Integrand reduction techniques at one and higher loops

Tiziano Peraro

Max-Planck-Institut für Physik, München, Germany

Higgs Centre for Theoretical Physics – Edinburgh 9 May 2014

Integrand reduction techniques at one and higher loops

Outline

- Introduction and motivation
- Integrand reduction via polynomial division
- 3 Application at one-loop
 - Integrand reduction via Laurent expansion (NINJA)
- 5 Higher loops
- Summary and Outlook

Introduction and motivation

Motivation

- Theoretical understanding of scattering amplitudes
 - basic analytic/algebraic structure of loop integrands and integrals
- Need of theoretical predictions for colliders (LHC)
 - probing large phase space ⇒ several external legs
 - need of NLO or higher accuracy ⇒ computations at the loop level
- Automation of methods for predictions in perturbative QFT

We developed a coherent framework for the integrand decomposition of Feynman integrals

- based on simple concepts of algebraic geometry
- applicable at all loops

Integrand reduction

- The integrand of a generic ℓ -loop integral:
 - is a rational function in the components of the loop momenta \bar{q}_i
 - polynomial numerator $\mathcal{N}_{i_1 \cdots i_n}$

$$\mathcal{M}_n = \int d^d ar{q}_1 \cdots d^d ar{q}_\ell ~~ \mathcal{I}_{i_1 \cdots i_n},$$

- quadratic polynomial denominators D_i -
 - they correspond to Feynman loop propagators

$$D_{i} = \left(\sum_{j} (-)^{s_{ij}} \bar{q}_{j} + p_{i}\right)^{2} - m_{i}^{2}$$

$$\underbrace{\bar{q}_{i}}_{d\text{-dimensional}} = \underbrace{q_{i}}_{4\text{-dimensional}} + \underbrace{\vec{\mu}_{i}}_{(-2\epsilon)\text{-dimensional}}$$

$$\bar{q}_{i} \cdot \bar{q}_{j} = (q_{i} \cdot q_{j}) - \mu_{ij}$$

 $\mathcal{I}_{i_1\cdots i_n} \equiv \frac{\mathcal{N}_{i_1\cdots i_n}}{D_1\cdots D_n}$

Integrand reduction

The idea

Manipulate the integrand and reduce it to a linear combination of "simpler" integrands.

• The integrand-reduction algorithm leads to

$$\mathcal{I}_{i_1\cdots i_n} \equiv \frac{\mathcal{N}_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}} = \frac{\Delta_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}} + \cdots + \sum_{k=1}^n \frac{\Delta_{i_k}}{D_{i_k}} + \Delta_{\emptyset}$$

• The residues $\Delta_{i_1\cdots i_k}$ are irreducible polynomials in \bar{q}_i

- can't be written as a combination of denominators D_{i_1}, \ldots, D_{i_k}
- universal topology-dependent parametric form
- the coefficients of the parametrization are process-dependent

From integrands to integrals

• By integrating the integrand decomposition

$$\mathcal{M}_n = \int d^d \bar{q}_1 \cdots d^d \bar{q}_\ell \left(\frac{\Delta_{i_1 \cdots i_n}}{D_{i_1} \cdots D_{i_n}} + \cdots + \sum_{k=1}^n \frac{\Delta_{i_k}}{D_{i_k}} + \Delta_{\emptyset} \right)$$

- some terms vanish and do not contribute to the amplitude ⇒ spurious terms
- non-vanishing terms give Master Integrals (MIs)
- The amplitude is a linear combination of MIs
- The coefficients of this linear combination can be identified with some of the coefficients which parametrize the polynomial residues

From integrands to integrals

• By integrating the integrand decomposition

$$\mathcal{M}_n = \int d^d \bar{q}_1 \cdots d^d \bar{q}_\ell \left(\frac{\Delta_{i_1 \cdots i_n}}{D_{i_1} \cdots D_{i_n}} + \cdots + \sum_{k=1}^n \frac{\Delta_{i_k}}{D_{i_k}} + \Delta_{\emptyset} \right)$$

- some terms vanish and do not contribute to the amplitude ⇒ spurious terms
- non-vanishing terms give Master Integrals (MIs)
- The amplitude is a linear combination of MIs
- The coefficients of this linear combination can be identified with some of the coefficients which parametrize the polynomial residues
 - \Rightarrow reduction to MIs \equiv polynomial fit of the residues

The one-loop decomposition

At one loop the result is well known:

 the integrand decomposition [Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

$$\begin{aligned} \mathcal{I}_{i_1\cdots i_n} &= \frac{\mathcal{N}_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}} = \sum_{j_1\cdots j_5} \frac{\Delta_{j_1j_2j_3j_4j_5}}{D_{j_1}D_{j_2}D_{j_3}D_{j_4}D_{j_5}} + \sum_{j_1j_2j_3j_4} \frac{\Delta_{j_1j_2j_3j_4}}{D_{j_1}D_{j_2}D_{j_3}D_{j_4}} \\ &+ \sum_{j_1j_2j_3} \frac{\Delta_{j_1j_2j_3}}{D_{j_1}D_{j_2}D_{j_3}} + \sum_{j_1j_2} \frac{\Delta_{j_1j_2}}{D_{j_1}D_{j_2}} + \sum_{j_1} \frac{\Delta_{j_1}}{D_{j_1}} \end{aligned}$$

• the integral decomposition

• all the Mater Integrals are known!

Integrand reduction and polynomials

• At ℓ -loops we want to achieve the integrand decomposition:

$$\mathcal{I}_{i_1\cdots i_n}(\bar{q}_1,\cdots,\bar{q}_\ell) \equiv \frac{\mathcal{N}_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}} = \underbrace{\frac{\Delta_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}}}_{\text{they must be irreducible}} + \sum_{k=1}^n \frac{\Delta_{i_k}}{D_{i_k}} + \Delta_{\emptyset}$$

We trade (*q*₁,...,*q*_ℓ) with their coordinates z ≡ (z₁,..., z_m)
 ⇒ numerator and denominators ≡ polynomials in z

$$\mathcal{I}_{i_1\cdots i_n}(\mathbf{z})\equiv rac{\mathcal{N}_{i_1\cdots i_n}(\mathbf{z})}{D_{i_1}(\mathbf{z})\cdots D_{i_n}(\mathbf{z})}$$

 \Rightarrow Integrand reduction \equiv problem of multivariate polynomial division

The problem of the determination of the residues of a generic diagram has been solved. [Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012-14)]

T. Peraro (MPI - München)

Integrand reduction techniques at one and higher loops

Residues via polynomial division

Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

• Define the Ideal of polynomials

$$\mathcal{J}_{i_1\cdots i_n} \equiv \langle D_{i_1},\ldots,D_{i_n} \rangle = \left\{ p(\mathbf{z}) \, : \, p(\mathbf{z}) = \sum_j h_j(\mathbf{z}) D_j(\mathbf{z}), \, h_j \in P[\mathbf{z}] \right\}$$

