1\phi_2, J=1| \\ \langle \phi_3\phi_4, J=1| \\ \vdots \end{pmatrix}$$

$$\mathcal{R}_n \equiv ext{Residue of } rac{1}{(iF)^{-1} - i\mathcal{M}_{2
ightarrow 2}} ext{ at } E_{n,L}$$

 Matrix in combined angular momentum and channel space

• Quantifies mixing of angular momentum and channels due to finite volume

How can one use numerical Lattice QCD to determine $\langle \phi_1(p), \phi_2(P_f - p), \text{out} | \widetilde{\mathcal{J}}_A(x_0 = 0, \mathbf{Q}) | \Phi, P_i \rangle$?

How can one use numerical Lattice QCD to determine $\langle \phi_1(p), \phi_2(P_f - p), \text{out} | \widetilde{\mathcal{J}}_A(x_0 = 0, \mathbf{Q}) | \Phi, P_i \rangle$?

Contract the relation for two-particle states with $\widetilde{\mathcal{J}}(\mathbf{Q})|\Phi\rangle$ for single particle state, difference between finite and infinite-volume is exponentially suppressed e^{-mL}

How can one use numerical Lattice QCD to determine $\langle \phi_1(p), \phi_2(P_f - p), \text{out} | \widetilde{\mathcal{J}}_A(x_0 = 0, \mathbf{Q}) | \Phi, P_i \rangle$?

How can one use numerical Lattice QCD to determine $\langle \phi_1(p), \phi_2(P_f - p), \text{out} | \widetilde{\mathcal{J}}_A(x_0 = 0, \mathbf{Q}) | \Phi, P_i \rangle$?

Contract the relation for two-particle states with $|\mathcal{J}(\mathbf{Q})|\Phi
angle$

$$\langle \Phi | \widetilde{\mathcal{J}}^{\dagger}(\mathbf{Q}) | |n,L\rangle \langle n,L| = (|\phi_1\phi_2, J=0\rangle | |\phi_3\phi_4, J=0\rangle \cdots) \begin{pmatrix} \mathcal{R}_n \end{pmatrix} \begin{pmatrix} \langle \phi_1\phi_2, J=0| \\ \langle \phi_3\phi_4, J=0| \\ \langle \phi_3\phi_4, J=1| \\ \vdots \end{pmatrix} | \widetilde{\mathcal{J}}(\mathbf{Q}) | \Phi \rangle$$

In the paper we present an alternative derivation in which we explicitly calculate three-point correlators in finite-volume

Master equation

 $|\langle E_{n_f}, \mathbf{P}_f, L | \widetilde{\mathcal{J}}_A(0, \mathbf{Q}) | E_i, \mathbf{P}_i, L \rangle| = \frac{1}{\sqrt{2E_i}} \sqrt{\mathcal{A}_{n_f}^{\dagger} \mathcal{R}_{n_f} \mathcal{A}_{n_f}} \overline{\mathcal{A}}_{n_f}$

 $\mathcal{A}_{n_f}(2\pi)^3 \delta^3(\mathbf{P}_2 + \mathbf{Q} - \mathbf{P}_f) \equiv \begin{cases} \langle \phi_1 \phi_2, J = 0 | \widetilde{\mathcal{J}}_A(\mathbf{Q}) | \Phi \rangle \\ \langle \phi_3 \phi_4, J = 0 | \widetilde{\mathcal{J}}_A(\mathbf{Q}) | \Phi \rangle \\ \langle \phi_1 \phi_2, J = 1 | \widetilde{\mathcal{J}}_A(\mathbf{Q}) | \Phi \rangle \\ \langle \phi_3 \phi_4, J = 1 | \widetilde{\mathcal{J}}_A(\mathbf{Q}) | \Phi \rangle \end{cases}$ column vector containing all transition amplitudes with given quantum numbers R. A. Briceño, MTH, A. Walker-Loud, arXiv:1406.5965

Master equation

 $|\langle E_{n_f}, \mathbf{P}_f, L | \widetilde{\mathcal{J}}_A(0, \mathbf{Q}) | E_i, \mathbf{P}_i, L \rangle| = \frac{1}{\sqrt{2E_i}} \sqrt{\mathcal{A}_{n_f}^{\dagger} \mathcal{R}_{n_f} \mathcal{A}_{n_f}}$

Model independent & non-perturbative

Universal: lattice QCD, lattice EFT, etc

Not quite arbitrary quantum numbers:

degenerate or non-degenerate masses, arbitrary momenta and angular momenta.... but no intrinsic spin

