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Light Higgs plus Low Tuning need Light Partners

SUSY:	


!

light stops

Composite Higgs:	


!

light fermionic partners
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Question: where should we stop?                               ?� = 1, 10, 100, . . .



Composite Higgs

Composite Higgs scenario:

1. Higgs is hadron of new strong force 	


                                  Corrections to       screened above 	


                              The Hierarchy Problem is solved 

2. Higgs is a Goldstone Boson, this is why it is light	



3. SM fermions and gauge coupled linearly to the strong sector
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gauge couplings:

fermion couplings:

Lint=gJµW
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 Higgs Br. Ratios	



 Higgs Production c    
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O(v2/f2)�20%

⇥A) Corrections to SM: B) Non-ren. Couplings:

 In	



 In Double His
WW � hh
gg � hh

Indirect effects from sigma-model couplings

however not easy to see with present (and future?) data
Indirect, but “direct” (robust) signature of compositeness
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Composite Higgs scenario:

1. Higgs is hadron of new strong force 	


                                  Corrections to       screened above 	


                              The Hierarchy Problem is solved 

2. Higgs is a Goldstone Boson, this is why it is light	



3. Partial Fermion Compositeness: linear coupling to strong sector

1/lHmH

Fermionic Top Partners

Direct Production of new particles:

More promising



Composite Sector Elementary Sector

fL, fR

W 1,2,3
µ , Bµ

Lint

gauge couplings:

fermion couplings:

Lint=gJµW
µ

Lint=yLqLOL+yRqROR

Goldstone Boson Higgs

Let us focus on the Minimal Coset SO(5)/SO(4)



Goldstone Boson Higgs

Low energy Higgs physics from symmetries

Given that we will have to gauge the SM subgroup of SO(5), we must consider also local trans-

formations, g = g(x), in the above equation. We also have to define gauge sources AA

µ

A
µ

= AA

µ

TA ! A(g)

µ

= g [A
µ

+ i@
µ

] gt , (A.13)

some of which we will eventually make dynamical while setting the others to zero. Explicitly, the

dynamical part of A
µ

will be
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where c
w

and s
w

denote respectively the cosine and the sine of the weak mixing angle and g, g0 are
the SM couplings of SU(2)

L

and U(1)
Y

. Notice that A
µ

belongs to the unbroken SO(4) subalgebra,

this will simplify the expression for the d and e symbols that we will give below.

The d and e symbols

Still treating A
µ

as a general element of the SO(5) algebra, we can define the d and e symbols as

follows. Start from defining

Ā
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t
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this transforms under SO(5) in a peculiar way
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Since h = h(⇧; g) is an element of SO(4) as in eq. (A.8), the shift term in the above equation, ih@
µ

ht,

lives in the SO(4) subalgebra. Therefore, if we decompose Ā
µ

in broken and unbroken generators

Ā
µ

⌘ � di
µ

T i � ea
µ

T a , (A.17)

we have that di
µ

transforms linearly (and in the fourplet of SO(4)) while the shift is entirely taken

into account by ea
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. We have
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Let us now restrict, for simplicity, to the case in which A
µ

belongs to the SO(4) subalgebra, as

for our dynamical fields in eq. (A.14). It is not di�cult to write down an explicit formula for d and

e, these are given by
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where r
µ

⇧ is the ”covariant derivative” of the ⇧ field:

r
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j

⇧j . (A.20)

The first use we can make of the d
µ

symbol is to define the SO(5)-invariant kinetic Lagrangian

for the Goldstone bosons, this is given by

L
⇡

=
f2

4
di
µ
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i

. (A.21)
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In the unitary gauge of eq. (A.11) and using eq. (A.14) for A
µ

the Goldstone Lagrangian becomes

L
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from which we can check that the field ⇢ is indeed canonically normalized and read the W and

Z masses m
W

= g/2f sin hhi
f

, m
Z

= m
W

/c
w

. This fixes relation among hvi and the EW scale

v = 246 GeV

v = f sin
hhi
f

. (A.23)

The e
µ

symbol can instead be used to construct the CCWZ covariant derivatives, because the

shift term in its transformation rule of eq. (A.18) compensates for the shift of the ordinary derivative.

Consider for instance the field  defined in eq. (2.5) of the main text, which transforms in the 4 of

SO(4), i.e. like  ! h
4

· . The covariant derivative is

r
µ

 = @
µ

 + i ea
µ

ta . (A.24)

The CP symmetry

By looking at eq. (A) and remembering that CP acts as H(x) ! H⇤(x(P )) on the Higgs doublet

we immediately obtain the action of the CP transformation on the Goldstone fields ⇧ and on the

Goldstone matrix U . It is

~⇧(x) ! C
4

· ~⇧(x(P )) , U(x) ! C
5

· U(x(P )) · C
5

, (A.25)

where C
4

and C
5

are respectively a 4 ⇥ 4 and a 5 ⇥ 5 diagonal matrices defined as

C
4

= diag(�1,+1,�1,+1) , C
5

= diag(�1,+1,�1,+1,+1) . (A.26)

In the above equations the superscript “(P )” denotes the action of ordinary spatial parity. Similarly,

the ordinary action of CP on the SM gauge fields in eq. (A.14) is recovered if we take

A
µ

! C
5

· A(P )

µ

· C
5

. (A.27)

From the above equations it is straightforward to derive the CP transformations of the d and e

symbols defined in eq. (A.17),
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In the fermionic sector, adopting for definiteness the Weyl basis, the CP transformation of the

q
L

and of the t
R

are the usual ones

�(x) ! �(CP ) = i�0�2 ⇤(x(P )) , (A.29)

for � = {t
L

, b
L

, t
R

}. For the top partners, in the case in which they transform in the fourplet of

SO(4) as in eq. (2.5), it is natural to define CP as

 
i
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4

j

i

 (CP )

j

, (A.30)

while for the case of the singlet we simply have  !  (CP ). Notice that with this definition the

charge eigenstate fields {T,B,X
2/3

, X
5/3

} defined in eq. (2.5) have “ordinary” CP transformation

as in eq. (A.29);

27
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One parameter: Higgs decay constant f

on Higgs VEV we get W/Z masses:     (        thank to custodial !)⇢=1

mW =
g

2
f sin

hhi
f

, mZ = mW /cw

v=246GeV=f sin
hhi
f

thus the EWSB scale is:



Goldstone Boson Higgs
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charge eigenstate fields {T,B,X
2/3

, X
5/3

} defined in eq. (2.5) have “ordinary” CP transformation

as in eq. (A.29);
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One parameter: Higgs decay constant f



Goldstone Boson Higgs

In principle, departures from SM could be huge.	