• Take a Gröbner basis
$$G_{\mathcal{J}_{i_1\cdots i_n}}$$
 of $\mathcal{J}_{i_1\cdots i_n}$

$$G_{\mathcal{J}_{i_1\cdots i_n}} = \{g_1, \dots, g_s\}$$
 such that $\mathcal{J}_{i_1\cdots i_n} = \langle g_1, \dots, g_s \rangle$

• Perform the multivariate polynomial division $\mathcal{N}_{i_1\cdots i_n}/G_{\mathcal{J}_{i_1\cdots i_n}}$

$$\mathcal{N}_{i_1\cdots i_n}(z) = \underbrace{\sum_{k=1}^n \mathcal{N}_{i_1\cdots i_{k-1}i_{k+1}\cdots i_n}(z) D_{i_k}(z)}_{\text{quotient } \in \mathcal{J}_{i_1\cdots i_n}} + \underbrace{\Delta_{i_1\cdots i_n}(z)}_{\text{remainder}}$$

• The remainder $\Delta_{i_1 \cdots i_n}$ is irreducible \Rightarrow can be identified with the residue

Recursive Relation for the integrand decomposition

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

The recursive formula

$$\mathcal{N}_{i_1\cdots i_n} = \sum_{k=1}^n \mathcal{N}_{i_1\cdots i_{k-1}i_{k+1}\cdots i_n} D_{i_k} + \Delta_{i_1\cdots i_n}$$
$$\mathcal{I}_{i_1\cdots i_n} \equiv \frac{\mathcal{N}_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}} = \sum_k \mathcal{I}_{i_1\cdots i_{k-1}i_{k+1}\cdots i_n} + \frac{\Delta_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}}$$

- Fit-on-the-cut approach
 - from a generic $\mathcal{N},$ get the parametric form of the residues Δ
 - determine the coefficients sampling on the cuts (impose $D_i = 0$)
- Divide-and-Conquer approach
 - $\bullet~$ generate the ${\cal N}$ of the process
 - compute the residues by iterating the polynomial division algorithm

Fit-on-the-cut approach

[Ossola, Papadopoulos, Pittau (2007)]

The decomposition of the numerator

$$\mathcal{N}_{i_1\cdots i_n} = \sum_{k=0}^n \sum_{\{j_1\cdots j_k\}} \Delta_{j_1\cdots j_k} \prod_{h\in\{i_1\cdots i_n\}\setminus\{j_1\cdots j_k\}} D_h.$$

- Fit the coefficients of the residues sampling on the multiple cuts
- First step: n-ple cut

• impose
$$D_{i_1} = \cdots = D_{i_n} = 0$$

$$\Delta_{i_1\cdots i_n}=\mathcal{N}_{i_1\cdots i_n}$$

- Further steps: k-ple cut
 - impose $D_{i_1} = \cdots = D_{i_k} = 0$ for any subset $\{i_1 \dots i_k\}$

$$\Delta_{i_1\cdots i_k} = \frac{\mathcal{N}_{i_1\cdots i_n} - \text{higher-point contibutions}}{\prod_{h \neq i_1, \dots, i_k} D_h}$$

Fit-on-the-cut approach: The reducibility criterion

What happens if a cut has no solution?

The reducibility criterion

- If a cut $D_{i_1} = \cdots = D_{i_k} = 0$ has no solutions, the associated residue vanishes. In other words, any numerator is completely reducible.
- This generally happens with overdetermined systems i.e. when the number of cut denominators is higher than the one of loop coordinates.

• When
$$D_{i_1} = \cdots = D_{i_k} = 0$$
 has no solution:

$$\Delta_{i_1\cdots i_k} = 0 \qquad \Rightarrow \text{ no need to perform the fit}$$
$$\mathcal{N}_{i_1\cdots i_n} = \sum_{k=1}^n \mathcal{N}_{i_1\cdots i_{k-1}i_{k+1}\cdots i_n} D_{i_k}$$
$$\mathcal{I}_{i_1\cdots i_n} = \sum_k^n \mathcal{I}_{i_1\cdots i_{k-1}i_{k+1}\cdots i_n}$$

Fit-on-the-cut approach: The maximum-cut theorem

The maximum-cut theorem

We define maximum-cut, a cut where

 $#(cut-denominators) \equiv #(components-of-loop-momenta)$

In non-special kinematic configurations it has a finite number of solutions

#(coefficients-of-the-residue) = #(solutions-of-the-cut)

• The fit-on-the-cut approach therefore gives a number of equations which is equal to the number of unknown coefficients.

Fit-on-the-cut approach: The maximum-cut theorem

Examples:

diagram	Δ	n_{s}	diagram	Δ	n_{s}
$\langle \downarrow \rangle$	c_0	1	Ц	$c_0 + c_1 z$	2
	$\sum_{i=0}^{3} c_i z^i$	4	$\langle \times$	$\sum_{i=0}^{3} c_i z^i$	4
E	$\sum_{i=0}^{7} c_i z^i$	8		$\succ \sum_{i=0}^{7} c_i z^i$	8

Fit-on-the-cut approach

Pros:

- each multiple cut projects out the corresponding residue
 - \Rightarrow the systems of equations for the coefficients are much smaller
- can be implemented either analytically or numerically
- very successful application at one-loop

Cons:

- at higher-loops the solutions of the cuts can be difficult to find
- it cannot be applied in to all integrands/topologies
 - if we have e.g. quadratic propagators the formula yields

$$\frac{\mathcal{N}_{i_1\cdots i_n} - \text{higher-point contibutions}}{\prod_{h \neq i_1, \dots, i_k} D_h} = \frac{0}{0}$$

Fit-on-the-cut approach

Pros:

- each multiple cut projects out the corresponding residue
 - \Rightarrow the systems of equations for the coefficients are much smaller
- can be implemented either analytically or numerically
- very successful application at one-loop

Cons:)
at higher-le	OBSERVATION:	cult to find
it cannot b	these issues are not present	
 if we h 	in the divide-and-conquer approach	elds
-	which instead can be applied to	
	any integrand	0
	$1 1 n \neq i_1, \dots, i_k$	b

One-loop decomposition from polynomial division

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

- Start from the most general one-loop amplitude in $d = 4 2\epsilon$
- Apply the recursive formula for the integrand decomposition
 - ⇒ it reproduces the OPP result [Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
- Drop the spurious terms
- ⇒ Get the most general integral decomposition (well knwon result)

One-loop decomposition from polynomial division

At one loop in $4 - 2\epsilon$ dimensions:

- 5 coordinates $z = (z_1, z_2, z_3, z_4, z_5)$
 - 4 components (z_1, z_2, z_3, z_4) of q w.r.t. a 4-dimensional basis
 - $z_5 = \mu^2$ encodes the (-2ϵ) -dependence on the loop momentum

we start with

$$\mathcal{I}_n \equiv \mathcal{I}_{1\cdots n} = \frac{\mathcal{N}_{1\cdots n}(\mathbf{z})}{D_1(\mathbf{z})\cdots D_n(\mathbf{z})} \qquad \text{most general 1-loop numerator}$$
generic 1-loop denominators