Asymmetric volumes and boundary conditions: periodic, anti-periodic, any linear combination and any rectangular prism

R. A. Briceño, MTH, A. Walker-Loud, arXiv:1406.5965

Conclusion

$$\det[1 - i\mathcal{M}_{2\to 2}iF] = 0$$
$$|\langle E_{n_f}, \mathbf{P}_f, L|\widetilde{\mathcal{J}}_A(0, \mathbf{Q})|E_i, \mathbf{P}_i, L\rangle| = \frac{1}{\sqrt{2E_i}}\sqrt{\mathcal{A}_{n_f}^{\dagger}\mathcal{R}_{n_f}\mathcal{A}_{n_f}}$$

Presented formalism for extracting **two-to-two scattering** and **one-to-two matrix elements** using numerical LQCD

Completely general result for scalar particle systems

Next steps... include spin, three particle states see MTH, S. R. Sharpe, arXiv:1408.5933 to appear in *Phys.Rev. D*

Three-to-three scattering $\pi\pi\pi \to \pi\pi\pi$

 $C_L(E,\vec{P}) \equiv \int_L d^4x \, e^{i(Ex^0 - \vec{P} \cdot \vec{x})} \langle 0 | \mathrm{T}\sigma(x)\sigma^{\dagger}(0) | 0 \rangle$ Require $m < E^* < 5m$ odd-particle quantum numbers 5m $---E_2^*(L,\vec{P})$ $i\mathcal{M}_{2\to 2}$ $i\mathcal{M}_{3\to 3}$ $E_1^*(L, \vec{P}) \nvDash$ $E_0^*(L, \vec{P})$ m

Assume no two-particle bound state
New skeleton expansion

Kernel definitions:

Kernel definitions:

Compare to two-particle skeleton expansion

 $C_L(E,\vec{P}) = \bigcirc + \bigcirc + \bigcirc + \bigcirc + \cdots$

Leads to new infinite-volume quantities

has a cusp

has no cusp

MTH, S. R. Sharpe, arXiv:1408.5933 to appear in Phys.Rev. D

K. Polejaeva, A. Rusetsky *Eur. Phys. J.* A48 (2012) 67 R.A. Briceño, Z. Davoudi, *Phys. Rev.* D87 (2013) 094507

Conclusion

$$\det[1 - i\mathcal{M}_{2\to 2}iF] = 0$$
$$|\langle E_{n_f}, \mathbf{P}_f, L|\widetilde{\mathcal{J}}_A(0, \mathbf{Q})|E_i, \mathbf{P}_i, L\rangle| = \frac{1}{\sqrt{2E_i}}\sqrt{\mathcal{A}_{n_f}^{\dagger}\mathcal{R}_{n_f}\mathcal{A}_{n_f}}$$

Presented formalism for extracting two-to-two scattering one-to-two matrix elements three-to-three scattering using numerical LQCD

Completely general result for scalar particle systems

Next steps... include spin, one to three transitions

 $\langle \pi(p)\pi(-p), \text{out} | \mathcal{H} | K \rangle \stackrel{?}{\approx} \langle n, L, ``\pi\pi" | \mathcal{H} | 0, L, ``K" \rangle$

 $\langle \pi(p)\pi(-p), \operatorname{out}|\mathcal{H}|K \rangle \stackrel{?}{\approx} \langle n, L, ``\pi\pi" |\mathcal{H}|0, L, ``K" \rangle$ complex number real number

$|\langle \pi(p)\pi(-p), \operatorname{out}|\mathcal{H}|K\rangle| \stackrel{?}{\approx} |\langle n, L, ``\pi\pi"|\mathcal{H}|0, L, ``K"\rangle|$

 $|\langle \pi(p)\pi(-p), \operatorname{out}|\mathcal{H}|K\rangle| \stackrel{?}{\approx} |\langle n, L, ``\pi\pi"|\mathcal{H}|0, L, ``K"\rangle|$

units do not match $\langle \pi(p') | \pi(p) \rangle = 2\omega_p (2\pi)^3 \, \delta^3(\mathbf{p} - \mathbf{p}') \qquad \omega_p = \sqrt{\mathbf{p}^2 + m_\pi^2}$ $\langle n', L | n, L \rangle = \delta_{n,n'}$

units do not match

 $\langle \pi(p') | \pi(p) \rangle = 2\omega_p (2\pi)^3 \, \delta^3(\mathbf{p} - \mathbf{p}') \qquad \omega_p = \sqrt{\mathbf{p}^2 + m_\pi^2} \\ \langle n', L | n, L \rangle = \delta_{n,n'}$