However the constraints from EWPT suggest             or            :⇠'0.1⇠'0.2

direct constraint on modified W coupling tree-level S from other resonances

⇢

the physical Higgs coupling to W is deviations from SM controlled by
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f

Low energy Higgs physics from symmetries

Given that we will have to gauge the SM subgroup of SO(5), we must consider also local trans-

formations, g = g(x), in the above equation. We also have to define gauge sources AA

µ

A
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= AA
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TA ! A(g)
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= g [A
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] gt , (A.13)

some of which we will eventually make dynamical while setting the others to zero. Explicitly, the

dynamical part of A
µ

will be
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where c
w

and s
w

denote respectively the cosine and the sine of the weak mixing angle and g, g0 are
the SM couplings of SU(2)

L

and U(1)
Y

. Notice that A
µ

belongs to the unbroken SO(4) subalgebra,

this will simplify the expression for the d and e symbols that we will give below.

The d and e symbols

Still treating A
µ

as a general element of the SO(5) algebra, we can define the d and e symbols as

follows. Start from defining

Ā
µ

⌘ A(U

t

)

µ

= U t [A
µ

+ i@
µ

]U , (A.15)

this transforms under SO(5) in a peculiar way

Ā
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! A(h·U t·gt·g)
µ

= Ā(h)
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= h
⇥
Ā

µ

+ i@
µ

⇤
ht (A.16)

Since h = h(⇧; g) is an element of SO(4) as in eq. (A.8), the shift term in the above equation, ih@
µ

ht,

lives in the SO(4) subalgebra. Therefore, if we decompose Ā
µ

in broken and unbroken generators

Ā
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⌘ � di
µ

T i � ea
µ

T a , (A.17)

we have that di
µ

transforms linearly (and in the fourplet of SO(4)) while the shift is entirely taken

into account by ea
µ

. We have
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Let us now restrict, for simplicity, to the case in which A
µ

belongs to the SO(4) subalgebra, as

for our dynamical fields in eq. (A.14). It is not di�cult to write down an explicit formula for d and

e, these are given by
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where r
µ

⇧ is the ”covariant derivative” of the ⇧ field:

r
µ

⇧i = @
µ

⇧i � iAa

µ

(ta)i
j

⇧j . (A.20)

The first use we can make of the d
µ

symbol is to define the SO(5)-invariant kinetic Lagrangian

for the Goldstone bosons, this is given by

L
⇡

=
f2

4
di
µ

dµ
i

. (A.21)
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In the unitary gauge of eq. (A.11) and using eq. (A.14) for A
µ

the Goldstone Lagrangian becomes
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from which we can check that the field ⇢ is indeed canonically normalized and read the W and

Z masses m
W

= g/2f sin hhi
f

, m
Z

= m
W

/c
w

. This fixes relation among hvi and the EW scale

v = 246 GeV

v = f sin
hhi
f

. (A.23)

The e
µ

symbol can instead be used to construct the CCWZ covariant derivatives, because the

shift term in its transformation rule of eq. (A.18) compensates for the shift of the ordinary derivative.

Consider for instance the field  defined in eq. (2.5) of the main text, which transforms in the 4 of

SO(4), i.e. like  ! h
4

· . The covariant derivative is

r
µ

 = @
µ

 + i ea
µ

ta . (A.24)

The CP symmetry

By looking at eq. (A) and remembering that CP acts as H(x) ! H⇤(x(P )) on the Higgs doublet

we immediately obtain the action of the CP transformation on the Goldstone fields ⇧ and on the

Goldstone matrix U . It is

~⇧(x) ! C
4

· ~⇧(x(P )) , U(x) ! C
5

· U(x(P )) · C
5

, (A.25)

where C
4

and C
5

are respectively a 4 ⇥ 4 and a 5 ⇥ 5 diagonal matrices defined as

C
4

= diag(�1,+1,�1,+1) , C
5

= diag(�1,+1,�1,+1,+1) . (A.26)

In the above equations the superscript “(P )” denotes the action of ordinary spatial parity. Similarly,

the ordinary action of CP on the SM gauge fields in eq. (A.14) is recovered if we take

A
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! C
5

· A(P )
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· C
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. (A.27)

From the above equations it is straightforward to derive the CP transformations of the d and e

symbols defined in eq. (A.17),
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In the fermionic sector, adopting for definiteness the Weyl basis, the CP transformation of the

q
L

and of the t
R

are the usual ones

�(x) ! �(CP ) = i�0�2 ⇤(x(P )) , (A.29)

for � = {t
L

, b
L

, t
R

}. For the top partners, in the case in which they transform in the fourplet of

SO(4) as in eq. (2.5), it is natural to define CP as

 
i

! C
4

j

i

 (CP )

j

, (A.30)

while for the case of the singlet we simply have  !  (CP ). Notice that with this definition the

charge eigenstate fields {T,B,X
2/3

, X
5/3

} defined in eq. (2.5) have “ordinary” CP transformation

as in eq. (A.29);
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Goldstone Boson Higgs

Some updated fit:
courtesy of R.Torre



But why is this called “Partial compositeness”?

Partial Compositeness



OL,R $ QL,Rh0|O|Qi 6= 0

Important Remark:

    and     carry color !O Q

Q = “vector-like colored fermions”

In the IR operators correspond to particles:

Partial Compositeness

(partners)

But why is this called “Partial compositeness”?



OL,R $ QL,Rh0|O|Qi 6= 0

Lmass=m⇤
QQQ+ y fqQ

|SMni=cos�n|elementaryni+ sin�n|compositeni
|BSMni=cos�n|compositeni � sin�n|elementaryni

tan�n=
yf

m⇤
Q

physical particles are partially composite

                                     gives a mass-mixing in the IR:Lint=yLqLOL+yRqROR

Partial Compositeness

In the IR operators correspond to particles:

But why is this called “Partial compositeness”?



Partial Compositeness

|SMni=cos�n|elementaryni+ sin�n|compositeni

yf =P.C. generates Yukawas ...



Partial Compositeness

|SMni=cos�n|elementaryni+ sin�n|compositeni

yf =P.C. generates Yukawas ...