• if m > 5 any integrand $\mathcal{I}_{i_1 \dots i_m}$ is reducible (reducibility criterion)

$$\mathcal{I}_{i_1\cdots i_m} = \sum_k \mathcal{I}_{i_1\cdots i_{k-1}i_{k+1}\cdots i_m}, \quad \Rightarrow \quad \Delta_{i_1\cdots i_m} = 0 \quad \text{for } m > 5$$

 for *m* ≤ 5 the polynomial-division algorithm gives the already-known parametric form of the residues Δ_{ijk}... Choice of 4-dimensional basis for an *m*-point residue

$$e_1^2 = e_2^2 = 0$$
, $e_1 \cdot e_2 = 1$, $e_3^2 = e_4^2 = \delta_{m4}$, $e_3 \cdot e_4 = -(1 - \delta_{m4})$

• Coordinates: $\mathbf{z} = (z_1, z_2, z_3, z_4, z_5) \equiv (x_1, x_2, x_3, x_4, \mu^2)$

$$q^{\mu} = -p_{i_1}^{\mu} + x_1 \ e_1^{\mu} + x_2 \ e_2^{\mu} + x_3 \ e_3^{\mu} + x_4 \ e_4^{\mu}, \qquad \bar{q}^2 = q^2 - \mu^2$$

Generic numerator

$$\mathcal{N}_{i_1\cdots i_m} = \sum_{j_1,\dots,j_5} \alpha_{\vec{j}} \, z_1^{j_1} \, z_2^{j_2} \, z_3^{j_3} \, z_4^{j_4} \, z_5^{j_5}, \qquad (j_1\dots,j_5) \quad \text{such that} \quad \operatorname{rank}(\mathcal{N}_{i_1\cdots i_m}) \le m$$

Residues

$$\begin{aligned} \Delta_{i_1i_2i_3i_4i_5} &= c_0 \\ \Delta_{i_1i_2i_3i_4} &= c_0 + c_1x_4 + \mu^2(c_2 + c_3x_4 + \mu^2c_4) \\ \Delta_{i_1i_2i_3} &= c_0 + c_1x_3 + c_2x_3^2 + c_3x_3^3 + c_4x_4 + c_5x_4^2 + c_6x_4^3 + \mu^2(c_7 + c_8x_3 + c_9x_4) \\ \Delta_{i_1i_2} &= c_0 + c_1x_2 + c_2x_3 + c_3x_4 + c_4x_2^2 + c_5x_3^2 + c_6x_4^2 + c_7x_2x_3 + c_9x_2x_4 + c_9\mu^2 \\ \Delta_{i_1} &= c_0 + c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 \end{aligned}$$

It can be easily extended to higher-rank numerators

Fit-on-the-cut at 1-loop

Integrand decomposition:

Fit-on-the cut

fit *m*-point residues on *m*-ple cuts

The integrand reduction via Laurent expansion: [P. Mastrolia, E. Mirabella, T.P. (2012)]

- fits residues by taking their asymptotic expansions on the cuts
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified
 - implemented as corrections at the coefficient level

The integrand reduction via Laurent expansion: [P. Mastrolia, E. Mirabella, T.P. (2012)]

- fits residues by taking their asymptotic expansions on the cuts
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified
 - implemented as corrections at the coefficient level
- ★ Implemented in the semi-numerical C++ library NINJA [T.P. (2014)]
 - Laurent expansions via a simplified polynomial-division algorithm
 - interfaced with the package GOSAM
 - interface with FORMCALC [T. Hahn et al.] under development
 - is a faster and more stable integrand-reduction algorithm

The integrand reduction via Laurent expansion: [P. Mastrolia, E. Mirabella, T.P. (2012)]

- fits residues by taking their asymptotic expansions on the cuts
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified
 - implemented as corrections at the coefficient level
- ★ Implemented in the semi-numerical C++ library NINJA [T.P. (2014)]
 - Laurent expansions via a simplified polynomial-division algorithm
 - interfaced with the package GOSAM
 - interface with FORMCALC [T. Hahn et al.] under development
 - is a faster and more stable integrand-reduction algorithm
- ★ NINJA is public ⇒ ninja.hepforge.org

One-loop boxes via Laurent expansion

• The residue of a box reads

$$\Delta_{ijkl}(q,\mu^2) = d_0 + d_2\mu^2 + d_4\mu^4 + (d_1 + d_3\mu^2)(q \cdot v_\perp)$$

- d_0 via 4-dimensional 4ple cuts [Britto, Cachazo, Feng (2004)] • d_4 from *d*-dimensional 4-ple cuts in the limit $\mu^2 \rightarrow \infty$ [S. Badger (2008)]
 - d-dimensional solutions of a 4-ple cut

$$q_{\pm} = a^{\mu} \pm \sqrt{\alpha + \frac{\mu^2}{\beta^2}} v_{\perp}^{\mu} = \pm \frac{\sqrt{\mu^2}}{\beta} v_{\perp}^{\mu} + \mathcal{O}(1)$$

• the integrand in the asymptotic limit $\mu^2 \to \infty$ of the cut-solutions

$$\frac{\mathcal{N}(q,\mu^2)}{\prod_{m\neq i,j,k,l} D_m}\bigg|_{\text{cut}} = \frac{d_4\,\mu^4 + \mathcal{O}(\mu^3)}{d_4\,\mu^4 + \mathcal{O}(\mu^3)}$$

• d_1, d_2, d_3 are spurious and do not need to be computed

One-loop triangles via Laurent expansion

• The residue of a triangle

$$\begin{aligned} \Delta_{ijk}(q) &= c_0 + c_7 \,\mu^2 + (c_1 + c_8 \mu^2) \,(q \cdot e_3) + c_2 \,(q \cdot e_3)^2 + c_3 \,(q \cdot e_3)^3 \\ &+ (c_4 + c_9 \mu^2) \,(q \cdot e_4) + c_5 \,(q \cdot e_4)^2 + c_6 \,(q \cdot e_4)^3 \end{aligned}$$

solutions of a triple cut D_i = D_j = D_k = 0 parametrized by the free variables *t* and μ²

$$q_{+}^{\mu} = a^{\mu} + t e_{3}^{\mu} + \frac{\alpha + \mu^{2}}{2t} e_{4}^{\mu}, \qquad q_{-}^{\mu} = a^{\mu} + \frac{\alpha + \mu^{2}}{2t} e_{3}^{\mu} + t e_{4}^{\mu}$$