At the very least, we must account for different normalizations

$$|0,L, "K"\rangle = \sqrt{\frac{1}{2M_KL^3}} |0,L,K\rangle_{\rm rel}$$

init normalization relativistic normalization

$$|0, L, "K"\rangle = \sqrt{\frac{1}{2M_{K}L^{3}}} |0, L, K\rangle_{\rm rel}$$
In the product of the second s

normalization

$$\begin{aligned} \langle \mathbf{p}, \infty, K | \mathbf{k}, \infty, K \rangle_{\rm rel} &= 2\omega_k (2\pi)^3 \delta^3 (\mathbf{p} - \mathbf{k}) \\ & \mathbf{becomes} \\ \langle \mathbf{p}, L, K | \mathbf{k}, L, K \rangle_{\rm rel} &= 2\omega_k L^3 \delta_{kp} \end{aligned}$$

$$|0, L, "K"\rangle = \sqrt{\frac{1}{2M_K L^3}} |\mathbf{0}, L, K\rangle_{\rm rel}$$

$$\langle n, L, ``\pi\pi"' | = \sqrt{\frac{2}{\nu_n}} \frac{1}{M_K^2 L^6} \Big[\langle n00, L, \pi | \langle -n00, L, \pi |_{\text{rel}} + \cdots \Big]$$

$$|0, L, "K"\rangle = \sqrt{\frac{1}{2M_K L^3}} |\mathbf{0}, L, K\rangle_{\rm rel}$$

$$\langle n, L, ``\pi\pi"'| = \sqrt{\frac{2}{\nu_n}} \frac{1}{M_K^2 L^6} \Big[\langle n00, L, \pi | \langle -n00, L, \pi |_{rel} + \cdots \Big]$$

number of integer vectors z
such that $\mathbf{z}^2 = n$.

$$|0, L, "K"\rangle = \sqrt{\frac{1}{2M_K L^3}} |\mathbf{0}, L, K\rangle_{\rm rel}$$

$$\langle n, L, ``\pi\pi"'| = \sqrt{\frac{2}{\nu_n} \frac{1}{M_K^2 L^6}} \Big[\langle n00, L, \pi | \langle -n00, L, \pi |_{\rm rel} + \cdots \Big]$$

humber of integer vectors **z**
such that $\mathbf{z}^2 = n$.

$$|\langle n, L, ``\pi\pi"'| \mathcal{H} | 0, L, ``K"' \rangle|^2 = \frac{\nu_n}{4M_K^3 L^9} |\langle \pi(p)\pi(-p), \operatorname{out} | \mathcal{H} | K \rangle|^2$$

Notation

$$|\langle n, L, ``\pi\pi" | \mathcal{H} | 0, L, ``K" \rangle|^2 = \frac{\nu_n}{4M_K^3 L^9} |\langle \pi(p)\pi(-p), \text{out} | \mathcal{H} | K \rangle|^2$$

Notation

$$|\langle n, L, ``\pi\pi" | \mathcal{H} | 0, L, ``K" \rangle|^2 = \frac{\nu_n}{4M_K^3 L^9} |\langle \pi(p)\pi(-p), \text{out} | \mathcal{H} | K \rangle|^2$$

can be re-expressed as...

$$|\langle n, L, ``\pi\pi" | \widetilde{\mathcal{H}}(\mathbf{Q} = \mathbf{0}) | 0, L, ``K" \rangle| = \frac{1}{\sqrt{2M_K}} \sqrt{[\mathcal{A}_{K \to \pi\pi}^{\dagger} \mathcal{R} \mathcal{A}_{K \to \pi\pi}]}$$

$$\widetilde{\mathcal{H}}(\mathbf{Q}) = \int d\mathbf{x} \, e^{-i\mathbf{Q}\cdot\mathbf{x}} \, \mathcal{H}(x_0 = 0, \mathbf{x})$$

 $\mathcal{A}_{K\to\pi\pi}(2\pi)^3\delta^3(\mathbf{p}+\mathbf{k}) \equiv \langle \pi(p)\pi(k) | \widetilde{\mathcal{H}}(\mathbf{Q}=\mathbf{0}) | K \rangle$

$$\mathcal{R} = \frac{\nu_n}{2M_K^2 L^3}$$