 ... and the Higgs Potential

Top loop dominate because the top is largely composite.



Partial Compositeness

Top partners cancel       divergence, thus are	


 directly bounded by Naturalness
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 directly bounded by Naturalness
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Caution Remark:	


!this is a lower bound, 
tuning could be worse in 
concrete models.       
(Panico, Redi, Tesi, AW 2012)



Partial Compositeness

Top partners cancel       divergence, thus are	


 directly bounded by Naturalness

� � �m2
H

m2
H

'
✓
125 GeV

mH

◆2 ✓ MP

400 GeV

◆2

mH

�

MP [TeV]0.5 1 2

16

1

4

MCHM Partial tR	


compositeness

Total tR	


compositeness 

Caution Remark:	


!this is a lower bound, 
tuning could be worse in 
concrete models.       
(Panico, Redi, Tesi, AW 2012)



Q=2/3

Q=5/3

MCHM4,5,10

⇠ = 0.2

Ξ"0.2

#

0 1 2 3 4 5 6
0

1

2

3

4

m5!3$ "TeV#
m
T$

"T
eV
#

Ξ"0.1

#

0 1 2 3 4 5 6
0

1

2

3

4

m5!3$ "TeV#

m
T$

"T
eV
#

Figure 3: Scatter plots of the masses of the lightest exotic state of charge 5/3 and of the lightest
e
T resonance for ⇠ = 0.2 (left panel) and ⇠ = 0.1 (right panel) in the three-site DCHM model.
The black dots denote the points for which 115 GeV  mH  130 GeV, while the gray dots have
mH > 130 GeV. The scans have been obtained by varying all the composite sector masses in the
range [�8f, 8f ] and keeping the top mass fixed at the value mt = 150 GeV.

T much lighter than the e
T can not happen for a light Higgs due to the presence of a lower bound

on the mT� , which will be discussed in details in the next section. In the region of comparable T�

and e
T� masses sizable deviations from eq. (44) can occur. These are due to the possible presence

of a relatively light second level of resonances, as already discussed.

The numerical results clearly show that resonances with a mass of the order or below 1.5 TeV

are needed in order to get a realistic Higgs mass both in the case ⇠ = 0.2 and ⇠ = 0.1. The

prediction is even sharper for the cases in which only one state, namely the e
T�, is light. In these

regions of the parameter space a light Higgs requires states with masses around 400 GeV for the

⇠ = 0.2 case and around 600 GeV for ⇠ = 0.1.

The situation becomes even more interesting if we also consider the masses of the other com-

posite resonances. As we already discussed, the first level of resonances contains, in addition to

the T� and e
T�, three other states: a top-like state, the T

2/3�, a bottom-like state, the B�, and an

exotic state with charge 5/3, the X

5/3�. These three states together with the T� form a fourplet

of SO(4). Obviously the X

5/3� cannot mix with any other state even after EWSB, and therefore

it remains always lighter than the other particles in the fourplet. In particular (see fig. 9 for a

schematic picture of the spectrum), it is significantly lighter than the T� . In fig. 3 we show the

scatter plots of the masses of the lightest exotic charge 5/3 state and of the e
T . In the parameter

space region in which the Higgs is light the X

5/3� resonance can be much lighter than the other

22

:   (low tuning)

In a class of explicit CH models

mH � [115, 130]

A more pragmatic illustration 	


(Matsedonsky,i Panico, AW 2012)

Light Higgs plus Low Tuning need Light Partners

Partial Compositeness
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Figure 3: Scatter plots of the masses of the lightest exotic state of charge 5/3 and of the lightest
e
T resonance for ⇠ = 0.2 (left panel) and ⇠ = 0.1 (right panel) in the three-site DCHM model.
The black dots denote the points for which 115 GeV  mH  130 GeV, while the gray dots have
mH > 130 GeV. The scans have been obtained by varying all the composite sector masses in the
range [�8f, 8f ] and keeping the top mass fixed at the value mt = 150 GeV.

T much lighter than the e
T can not happen for a light Higgs due to the presence of a lower bound

on the mT� , which will be discussed in details in the next section. In the region of comparable T�

and e
T� masses sizable deviations from eq. (44) can occur. These are due to the possible presence

of a relatively light second level of resonances, as already discussed.

The numerical results clearly show that resonances with a mass of the order or below 1.5 TeV

are needed in order to get a realistic Higgs mass both in the case ⇠ = 0.2 and ⇠ = 0.1. The

prediction is even sharper for the cases in which only one state, namely the e
T�, is light. In these

regions of the parameter space a light Higgs requires states with masses around 400 GeV for the

⇠ = 0.2 case and around 600 GeV for ⇠ = 0.1.

The situation becomes even more interesting if we also consider the masses of the other com-

posite resonances. As we already discussed, the first level of resonances contains, in addition to

the T� and e
T�, three other states: a top-like state, the T

2/3�, a bottom-like state, the B�, and an

exotic state with charge 5/3, the X

5/3�. These three states together with the T� form a fourplet

of SO(4). Obviously the X

5/3� cannot mix with any other state even after EWSB, and therefore

it remains always lighter than the other particles in the fourplet. In particular (see fig. 9 for a

schematic picture of the spectrum), it is significantly lighter than the T� . In fig. 3 we show the

scatter plots of the masses of the lightest exotic charge 5/3 state and of the e
T . In the parameter

space region in which the Higgs is light the X

5/3� resonance can be much lighter than the other
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A more pragmatic illustration 	


(Matsedonsky,i Panico, AW 2012)
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A simple, but general model for the Top Partners

• Higgs is a pNGB of a Minimal Coset              

• Partners either in the    or in the     (of         )	



•  Large (or some) separation:

SO(5)/SO(4)

Assumptions:

 

 �

Figure 1: Schematic picture of the spectrum.

goal of this paper is to provide a similar simplified approach to describe the results of experimental

searches for top partners. We will focus on the composite Higgs scenario based on the minimal coset

SO(5)/SO(4). The basic simplifying assumption is that the spectrum has the structure depicted

in figure 1, where one SO(4) multiplet of colored Dirac fermions  is parametrically lighter than

the other states. As already illustrated in Ref. [8] for the case of bosonic resonances, in that limit

one expects the dynamics of  to be described by a weakly coupled e↵ective lagrangian. Therefore

the simplified model, at leading order in an expansion in loops and derivatives, can be consistently

described by a finite number of parameters. Moreover symmetry and selection rules, via the Callan-

Coleman-Wess-Zumino (CCWZ) [9] construction, reduce the number of relevant parameters. It is

obviously understood that the limiting situation presented by the simplified model is not expected to

be precisely realized in a realistic scenario. However, a realistic situation where the splitting with the

next-to-lightest multiplet is of the order m
 

is qualitatively already well described by the simplified

model. Only if the splitting were parametrically smaller than m
 

would there be dramatic changes.