• in the limit
$$t \to \infty$$
 [Forde (2007)]

$$\frac{\mathcal{N}(q_{\pm})}{\prod_{m \neq i, j, k} D_m} \bigg|_{\text{cut}} = \Delta_{ijk} + \sum_l \frac{\Delta_{ijkl}}{D_l} + \sum_{lm} \frac{\Delta_{ijklm}}{D_l D_m}$$
$$= \Delta_{ijk} + d_1^{\pm} + d_2^{\pm} \mu^2 + \mathcal{O}(1/t)$$

with $d_i^+ + d_i^- = 0$

One-loop triangles via Laurent expansion

• In the asymptotic limit $t \to \infty$

$$\frac{\mathcal{N}(q_{\pm})}{\prod_{m \neq i, j, k} D_m} \bigg|_{\text{cut}} = (d_1^{\pm} + d_2^{\pm} \mu^2) + \Delta_{ijk} + \mathcal{O}(1/t) \qquad \text{with } d_i^+ + d_i^- = 0$$

• the integrand

$$\frac{\mathcal{N}(q_{\pm})}{\prod_{m\neq i,j,k} D_m}\bigg|_{\text{cut}} = n_0^{\pm} + n_4^{\pm} \,\mu^2 + (n_1^{\pm} + n_5^{\pm} \,\mu^2) \,t + n_2^{\pm} \,t^2 + n_3^{\pm} \,t^3 + \mathcal{O}(1/t)$$

the residue

$$\Delta_{ijk}(q_{+}) = c_0 + c_7 \,\mu^2 - (c_4 + c_9 \,\mu^2) \,t + c_5 \,t^2 - c_6 \,t^3 + \mathcal{O}(1/t)$$

$$\Delta_{ijk}(q_{-}) = c_0 + c_7 \,\mu^2 - (c_1 + c_8 \,\mu^2) \,t + c_2 \,t^2 - c_3 \,t^3 + \mathcal{O}(1/t)$$

• by comparison we get

$$c_0 = \frac{n_0^+ + n_0^-}{2}, \quad c_1 = -n_1^-, \quad c_2 = n_2^-, \quad c_3 = -n_3^-, \quad \dots$$

T. Peraro (MPI - München)

One-loop bubbles via Laurent expansion

The residue of a bubble

$$\Delta_{ij}(q) = b_0 + b_1 (q \cdot e_2) + b_2 (q \cdot e_2)^2 + b_3 (q \cdot e_3) + b_4 (q \cdot e_3)^2 + b_5 (q \cdot e_4) + b_6 (q \cdot e_4)^2 + b_7 (q \cdot e_2)(q \cdot e_3) + b_8 (q \cdot e_2)(q \cdot e_4) + b_9 \mu^2$$

• solutions of a double cut $D_i = D_j = 0$, parametrized by the free variables *t*, *x* and μ^2

$$q_{+} = x e_{1} + (\alpha_{0} + x \alpha_{1})e_{2} + t e_{3} + \frac{\beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \mu^{2}}{2t} e_{4}$$
$$q_{-} = x e_{1} + (\alpha_{0} + x \alpha_{1})e_{2} + \frac{\beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \mu^{2}}{2t} e_{3} + t e_{4}$$

• in the limit $t \to \infty$

$$\frac{\mathcal{N}(q_{\pm})}{\prod_{m \neq i,j} D_m} \bigg|_{\text{cut}} = \Delta_{ij} + \sum_k \frac{\Delta_{ijk}}{D_k} + \sum_{kl} \frac{\Delta_{ijkl}}{D_k D_l} + \sum_{klm} \frac{\Delta_{ijklm}}{D_k D_l D_m}$$
$$= \Delta_{ij} + \sum_k \frac{\Delta_{ijk}}{D_k} + \mathcal{O}(1/t)$$

One-loop bubbles via Laurent expansion

- In the asymptotic limit $t \to \infty$
 - the integrand

$$\frac{\mathcal{N}(q_{\pm})}{\prod_{m\neq i,j,k} D_m}\bigg|_{\text{cut}} = n_0^{\pm} + n_6^{\pm} \,\mu^2 + n_1^{\pm} \,x + n_2^{\pm} \,x^2 + \left(n_3^{\pm} + n_4^{\pm} x\right)t + n_5^{\pm} \,t^2 + \mathcal{O}(1/t)$$

the subtraction term

$$\frac{\Delta_{ijk}(q_{\pm})}{D_k} = \tilde{b}_0^{k,\pm} + \tilde{b}_6^{k,\pm} \mu^2 + \tilde{b}_1^{k,\pm} x + \tilde{b}_2^{k,\pm} x^2 + \left(\tilde{b}_3^{k,\pm} + \tilde{b}_4^{k,\pm} x\right)t + \tilde{b}_5^{k,\pm} t^2 + \mathcal{O}(1/t)$$

• $\tilde{b}_i^{k,\pm}$ are known functions of the triangle coefficients • the residue

$$\Delta_{ij}(q_{+}) = b_0 + b_9 \,\mu^2 + b_1 \,x + b_2 x^2 - (b_5 + b_8 x) t + b_6 t^2 + \mathcal{O}(1/t)$$

$$\Delta_{ij}(q_{-}) = b_0 + b_9 \,\mu^2 + b_1 \,x + b_2 x^2 - (b_3 + b_7 x) t + b_4 t^2 + \mathcal{O}(1/t)$$

• by comparison, applying subtractions at the coefficient level

$$b_0 = n_0^{\pm} - \sum_k \tilde{b}_0^{k,\pm}, \quad b_1 = n_1^{\pm} - \sum_k \tilde{b}_1^{k,\pm}, \quad b_3 = -n_3^{-} + \sum_k \tilde{b}_3^{k,-}, \quad \dots$$

T. Peraro (MPI - München)

Semi-numerical implementation in NINJA

- $\bullet\,$ The input is the numerator ${\cal N}$ cast in (three or) four different forms
 - leading terms of parametric expansions of the numerator
 - coefficients of the expansion written to an array \mathcal{N} []
 - all easily obtained from its analytic expression
- The PYTHON script NINJANUMGEN uses FORM-4 to
 - $\bullet\,$ automatically compute expansions from a FORM expression of ${\cal N}\,$
 - generate optimized source code needed as input for NINJA
- NINJA at run-time
 - computes parametric on-shell solutions
 - performs Laurent expansions via pol. div.
 - implements subtractions at coefficient level
 - multiplies the obtained coefficients with the MI's
- Semi-numeric Laurent expansion via polynomial division
 - expansion of numerator \mathcal{N} [] / denominators D_i

Semi-numerical implementation in NINJA

// Numerator: can be generated using the script ninjanumgen
class MyNumerator : public ninja::Numerator {
 public:

// evaluates the numerator $\mathcal{N}(q,\mu^2)$ – same as Samurai virtual Complex evaluate (q,μ^2,\ldots) ;

// (optional) expansion for 4-ple cut rational term $q^{\mu} \rightarrow t v_{\perp}^{\mu} + \mathcal{O}(1)$ virtual void muExpansion ($v_{\perp}, \ldots, \text{ Complex } \mathcal{N}$);

// expansion for triangles and tadpoles $q^{\mu} \rightarrow v_0^{\mu} + t v_3^{\mu} + \frac{\beta + \mu^2}{2t} v_4^{\mu}$ virtual void t3Expansion($v_0, v_3, v_4, \beta, \dots$, Complex \mathcal{N} []);

// expansion for bubbles $q^{\mu} \rightarrow v_1^{\mu} + x v_2^{\mu} + t v_3^{\mu} + \frac{\beta_0 + \beta_1 x + \beta_2 x^2 + \mu^2}{2t} v_4^{\mu}$ virtual void t2Expansion($v_1, v_2, v_3, v_4, \beta_i, \ldots$, Complex $\mathcal{N}[]$);

note: t2Expansion is t3Expansion with: $v_0 \rightarrow v_1^{\mu} + x v_2^{\mu}, \beta \rightarrow \beta_0 + \beta_1 x + \beta_2 x^2$

Semi-numerical implementation in NINJA

Master Integrals:

- are called via a generic interface
 - \Rightarrow any user-defined library of Master Integrals can be used
- the library of MI's to be used can be specified at run time
- NINJA provides the interface for two default libraries
 - ONELOOP library [A. van Hameren] wrapper + caching
 - computed MI's are cached by NINJA
 - constant-time lookup from their arguments
 - LOOPTOOLS library [T. Hahn]
 - an internal cache is already present \Rightarrow interface is a simple wrapper

Higher-rank:

- support for higher-rank r = n + 1
- higher-rank MI's (can but) do not need to be provided

Automation of one-loop computation

In several one-loop packages we can distinguish three phases:

- Generation
 - generate the integrand
 - cast it in a suitable form for reduction
 - write it in a piece of source code (e.g. FORTRAN or C/C++)
- Compilation
 - compile the code
- 8 Run-time
 - use a reduction library in order to compute the integrals

Automation of one-loop computation in GOSAM

GOSAM is a PYTHON package which:

- generates analytic integrands
 - using QGRAF [P. Nogueira] and FORM [J. Vermaseren et al.]
- writes them into FORTRAN90 code
- can use different reduction algorithms at run-time
 - SAMURAI (d-dim. integrand reduction)
 - faster than GOLEM95 but numerically less stable
 - former default in GOSAM-1.0
 - GOLEM95 (tensor reduction)
 - slower than SAMURAI but more stable
 - default rescue-system for unstable points
 - Ninja
 - fast (2 to 5 times faster than SAMURAI)
 - stable (in worst cases $\mathcal{O}(1/1000)$ unstable points)
 - current default in GOSAM-2.0 ← just released

Benchmarks of GOSAM + NINJA

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T.P. (2013)

Benchmarks: GOSAM + NINJA					
Process		# NLO diagrams	ms/event ^a		
W + 3j	$d\bar{u} \rightarrow \bar{\nu}_e e^- ggg$	1 411	226		
Z + 3j	$d\bar{d} \rightarrow e^+e^-ggg$	2 928	1 911		
$t\bar{t}b\bar{b}(m, \neq 0)$	$d\bar{d} \rightarrow t\bar{t}b\bar{b}$	275	178		
$mbb (m_b \neq 0)$	$gg \rightarrow t\bar{t}b\bar{b}$	1 530	5 685		
$t\bar{t} + 2j$	$gg \rightarrow t\bar{t}gg$	4 700	13 827		
$W b \bar{b} + 1 j (m_b \neq 0)$	$u\bar{d} \rightarrow e^+ \nu_e b\bar{b}g$	312	67		
	$u\bar{d} \rightarrow e^+ \nu_e b\bar{b}s\bar{s}$	648	181		
$W b \bar{b} + 2 j (m_b \neq 0)$	$u\bar{d} \rightarrow e^+ \nu_e b\bar{b} d\bar{d}$	1 220	895		
	$u\bar{d} \rightarrow e^+ \nu_e b\bar{b}gg$	3 923	5 387		
H + 3j in GF	$gg \rightarrow Hggg$	9 325	8 961		
$t\bar{t}H + 1j$	$gg \rightarrow t\bar{t}Hg$	1 517	1 505		
H + 3j in VBF	$u\bar{u} \rightarrow Hgu\bar{u}$	432	101		
H + 4j in VBF	$u\bar{u} \rightarrow Hggu\bar{u}$	1 176	669		
H + 5j in VBF	$u\bar{u} \rightarrow Hgggu\bar{u}$	15 036	29 200		

more processes in arXiv:1312.6678

 a Timings refer to full color- and helicity-summed amplitudes, using an Intel Core i7 CPU @ 3.40GHz, compiled with <code>ifort</code>.

T. Peraro (MPI - München)

Integrand reduction techniques at one and higher loops

Stability of NINJA

Rate of unstable points, i.e. with error $\delta > \delta_{\text{threshold}}$ on the finite part:

$\delta_{\mathrm{threshold}}$	$u\bar{u} ightarrow Hggu\bar{u}$	$gg \rightarrow t\bar{t}Hg$
10^{-3}	0.02%	0.06%
10^{-4}	0.04%	0.16%
10^{-5}	0.08%	0.56%

From amplitudes to observables with GOSAM

The GOSAM collaboration:

G. Cullen, H. van Deurzen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, E. Mirabella,

G. Ossola, J. Reichel , J. Schlenk, J. F. von Soden-Fraunhofen, T. Reiter, F. Tramontano, T.P.

T. Peraro (MPI - München)

Integrand reduction techniques at one and higher loops

Application: $pp \rightarrow t\bar{t}H + jet$ with GOSAM + NINJA

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

Interfaced with the Monte Carlo SHERPA

T. Peraro (MPI - München)

Integrand reduction techniques at one and higher loops

• $m_t \rightarrow \infty$ approximation

- effective couplings H + (2, 3, 4)gl.
- higher-rank integrands ⇒ extension of int. red. methods [P. Mastrolia, E. Mirabella,T.P.(2012), H. van Deurzen (2013)]
- H + 2j (GOSAM+SAMURAI+SHERPA)
 [H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, J. F. von Soden-Fraunhofen, F. Tramontano, T.P.(2013)]
- *H* + 3*j* (GOSAM+SAMURAI+SHERPA+MADGRAPH4/MADEVENT) [G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, F. Tramontano, T.P.(2013)]
- new analysis with ATLAS-like cuts, using NINJA for the reduction
 [G. Cullen, H. van Deurzen, N. Greiner, J. Huston, G. Luisoni, P. Mastrolia, E. Mirabella,
 G. Ossola, F. Tramontano, J. Winter, V. Yundin, T.P. (preliminary, 2014)]

- new distributions using NINJA (preliminary)
 - better accuracy
 - better performance

$$\mu_F = \mu_R = \frac{\hat{H}_T}{2} = \frac{1}{2} \left(\sqrt{m_H^2 + p_{t,H}^2} + \sum_{jets} |p_{t,jet}|^2 \right)$$