We should also stress that our models are truly minimal, in that they do not even possess su�cient

structure (states and couplings) to make the Higgs potential calculable. In principle we could add

that structure. For instance by uplifting our multiplet  to a full split SO(5) multiplet, like in a

two site model, we could make the Higgs potential only logarithmically divergent, thus controlling

its size in leading log approximation, and making the rough connection between m
 

and naturalness

more explicit along the lines of [10]. We could even go as far as making the one loop Higgs potential

finite with a three site model [11, 12], or by imposing phenomenological Weinberg sum-rules [13].

However in these less minimal models the first signals at the LHC would still be dominated by the

lightest SO(4) multiplet, whatever it may be. The point is that while the contribution of the heavier

multiplets does not decouple when focussing on a UV sensitive quantity like the Higgs potential, it

does decouple when considering the near threshold production of the lightest states. For the purpose

of presenting the results of the LHC searches in an eloquent way, the simplified model is clearly the

way to go. There already exists a literature on simplified top partner models in generic composite

Higgs scenarios [14, 15, 16], where the role of symmetry is not fully exploited. Focussing on the

minimal composite Higgs model based on SO(5)/SO(4), our paper aims at developing a systematic

approach where all possible top partner models are constructed purely on the basis of symmetry

and selection rules.

In the end we shall derive exclusion plots in a reduced parameter space, which in general involves

the mass and couplings of the top-partner  . Now, even though these are not the parameters of a

fundamental model, given their overall size, we can roughly estimate how natural the Higgs sector

is expected to be. We can then read the results of searches as a test of the notion of naturalness. To

make that connection, even if qualitative, we must specifiy the dynamics that gives rise to the top

Yukawa. As discussed in [17], there are several options, each leading to a di↵erent structure of the

Higgs potential and thus to a di↵erent level of tuning. The common feature of all scenarios is that

2

4 1 SO(4)
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lightest SO(4) multiplet, whatever it may be. The point is that while the contribution of the heavier

multiplets does not decouple when focussing on a UV sensitive quantity like the Higgs potential, it

does decouple when considering the near threshold production of the lightest states. For the purpose

of presenting the results of the LHC searches in an eloquent way, the simplified model is clearly the

way to go. There already exists a literature on simplified top partner models in generic composite

Higgs scenarios [14, 15, 16], where the role of symmetry is not fully exploited. Focussing on the

minimal composite Higgs model based on SO(5)/SO(4), our paper aims at developing a systematic

approach where all possible top partner models are constructed purely on the basis of symmetry

and selection rules.

In the end we shall derive exclusion plots in a reduced parameter space, which in general involves

the mass and couplings of the top-partner  . Now, even though these are not the parameters of a

fundamental model, given their overall size, we can roughly estimate how natural the Higgs sector

is expected to be. We can then read the results of searches as a test of the notion of naturalness. To

make that connection, even if qualitative, we must specifiy the dynamics that gives rise to the top
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goal of this paper is to provide a similar simplified approach to describe the results of experimental

searches for top partners. We will focus on the composite Higgs scenario based on the minimal coset

SO(5)/SO(4). The basic simplifying assumption is that the spectrum has the structure depicted

in figure 1, where one SO(4) multiplet of colored Dirac fermions  is parametrically lighter than

the other states. As already illustrated in Ref. [8] for the case of bosonic resonances, in that limit

one expects the dynamics of  to be described by a weakly coupled e↵ective lagrangian. Therefore

the simplified model, at leading order in an expansion in loops and derivatives, can be consistently

described by a finite number of parameters. Moreover symmetry and selection rules, via the Callan-

Coleman-Wess-Zumino (CCWZ) [9] construction, reduce the number of relevant parameters. It is
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next-to-lightest multiplet is of the order m
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model. Only if the splitting were parametrically smaller than m
 

would there be dramatic changes.

We should also stress that our models are truly minimal, in that they do not even possess su�cient

structure (states and couplings) to make the Higgs potential calculable. In principle we could add

that structure. For instance by uplifting our multiplet  to a full split SO(5) multiplet, like in a

two site model, we could make the Higgs potential only logarithmically divergent, thus controlling

its size in leading log approximation, and making the rough connection between m
 

and naturalness

more explicit along the lines of [10]. We could even go as far as making the one loop Higgs potential

finite with a three site model [11, 12], or by imposing phenomenological Weinberg sum-rules [13].

However in these less minimal models the first signals at the LHC would still be dominated by the

lightest SO(4) multiplet, whatever it may be. The point is that while the contribution of the heavier

multiplets does not decouple when focussing on a UV sensitive quantity like the Higgs potential, it

does decouple when considering the near threshold production of the lightest states. For the purpose

of presenting the results of the LHC searches in an eloquent way, the simplified model is clearly the

way to go. There already exists a literature on simplified top partner models in generic composite

Higgs scenarios [14, 15, 16], where the role of symmetry is not fully exploited. Focussing on the

minimal composite Higgs model based on SO(5)/SO(4), our paper aims at developing a systematic

approach where all possible top partner models are constructed purely on the basis of symmetry

and selection rules.

In the end we shall derive exclusion plots in a reduced parameter space, which in general involves

the mass and couplings of the top-partner  . Now, even though these are not the parameters of a

fundamental model, given their overall size, we can roughly estimate how natural the Higgs sector

is expected to be. We can then read the results of searches as a test of the notion of naturalness. To

make that connection, even if qualitative, we must specifiy the dynamics that gives rise to the top

Yukawa. As discussed in [17], there are several options, each leading to a di↵erent structure of the
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Yukawa. As discussed in [17], there are several options, each leading to a di↵erent structure of the
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2

4 1 SO(4)

Write down the most general Effective Field Theory Lagrangian.
Within the assumptions, rigorous description of any explicit model



Top Partners at the LHC
(De Simone, Matsedonsky, Rattazzi, AW, 2012)

Fourplet of custodial SO(4)

✓
T X5/3

B X2/3

◆

�m2 ⇠ y2v2

�m2 = 0

�m2 ⇠ y2f 2

B
T

t

X2/3
X5/3

Figure 2: The typical spectrum of the top partners.

nature of the Higgs and it would be generically violated, as previously discussed, if this assumption

was relaxed. This result also depends on t
R

being a composite singlet. If t
R

was instead a partially

composite state mixing to a non-trivial representation of SO(5) (for instance a 5) there would be

additional entries in the mass matrix. 8 In a sense our result depends on y being the only relevant

parameter that breaks SO(5) explicitly.
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From the above equation we obtain the correct order of magnitude for the top mass if, as anticipated,

y ⇠ y
t

and g
 

& 1. In this region of the parameter space the corrections to the approximate formulae

are rather small, being suppressed by both a factor y2/g2
 

(which is preferentially smaller than one)

and by ⇠ ⌧ 1. However we will consider departures from this theoretically expected region and

therefore we will need to use the exact formulae in the following sections.

Similarly we can study the sector of �1/3 charge states. It contains a massless b
L

, because we

are not including the b
R

in our model, plus the heavy B particle with a mass
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This formula is exact and shows that the bottom sector does not receive, in this model, any con-

tribution from EWSB. By comparing the equation above with the previous one we find that the

8The top partner’s spectrum with partially composite t
R

has been worked out in Ref. [11, 10].
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As one can see from the last expressions the mass of the eT receives positive contributions proportional

to y2 and hence for a fixed mass of the eT , y must be limited from above. Unlike the models with

fourplet partners, in the singlet case y completely controls the couplings of the eT with the top and

bottom quarks (see Sec. 3.2). Therefore one can expect that for a given me
T

there exists a maximal

allowed coupling of the SM particles with the top partner and hence for small masses the single

production of eT is suppressed. In addition small values of me
T

become unnatural since they require

very small y together with a very large c
2

needed to recover correct top mass. By minimizing the

largest eigenvalue of the mass matrix with respect to M
 

for fixed y and f one can find a minimal

allowed mass of the eT which is given by
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e
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1p
2
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= m
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for the models M1

5

and M1

14

respectively. The bound given in eq. (2.28) will a↵ect the exclusion

plots in the following.

2.2.2 Trilinear Couplings

Other interesting qualitative aspects of our models are discovered by inspecting the explicit form

of the Lagrangians in unitary gauge. These are reported in Appendix B, and are written in the

“original” field basis used to define the Lagrangians in eq.s (2.5, 2.7, 2.11, 2.12), i.e. before the

rotation to the mass eigenstates. Appendix B contains, for reference, the complete Lagrangian

including all the non-linear and the derivative Higgs interactions. However the coupling that are

relevant to the present discussion are the trilinears involving the gauge fields and the Higgs in the

models M4

5

and M4

14

, reported in eq. (B.1), (B.2), (B.3) and (B.4).

The first remarkable feature of eq. (B.2) is that the Z boson couplings with the B is completely

standard: it is not modified by EWSB e↵ects and coincides with the familiar SM expression g
Z

=

g/c
w

(T 3

L

� Q). In particular it coincides with the Zb̄
L

b
L

coupling, involving the elementary b
L

,

because b
L

and B have the same SU(2) ⇥U(1) quantum numbers. The Z-boson coupling to charge

�1/3 quarks is therefore proportional to the identity matrix. Consequently the Z interactions remain

diagonal and canonical even after rotating to the mass eigenbasis. In particular, in the charge �1/3

sector, there will not be a neutral current vertex of the form B ! Zb.

This property is due to an accidental parity, P
LR

, defined in Ref. [8] as the exchange of the Left

and the Right SO(4) generators. This symmetry is an element of O(4) and it acts on the top partner
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      :  pair or single+t production, decay to Wt.

are mediated by y. The couplings are
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The top partner eT now is in a SM singlet, therefore the interactions allowed before EWSB are the

ones with the left-handed doublet. The
p

2 suppression of the coupling with the top is due, once

again, to the SM symmetry. One important implication of eq. (3.9) is that the eT , contrary to the

partners in the fourplet, can be copiously produced singly in association with a bottom quark. We

will discuss this and other features of our models in the following section.

3.3 The Most Relevant Channels

We discuss here the most relevant production and decay processes of each top partner, identifying

the best channels where these particles should be looked for at the LHC. Obviously one would need

an analysis of the backgrounds to design concrete experimental searches for these promising channels

and to establish their practical observability. We leave this to future work and limit ourselves to

study, in section 4, the constraints on the top partners that can be inferred from presently available

LHC searches of similar particles

Let us first consider the models M4

5

, M4

14

and analyze separately each of the new fermions.

• X
5

/

3

X
5

/

3

, together with X
2

/

3

, is the lightest top partner, it is therefore the easiest to produce.

Production can occur in pair, via QCD interactions, or in association with a top quark through

its coupling with a top and a W+. The coupling, see eq. (3.8), is controlled by g
 

= m
X

5

/

3

/f ,

which grows with mass at fixed f . We thus expect single production to play an important

role at high mass, where it is enhanced with respect to pair production by both kinematics

and a larger coupling (at fixed f). This is confirmed, for a particular but typical choice of

parameters, by the plot in Figure 4.

Since it is the lightest partner, X
5

/

3

decays to W+t with unit branching ratio. The relevant

channel for its observation is X
5

/

3

! tW in association with a second top quark of opposite

charge. The latter is present in both single and pair production processes. This results in clean

signals consisting of either same-sign dileptons or trileptons plus jets. In the following section

we will recast the LHC searches for these signals and obtain a limit on X
5

/

3

production. In

addition to two top quarks and a W , pair production also leads to a second hard W while single

production (see Figure (3)) features a light-quark jet associated with virtual W emission.

Notice that the light-quark jet in single production is typically forward with a p
T

. m
W

because the emission of the virtual W is enhanced in this kinematical region [16] . In practice

this jet has the same features of the“tag jets” in VBF Higgs production and in WW–scattering.