ATLAS-like cuts

$$R = 0.4, \qquad p_{t,jet} > 30 \text{GeV}, \qquad |\eta_{jet}| < 4.4$$

total cross section

$$\begin{split} &\sigma_{LO}^{(H+2j)}([\text{pb}]) = 1.23^{+37\%}_{-24\%}, \qquad \sigma_{LO}^{(H+3j)}([\text{pb}]) = 0.381^{+53\%}_{-32\%} \\ &\sigma_{NLO}^{(H+2j)}([\text{pb}]) = 1.590^{-4\%}_{-7\%}, \qquad \sigma_{NLO}^{(H+3j)}([\text{pb}]) = 0.485^{-3\%}_{-13\%} \end{split}$$

- new distributions using NINJA (preliminary)
 - better accuracy
 - better performance

$$\mu_F = \mu_R = \frac{\hat{H}_T}{2} = \frac{1}{2} \left(\sqrt{m_H^2 + p_{t,H}^2} + \sum_{jets} |p_{t,jet}|^2 \right)$$

- new distributions using NINJA (preliminary)
 - better accuracy
 - better performance

$$\mu_F = \mu_R = \frac{\hat{H}_T}{2} = \frac{1}{2} \left(\sqrt{m_H^2 + p_{t,H}^2} + \sum_{jets} |p_{t,jet}|^2 \right)$$

Extension to higher loops

- The integrand-level approach to scattering amplitudes at one-loop
 - can be used to compute any amplitude in any QFT
 - has been implemented in several codes, some of which public [SAMURAI, CUTTOOLS, NINJA]
 - has produced (and is still producing) results for LHC [GOSAM, FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
- At two or higher loops
 - no general recipe is available
 - the standard and most successful approach is the Integration By Parts (IBP) method, but it becomes difficult for high multiplicities

Extension to higher loops

- The integrand-level approach to scattering amplitudes at one-loop
 - can be used to compute any amplitude in any QFT
 - has been implemented in several codes, some of which public [SAMURAI, CUTTOOLS, NINJA]
 - has produced (and is still producing) results for LHC [GOSAM, FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
- At two or higher loops
 - no general recipe is available
 - the standard and most successful approach is the Integration By Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the structure of multi-loop scattering amplitudes and a method for their evaluation.

Extension to higher loops

- The integrand-level approach to scattering amplitudes at one-loop
 - can be used to compute any amplitude in any QFT
 - has been implemented in several codes, some of which public [SAMURAI, CUTTOOLS, NINJA]
 - has produced (and is still producing) results for LHC [GOSAM, FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
- At two or higher loops
 - no general recipe is available
 - the standard and most successful approach is the Integration By Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the structure of multi-loop scattering amplitudes and a method for their evaluation.

• ... we are moving the first steps in this direction

T. Peraro (MPI - München)

Integrand reduction techniques at one and higher loops

Higher loops

$\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SUGRA amplitudes

P. Mastrolia, G. Ossola (2011); P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

- Examples in $\mathcal{N} = 4$ SYM and $\mathcal{N} = 8$ SUGRA amplitudes (d = 4)
 - generation of the integrand
 - graph based [Carrasco, Johansson (2011)]
 - unitarity based [U. Schubert (Diplomarbeit)]
 - fit-on-the-cut approach for the reduction
- Results:
- $\mathcal{N}=4~$ linear combination of 8 and 7-denominators MIs
- $\mathcal{N}=8~$ linear combination of 8, 7 and 6-denominators MIs

Divide-and-Conquer approach

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

The divide-and-conquer approach to the integrand reduction

- does not require the knowledge of the solutions of the cut
- can always be used to perform the reduction in a finite number of purely algebraic operations
- has been automated in a PYTHON package which uses MACAULAY2 and FORM for algebraic operations

 also works in special cases where the fit-on-the-cut approach is not applicable (e.g. in presence of double denominators)

$$\bar{q}_1$$

 \bar{q}_2
 k
 \bar{q}_2

$$\mathcal{I}_{11234} = rac{\mathcal{N}_{11234}}{D_1^2 D_2 D_3 D_4}$$

$$\begin{array}{l} D_1 = \bar{q}_1^2 - m^2 \,, \\ D_2 = (\bar{q}_1 - k)^2 - m^2 \,, \\ D_3 = \bar{q}_2^2 \,, \\ D_4 = (\bar{q}_1 + \bar{q}_2)^2 - m^2 \end{array}$$

• Basis $\{e_i\} \equiv \{k, k_{\perp}, e_3, e_4\}$ and coordinates $\mathbf{z} = (x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4, \mu_{11}, \mu_{12}, \mu_{22})$

$$q_1 = \sum_i x_i e_i, \qquad q_2 = \sum_i y_i e_i, \qquad (\bar{q}_i \cdot \bar{q}_j) = (q_i \cdot q_j) - \mu_{ij}$$

• Basis $\{e_i\} \equiv \{k, k_{\perp}, e_3, e_4\}$ and coordinates $\mathbf{z} = (x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4, \mu_{11}, \mu_{12}, \mu_{22})$

$$q_1 = \sum_i x_i e_i, \qquad q_2 = \sum_i y_i e_i, \qquad (\bar{q}_i \cdot \bar{q}_j) = (q_i \cdot q_j) - \mu_{ij}$$

• division of
$$\mathcal{N}_{11234}$$
 modulo $\mathcal{G}_{\mathcal{J}_{11234}} (= \mathcal{G}_{\mathcal{J}_{1234}})$
 $\mathcal{N}_{11234} = \underbrace{\mathcal{N}_{1234}D_1 + \mathcal{N}_{1134}D_2 + \mathcal{N}_{1124}D_3 + \mathcal{N}_{1123}D_4}_{\text{quotients}} + \underbrace{\Delta_{11234}}_{\text{remainder}}$

• Basis $\{e_i\} \equiv \{k, k_{\perp}, e_3, e_4\}$ and coordinates $\mathbf{z} = (x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4, \mu_{11}, \mu_{12}, \mu_{22})$

$$q_1 = \sum_i x_i e_i, \qquad q_2 = \sum_i y_i e_i, \qquad (\bar{q}_i \cdot \bar{q}_j) = (q_i \cdot q_j) - \mu_{ij}$$

• division of \mathcal{N}_{11234} modulo $\mathcal{G}_{\mathcal{J}_{11234}} (= \mathcal{G}_{\mathcal{J}_{1234}})$ $\mathcal{N}_{11234} = \underbrace{\mathcal{N}_{1234}D_1 + \mathcal{N}_{1134}D_2 + \mathcal{N}_{1124}D_3 + \mathcal{N}_{1123}D_4}_{\text{quotients}} + \underbrace{\Delta_{11234}}_{\text{remainder}}$

• division of $\mathcal{N}_{i_1i_2i_3i_4}$ modulo $\mathcal{G}_{\mathcal{J}_{i_1i_2i_3i_4}}$, e.g.