The events are thus characterized by a forward isolated jet in one of the hemispheres. The

relevant kinematical distributions are shown in Figure (5) for the production of a 600 GeV

partner. Like in VBF or WW -scattering, one might hope to employ the forward jet as a tag

to discriminate single production form the background. Ref. [16] argued that the main source
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Figure 9: Excluded (95%CL) regions in the (MX5/3
, c1) plane for ⇠ = 0.2 for the models M45 and M414,

using the search for b0 ! W t. In blue: y = 3 (MB � MX5/3
), in green: y = 0.3 (MB & MX5/3

). Black dashed
lines correspond to the exclusions with ⇠ = 0.4. Gray regions correspond to a variation of the dileptons and
trileptons signal of approximately 10% and 30% respectively (see text for details).

Ref. [37].

We see in Table 8 that the e�ciency for the single production with the b is extremely low, below

1 h. This is because the single production signal (see Figure 3) is characterized by three leptons

plus one hard (b) jet from the top decay, plus one forward jet from the virtual W emission and a b

from the gluon splitting. But the gluon splitting is enhanced in the collinear region, therefore the

b-jet emitted from the gluon is also preferentially forward and with low p
T

. In order for the event

to pass the selection cut, that requires at least two jets with p
T

> 25 GeV and |⌘| < 2.4, at least

one of the two preferentially forward jets must be central and hard enough, implying a significant

reduction of the cross-section. However this is not yet the dominant e↵ect, the main reduction of the

signal is due to the cut R
T

> 80 GeV discussed before. Indeed R
T

is computed without including

the two hardest leptons and the two hardest jets, which in our case means, since we have only 3

leptons and typically only 2 jets, that the momentum of the softest lepton must be above 80 GeV.

Therefore in the end the signal is completely killed. The situation is better for the single production

with the t since one typically has more particles produced in this case and therefore the e�ciencies

are comparable with the ones of pair production.

The situation is better for the single production with the t, the e�ciencies are comparable with

the ones of pair production (see Table 8). However, we have seen in section 3.3 (see fig. 7) that

the rate of pair production is typically larger than the one of single production with the top, in the

relevant mass range. Since the e�ciencies are comparable we do not expect a sizable contribution

from this process. The signal is totally dominated by the pair production and the BR( eT ! Z t) is

fixed to be about 1/4, as discussed in section 3.3. Therefore the bounds one can infer are mainly

on me
T

, but a mild dependence on the other parameters (⇠ and y) is still residual in the BR. The
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because the emission of the virtual W is enhanced in this kinematical region [16] . In practice
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The events are thus characterized by a forward isolated jet in one of the hemispheres. The

relevant kinematical distributions are shown in Figure (5) for the production of a 600 GeV
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FIG. 9: The excluded region of (c
1

, mX) for a fixed set of ⇠ and y. Two choices of y-values are

shown. Left: y = 3, corresponding to the case with mB � m
5/3. Right: y = 0.3, corresponding

to the case with mB ⇠> m
5/3. For each y-value, we plot the contours for three di↵erent values of

⇠ ⌘ (v/f)2: ⇠ = 0.1 (dotted), ⇠ = 0.2 (solid), and ⇠ = 0.4 (dashed). Black lines are obtained by

our “l + jets” style cut-and-count analysis, assuming 20 fb�1 of LHC8 data. Red lines indicate the

recast CMS SSDL analysis.

at 14 TeV their decay products will be more boosted and their radiation will be confined

to a smaller area of the detector. Particularly for the reconstruction of isolated leptons

this can pose a severe challenge. However, already in searches at 8 TeV mini-isolation

criteria for the reconstruction of isolated leptons were proposed and successfully applied

[65]. In this kinematic regime boosted techniques will be indispensable. In fact, some of the

existing taggers might need further development to exploit the LHC’s energy reach to the

fullest [36]. In any case, the observables and search strategies discussed in this work will

be directly applicable at 13 (14) TeV, hereby helping to discover TeV-scale top partners or

constraining the parameter space of composite Higgs models.
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be quite sizeable.

Single production of a T̃ -like partner was considered in the context of Little Higgs models

in Refs. [32, 33], and more recently for composite Higgs models in Ref. [34], where it was

also considered the possibility of using a forward jet tag as a handle for this kind of searches.
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associated T̃ b production dominates even over pair production in all the relevant mass-range

12By fixing m
t

, ⇠, c
2

and m
˜

T

the result for model M1
14

and M1
5

coincide. Indeed, by comparing the la-

grangians (B.6) and (B.7), one notices that the gauge vertices and the mass spectrum of model M1
14

equal those

of model M1
5

when the equality yM15 sin ✏ = yM114 sin 2✏/2 holds.
13Note that, for a given m e

T

, y
max

does indeed correspond to the maximal value of the Wb̄ eT -coupling, while the

coincidence is not exact in the case of the Zt̄ eT -coupling.

24

BR(tZ)'BR(ht)'0.5BR(Wb)
      democratic decays



    :  dominant single+b production.

Top Partners at the LHC
(De Simone, Matsedonsky, Rattazzi, AW, 2012)

⇠ c
1

g
 

in eq. (3.8). Like in the case of T , SU(2) selection rules suppress the decay to WX
2

/

3

.

Moreover, the decay B ! WT , when kinematically allowed, proceeds either via a transverse

W , with SM gauge coupling g < g
 

, or via a longitudinal W , with e↵ective coupling suppressed

by ✏. Therefore also this decay is significantly suppressed. The decay B ! Zb is forbidden

because, as we explained in sect. 2.2.2, flavor-changing neutral couplings are absent in the

charge �1/3 sector. The B ! hb channel is forbidden in model M4

5

and suppressed by ✏ in

model M4

14

. In the latter model it can play a role, but only in a corner of the parameter

space.

Single production, since the ZBb vertex is absent, is always accompanied by a top quark. The

signature of single B production is therefore a resonant B ! Wt plus an opposite charge top,

the same final states of single X
5

/

3

production. In the end, B production, single and pair, has

the same signatures as X
5

/

3

production: same sign leptons or trileptons plus jets.

Let us now switch to models M1

5

and M1

14

, where the only new heavy fermion is the T̃ .

• eT
eT has a very rich phenomenology because it can be copiously produced through all the three

mechanisms described above. We see in eq. (3.9) that eT couples to both Zt and Wb, with a

coupling of order y ⇠ y
t

/c
2

. It can therefore be singly produced either in association with a

top or with a bottom quark. Notice that in the range c
2

⇠ 1 suggested by power counting, the

trilinear coupling is of order y
t

, which is expected to be generically smaller than the strong

sector coupling g
 

that controls the single production of top partners in a (2, 2). The bands

in the left panel of Fig. 7, indicate the single prooduction cross section12 for 0.5 < c
2

< 2:

comparing the blue band to the corresponding case of X
2

/

3

t and X
5

/

3

t production in models

M4

5

and M4

14

, one notices, as expected, a typically smaller rate for models M1

5

and M1

14

.