T. Peraro (MPI - München)

• Basis $\{e_i\} \equiv \{k, k_{\perp}, e_3, e_4\}$ and coordinates $\mathbf{z} = (x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4, \mu_{11}, \mu_{12}, \mu_{22})$

$$q_1 = \sum_i x_i e_i, \qquad q_2 = \sum_i y_i e_i, \qquad (\bar{q}_i \cdot \bar{q}_j) = (q_i \cdot q_j) - \mu_{ij}$$

• division of \mathcal{N}_{11234} modulo $\mathcal{G}_{\mathcal{J}_{11234}} (= \mathcal{G}_{\mathcal{J}_{1234}})$ $\mathcal{N}_{11234} = \underbrace{\mathcal{N}_{1234}D_1 + \mathcal{N}_{1134}D_2 + \mathcal{N}_{1124}D_3 + \mathcal{N}_{1123}D_4}_{\text{quotients}} + \underbrace{\Delta_{11234}}_{\text{remainder}}$

• division of $\mathcal{N}_{i_1i_2i_3i_4}$ modulo $\mathcal{G}_{\mathcal{J}_{i_1i_2i_3i_4}}$

 $\mathcal{N}_{11234} = \underbrace{\mathcal{N}_{234}D_1^2 + \mathcal{N}_{134}D_1D_2 + \mathcal{N}_{124}D_1D_3 + \mathcal{N}_{123}D_1D_4 + \mathcal{N}_{114}D_2D_3 + \mathcal{N}_{113}D_2D_4}_{(sums of) quotients} + \underbrace{\Delta_{1234}D_1 + \Delta_{1134}D_2 + \Delta_{1124}D_3 + \Delta_{1123}D_4}_{remainders} + \Delta_{11234}$

T. Peraro (MPI - München)

Integrand reduction techniques at one and higher loops

Higher loops

Divide-and-Conquer approach: a simple example

• after a further step (division $\mathcal{N}_{i_1i_2i_3}/\mathcal{G}_{\mathcal{J}_{i_1i_2i_3}}$) no quotient remains

 $\mathcal{N}_{11234} = \Delta_{11234} + \Delta_{1234} D_1 + \Delta_{1134} D_2 + \Delta_{1124} D_3 + \Delta_{1123} D_4 + \Delta_{234} D_1^2 + \Delta_{114} D_2 D_3 + \Delta_{113} D_2 D_4$

the integrand decomposition becomes

$$\begin{split} \mathcal{I}_{11234} &= \frac{\mathcal{N}_{11234}}{D_1^2 D_2 D_3 D_4} = \frac{\Delta_{11234}}{D_1^2 D_2 D_3 D_4} + \frac{\Delta_{1234}}{D_1 D_2 D_3 D_4} + \frac{\Delta_{1134}}{D_1^2 D_3 D_4} + \frac{\Delta_{1124}}{D_1^2 D_2 D_4} \\ &\quad + \frac{\Delta_{1123}}{D_1^2 D_2 D_3} + \frac{\Delta_{234}}{D_2 D_3 D_4} + \frac{\Delta_{114}}{D_1^2 D_4} + \frac{\Delta_{113}}{D_1^2 D_3} \\ \Delta_{11234} &= 16m^2 \left(k^2 + 2m^2 - k^2\epsilon\right) , \\ \Delta_{1234} &= 16 \left[(q_2 \cdot k)(1 - \epsilon)^2 + m^2 \right] , \\ \Delta_{1124} &= -\Delta_{1123} = 8 \left(1 - \epsilon\right) \left[k^2 (1 - \epsilon) + 2m^2 \right] , \\ \Delta_{1134} &= -16m^2 \left(1 - \epsilon\right) , \\ \Delta_{113} &= -\Delta_{114} = \Delta_{234} = 8 \left(1 - \epsilon\right)^2 . \end{split}$$

Examples of divide-and-conquer approach

• Photon self-energy in massive QED, $(4 - 2\epsilon)$ -dimensions

• Diagrams entering $gg \rightarrow H$, in $(4 - 2\epsilon)$ -dimensions

Additional relations between integrals

P. Mastrolia, G. Ossola, T.P. (work in progress)

- The integrals given by the integrand reduction can be further reduced with additional identities
 - traditional approach: Integration by Part (IBP)

$$\int rac{\partial}{\partial ar{q}_i^\mu} rac{\mathcal{N}(ar{q}_i)^\mu}{D_{i_1}\cdots D_{i_n}} = 0$$

A 2-step strategy

use integrand reduction first

 \Rightarrow integrals with higher multiplicity should be reduced

then apply IBP

 \Rightarrow could be easier after integrand reduction

- Can we instead see IBPs from Integrand Reduction?
 - Can we recover IBPs from int. red. relations computed in step 1?

Dimensionally shifted integrals

One-loop case:

• with
$$v_{\perp}^{\mu} = \epsilon^{\mu}{}_{\mu_1 \cdots \mu_{n-1}} k_1^{\mu_1} \cdots k_{n-1}^{\mu_{n-1}}$$
, we can prove

$$\mathcal{I}_{1\dots n}[\mu^2] = -\epsilon \mathcal{I}_{1\dots n}^{(d+2)},$$

$$\mathcal{I}_{1\dots n}[(q \cdot v_{\perp})^2] = \mathcal{I}_{1\dots n}[\epsilon(q, k_1, \dots, k_{n-1})^2] = -\frac{v_{\perp}^2}{2} \mathcal{I}_{1\dots n}^{(d+2)}$$

- perform integrand reduction of $\mathcal{I}_{1\dots n}[(q \cdot v_{\perp})^2]$ from n = 1 to higher-points
 - we can reuse the same pol. divisions of integrand reduction
- if *I*_{1...n}[(q · v_⊥)²] reducible at integrand level ⇒ then *I*_{1...n} reducible at integral level
 - we get an homogeneous equation with integrals in d + 2
 - after $d \rightarrow d 2$ we get an IBP relation

Example: one-loop tadpole

Tadpoles:
$$\mathcal{N} = \epsilon(q)^2 = q^2$$
:

$${\mathcal I}_0=rac{q^2}{D_0},\qquad D_0=ar q^2-m^2$$

• No external vectors \Rightarrow use special case

$$\mathcal{I}_0[q^2] = -2 \, \mathcal{I}_0^{(d+2)}$$

After integrand reduction

$$egin{aligned} -2\,\mathcal{I}_0^{(d+2)} &= \mathcal{I}_0[q^2] = \mathcal{I}_0[\mu^2] + m^2\,\mathcal{I}_0 \ &= rac{d-4}{2}\,\mathcal{I}_0^{(d+2)} + m^2\,\mathcal{I}_0 \end{aligned}$$