While y ⇠ y
t

(c
2

⇠ 1) is favored by naive power counting, one can entertain the possibility of

choosing y > y
t

(c
2

< 1), for which the single production rate can be sizeable. However, for

a given value of me
T

and f , there is a mathematical upper bound y
max

on y determined by

eqs. (2.28). The right plot in Fig. 7 shows that y
max

grows with me
T

and that it is comparable

in model M1

5

and model M1

14

. In the left panel of Fig. 7, the green line and the blue line

shows, respectively for T̃ b and T̃ t, the maximal allowed cross section, which basically coincides

with the choice y = y
max

13. For such maximal values the single production cross section can

be quite sizeable.

Single production of a T̃ -like partner was considered in the context of Little Higgs models

in Refs. [32, 33], and more recently for composite Higgs models in Ref. [34], where it was

also considered the possibility of using a forward jet tag as a handle for this kind of searches.

The total cross section in this channel is favored over single production with a t by both

kinematics and by the
p

2 factor in charged current transitions. Indeed, as shown in Fig. (7)

associated T̃ b production dominates even over pair production in all the relevant mass-range

12By fixing m
t

, ⇠, c
2

and m
˜

T

the result for model M1
14

and M1
5

coincide. Indeed, by comparing the la-

grangians (B.6) and (B.7), one notices that the gauge vertices and the mass spectrum of model M1
14

equal those

of model M1
5

when the equality yM15 sin ✏ = yM114 sin 2✏/2 holds.
13Note that, for a given m e

T

, y
max

does indeed correspond to the maximal value of the Wb̄ eT -coupling, while the

coincidence is not exact in the case of the Zt̄ eT -coupling.

24

BR(tZ)'BR(ht)'0.5BR(Wb)

Present combined bound is:	


(ATLAS-CONF-2013-060)	



(CMS PAS B2G-12-015)

M > 670 GeV

      democratic decays



    :  dominant single+b production.

Top Partners at the LHC
(De Simone, Matsedonsky, Rattazzi, AW, 2012)

    searches are insensitive to single production.	


Better reach need dedicated single production studies.

⇠ c
1

g
 

in eq. (3.8). Like in the case of T , SU(2) selection rules suppress the decay to WX
2

/

3

.

Moreover, the decay B ! WT , when kinematically allowed, proceeds either via a transverse

W , with SM gauge coupling g < g
 

, or via a longitudinal W , with e↵ective coupling suppressed

by ✏. Therefore also this decay is significantly suppressed. The decay B ! Zb is forbidden

because, as we explained in sect. 2.2.2, flavor-changing neutral couplings are absent in the

charge �1/3 sector. The B ! hb channel is forbidden in model M4

5

and suppressed by ✏ in

model M4

14

. In the latter model it can play a role, but only in a corner of the parameter

space.

Single production, since the ZBb vertex is absent, is always accompanied by a top quark. The

signature of single B production is therefore a resonant B ! Wt plus an opposite charge top,

the same final states of single X
5

/

3

production. In the end, B production, single and pair, has

the same signatures as X
5

/

3

production: same sign leptons or trileptons plus jets.

Let us now switch to models M1

5

and M1

14

, where the only new heavy fermion is the T̃ .

• eT
eT has a very rich phenomenology because it can be copiously produced through all the three

mechanisms described above. We see in eq. (3.9) that eT couples to both Zt and Wb, with a

coupling of order y ⇠ y
t

/c
2

. It can therefore be singly produced either in association with a

top or with a bottom quark. Notice that in the range c
2

⇠ 1 suggested by power counting, the

trilinear coupling is of order y
t

, which is expected to be generically smaller than the strong

sector coupling g
 

that controls the single production of top partners in a (2, 2). The bands

in the left panel of Fig. 7, indicate the single prooduction cross section12 for 0.5 < c
2

< 2:

comparing the blue band to the corresponding case of X
2

/

3

t and X
5

/

3

t production in models

M4

5

and M4

14

, one notices, as expected, a typically smaller rate for models M1

5

and M1

14

.

While y ⇠ y
t

(c
2

⇠ 1) is favored by naive power counting, one can entertain the possibility of

choosing y > y
t

(c
2

< 1), for which the single production rate can be sizeable. However, for

a given value of me
T

and f , there is a mathematical upper bound y
max

on y determined by

eqs. (2.28). The right plot in Fig. 7 shows that y
max

grows with me
T

and that it is comparable

in model M1

5

and model M1

14

. In the left panel of Fig. 7, the green line and the blue line

shows, respectively for T̃ b and T̃ t, the maximal allowed cross section, which basically coincides

with the choice y = y
max

13. For such maximal values the single production cross section can

be quite sizeable.

Single production of a T̃ -like partner was considered in the context of Little Higgs models

in Refs. [32, 33], and more recently for composite Higgs models in Ref. [34], where it was

also considered the possibility of using a forward jet tag as a handle for this kind of searches.

The total cross section in this channel is favored over single production with a t by both

kinematics and by the
p

2 factor in charged current transitions. Indeed, as shown in Fig. (7)

associated T̃ b production dominates even over pair production in all the relevant mass-range

12By fixing m
t

, ⇠, c
2

and m
˜

T

the result for model M1
14

and M1
5

coincide. Indeed, by comparing the la-

grangians (B.6) and (B.7), one notices that the gauge vertices and the mass spectrum of model M1
14

equal those

of model M1
5

when the equality yM15 sin ✏ = yM114 sin 2✏/2 holds.
13Note that, for a given m e

T

, y
max

does indeed correspond to the maximal value of the Wb̄ eT -coupling, while the

coincidence is not exact in the case of the Zt̄ eT -coupling.

24

BR(tZ)'BR(ht)'0.5BR(Wb)

Present combined bound is:	


(ATLAS-CONF-2013-060)	



(CMS PAS B2G-12-015)

M > 670 GeV

      democratic decays

⇠ c
1

g
 

in eq. (3.8). Like in the case of T , SU(2) selection rules suppress the decay to WX
2

/

3

.