Dimensional shift for tadpoles

$$d\mathcal{I}_0^{(d+2)} = 2m^2\mathcal{I}_0$$

T. Peraro (MPI - München)

Integrand reduction techniques at one and higher loops

Example: one-loop bubble

$$\mathcal{I}_{01}[(q \cdot v_{\perp})^2] = \frac{\mathcal{N}}{D_0 D_1} \qquad \qquad \mathcal{N} = \epsilon(q, k)^2 = q^2 k^2 - (q \cdot k)^2$$
$$D_0 = \bar{q}^2$$
$$D_1 = \bar{q}^2 + 2(q \cdot k)$$

Integrand reduction

$$\mathcal{N} = m^2 \,\mu^2 + D_0 \,\left(\frac{1}{2}m^2 + \frac{1}{2}((q+k)\cdot k)\right) + D_1 \,\left(-\frac{1}{2}(q\cdot k)\right) \\ -\frac{3m^2}{2} \,\mathcal{I}_{01}^{(d+2)} = \mathcal{I}_{01}[\mathcal{N}] = m^2 \mathcal{I}_{01}[\mu^2] + \frac{m^2}{2} \,\mathcal{I}_1 = \frac{d-4}{2} \,m^2 \,\mathcal{I}_{01}^{(d+2)} - \frac{d}{4} \mathcal{I}_1^{(d+2)}$$

• The result in d + 2 dimensions

$$(d-1)\mathcal{I}_{01}^{(d+2)} = \frac{1}{2m^2} d\mathcal{I}_1^{(d+2)}$$

Result in d dimensions

$$(d-3)\mathcal{I}_{01} = \frac{1}{2m^2}(d-2)\mathcal{I}_1$$

T. Peraro (MPI - München)

Integrand reduction techniques at one and higher loops

Edinburgh, 2014 45

Example: one-loop triangle

$$\mathcal{I}_{012}[\mathcal{N}] = \frac{\mathcal{N}}{D_0 D_1 D_2} \qquad D_0 = \bar{q}^2 \\ D_1 = \bar{q}^2 + 2(q \cdot k_1) \\ D_2 = \bar{q}^2 - 2(q \cdot k_2)$$

• With a similar procedure, from $\mathcal{I}_{012}[\epsilon(q,k_1,k_2)^2]$ and $\mathcal{I}_{12}[\epsilon(q,k_1+k_2)^2]$, we get

$$(2-d) \mathcal{I}_{012}^{(d+2)} = \mathcal{I}_{12}$$
$$(1-d) \mathcal{I}_{12}^{(d+2)} = \frac{4m^2 - s}{2} \mathcal{I}_{12} + \mathcal{I}_{12}$$

• The result in d + 2 dimensions

$$(2-d) \mathcal{I}_{012}^{(d+2)} = \frac{2}{4m^2 - s} \left((1-d) \mathcal{I}_{12}^{(d+2)} + \frac{d}{2m^2} \mathcal{I}_1^{(d+2)} \right)$$

Result in d dimensions

$$(4-d)\mathcal{I}_{012} = \frac{2}{4m^2 - s}\left((3-d)\mathcal{I}_{12} + \frac{d-2}{2m^2}\mathcal{I}_1\right)$$

T. Peraro (MPI - München)

Higher loops

At one-loop we used

$$\mathcal{I}[\epsilon(q,k_1,\ldots,k_{n-1})^2], \qquad \mathcal{I}[\mu^2]$$

At higher loops we should use

$$\mathcal{I}[\epsilon(q_1,\ldots,q_\ell,k_1,\ldots,k_{n-1})^2], \qquad \mathcal{I}[\epsilon(\vec{\mu}_1,\ldots,\vec{\mu}_\ell)].$$

• Relations for integrals in μ^2 can be easily found at any loop using Schwinger parametrization

Example: two-loop

$$\mathcal{I}_{123}[\mathcal{N}] = \frac{\mathcal{N}}{D_1 D_2 D_3} \qquad \begin{array}{l} D_1 = \bar{q}_1^2 - m^2 = q_1^2 - m^2 - \mu_{11} \\ D_2 = \bar{q}_2^2 - m^2 = q_2^2 - m^2 - \mu_{22} \\ D_3 = (\bar{q}_1 - \bar{q}_2)^2 = (q_1 - q_2)^2 - \mu_{11} - \mu_{22} + 2\mu_{12} \end{array}$$

• The integrand reduction gives

$$-3\mathcal{I}_{123}^{(d+2)} = \mathcal{I}_{123}[\epsilon(q_1, q_2)^2] = \mathcal{I}_{123}[(q_1 \cdot q_2)^2 - q_1^2 q_2^2]$$

= $\frac{1}{4}\mathcal{I}_{123}[4\mu_{12}^2 - 4\mu_{11}\mu_{22}] + m^2\mathcal{I}_{123}[2\mu_{12} - \mu_{11} - \mu_{22}] - \frac{m^2}{2}\mathcal{I}_{12}.$

• Integrals in μ_{ij}

$$\mathcal{I}_{123}[4\mu_{12}^2 - 4\mu_{11}\mu_{22}] = -2\epsilon(1+2\epsilon)\mathcal{I}^{(d+2)}, \qquad \mathcal{I}_{123}[2\mu_{12} - \mu_{11} - \mu_{22}] = -\frac{4-d}{d}\mathcal{I}_{12}$$

Final result in *d* dimensions

$$\mathcal{I}_{123} = \frac{d-2}{2m^2(d-3)}\mathcal{I}_{12}$$

T. Peraro (MPI - München)

Integrand reduction techniques at one and higher loops

Edinburgh, 2014 48

Summary and Outlook

- Summary
 - we have a framework for the all-loop reduction at the integrand level
 - the integrand is decomposed via multivariate polynomial division
 - at one loop it reproduces well knwon results (OPP)
 - one-loop reduction is improved by Laurent expansion (NINJA)
 - algebraic reduction at any loop via divide-and-conquer approach
 - IBPs via integrand reduction and *d*-shifts
- Outlook
 - improve one-loop generation (recursion, global abbreviations,...)
 - treatment of (few) remaining unstable points within NINJA
 - application of int. red. + d-shifts a full two-loop QED/QCD process
 - fully automated analytic one-loop via divide-and-conquer

THANK YOU FOR YOUR ATTENTION

Integrand reduction techniques at one and higher loops

BACKUP SLIDES

Integrand reduction techniques at one and higher loops

Rotation method for error estimation

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

Definitions

- *A* : numerical result for the amplitude
- A_{rot} : numerical result for the amplitude with rotated kinematics
- A_{ex} : exact result for the amplitude ~ amplitude in quad. prec.
- the exact error is defined as

$$\delta_{ex} = \left| \frac{A_{ex} - A}{A_{ex}} \right|$$

• the estimated error is defined as

$$\delta_{rot} = 2 \left| \frac{A_{rot} - A}{A_{rot} + A} \right|$$

• one can check that
$$\delta_{\it rot} \sim \delta_{\it ex}$$

Rotation method for error estimation

A validation of the rotation method

• example: $W b \bar{b} + 1 j$ ($u\bar{d} \rightarrow e^+ \nu_e b \bar{b} g$), with $m_b \neq 0$