Moreover, the decay B ! WT , when kinematically allowed, proceeds either via a transverse

W , with SM gauge coupling g < g
 

, or via a longitudinal W , with e↵ective coupling suppressed

by ✏. Therefore also this decay is significantly suppressed. The decay B ! Zb is forbidden

because, as we explained in sect. 2.2.2, flavor-changing neutral couplings are absent in the

charge �1/3 sector. The B ! hb channel is forbidden in model M4

5

and suppressed by ✏ in

model M4

14

. In the latter model it can play a role, but only in a corner of the parameter

space.

Single production, since the ZBb vertex is absent, is always accompanied by a top quark. The

signature of single B production is therefore a resonant B ! Wt plus an opposite charge top,

the same final states of single X
5

/

3

production. In the end, B production, single and pair, has

the same signatures as X
5

/

3

production: same sign leptons or trileptons plus jets.

Let us now switch to models M1

5

and M1

14

, where the only new heavy fermion is the T̃ .

• eT
eT has a very rich phenomenology because it can be copiously produced through all the three

mechanisms described above. We see in eq. (3.9) that eT couples to both Zt and Wb, with a

coupling of order y ⇠ y
t

/c
2

. It can therefore be singly produced either in association with a

top or with a bottom quark. Notice that in the range c
2

⇠ 1 suggested by power counting, the

trilinear coupling is of order y
t

, which is expected to be generically smaller than the strong

sector coupling g
 

that controls the single production of top partners in a (2, 2). The bands

in the left panel of Fig. 7, indicate the single prooduction cross section12 for 0.5 < c
2

< 2:

comparing the blue band to the corresponding case of X
2

/

3

t and X
5

/

3

t production in models

M4

5

and M4

14

, one notices, as expected, a typically smaller rate for models M1

5

and M1

14

.

While y ⇠ y
t

(c
2

⇠ 1) is favored by naive power counting, one can entertain the possibility of

choosing y > y
t

(c
2

< 1), for which the single production rate can be sizeable. However, for

a given value of me
T

and f , there is a mathematical upper bound y
max

on y determined by

eqs. (2.28). The right plot in Fig. 7 shows that y
max

grows with me
T

and that it is comparable

in model M1

5

and model M1

14

. In the left panel of Fig. 7, the green line and the blue line

shows, respectively for T̃ b and T̃ t, the maximal allowed cross section, which basically coincides

with the choice y = y
max

13. For such maximal values the single production cross section can

be quite sizeable.

Single production of a T̃ -like partner was considered in the context of Little Higgs models

in Refs. [32, 33], and more recently for composite Higgs models in Ref. [34], where it was

also considered the possibility of using a forward jet tag as a handle for this kind of searches.

The total cross section in this channel is favored over single production with a t by both

kinematics and by the
p

2 factor in charged current transitions. Indeed, as shown in Fig. (7)

associated T̃ b production dominates even over pair production in all the relevant mass-range

12By fixing m
t

, ⇠, c
2

and m
˜

T

the result for model M1
14

and M1
5

coincide. Indeed, by comparing the la-

grangians (B.6) and (B.7), one notices that the gauge vertices and the mass spectrum of model M1
14

equal those

of model M1
5

when the equality yM15 sin ✏ = yM114 sin 2✏/2 holds.
13Note that, for a given m e

T

, y
max

does indeed correspond to the maximal value of the Wb̄ eT -coupling, while the

coincidence is not exact in the case of the Zt̄ eT -coupling.

24



Ξ"0.2

#

0 1 2 3 4 5 6
0

1

2

3

4

m5!3$ "TeV#

m
T$

"T
eV
#

Ξ"0.1

#

0 1 2 3 4 5 6
0

1

2

3

4

m5!3$ "TeV#

m
T$

"T
eV
#

Figure 3: Scatter plots of the masses of the lightest exotic state of charge 5/3 and of the lightest
e
T resonance for ⇠ = 0.2 (left panel) and ⇠ = 0.1 (right panel) in the three-site DCHM model.
The black dots denote the points for which 115 GeV  mH  130 GeV, while the gray dots have
mH > 130 GeV. The scans have been obtained by varying all the composite sector masses in the
range [�8f, 8f ] and keeping the top mass fixed at the value mt = 150 GeV.

T much lighter than the e
T can not happen for a light Higgs due to the presence of a lower bound

on the mT� , which will be discussed in details in the next section. In the region of comparable T�

and e
T� masses sizable deviations from eq. (44) can occur. These are due to the possible presence

of a relatively light second level of resonances, as already discussed.

The numerical results clearly show that resonances with a mass of the order or below 1.5 TeV

are needed in order to get a realistic Higgs mass both in the case ⇠ = 0.2 and ⇠ = 0.1. The

prediction is even sharper for the cases in which only one state, namely the e
T�, is light. In these

regions of the parameter space a light Higgs requires states with masses around 400 GeV for the

⇠ = 0.2 case and around 600 GeV for ⇠ = 0.1.

The situation becomes even more interesting if we also consider the masses of the other com-

posite resonances. As we already discussed, the first level of resonances contains, in addition to

the T� and e
T�, three other states: a top-like state, the T

2/3�, a bottom-like state, the B�, and an

exotic state with charge 5/3, the X

5/3�. These three states together with the T� form a fourplet

of SO(4). Obviously the X

5/3� cannot mix with any other state even after EWSB, and therefore

it remains always lighter than the other particles in the fourplet. In particular (see fig. 9 for a

schematic picture of the spectrum), it is significantly lighter than the T� . In fig. 3 we show the

scatter plots of the masses of the lightest exotic charge 5/3 state and of the e
T . In the parameter

space region in which the Higgs is light the X

5/3� resonance can be much lighter than the other

22

Impact on a concrete model (roughly):

Q=2/3

Q=5/3

⇠ = 0.2

(to be refined, work in progress)
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SM triplet with zero Hypercharge:                                \V a ! {V +, V �, V 0}

LS =

relate the Simplified Model to explicit constructions. Two examples are considered as represen-

tatives of weakly and strongly coupled theories, showing that the Simplified Model is general

enough to describe both cases in di↵erent regions of the parameter space. The examples are

the extension of the SM gauge group described in Ref. [17] and the e↵ective description of

Composite Higgs models vectors of Ref. [31]. In Section 5 we present our Conclusions. Our

Simplified Model is implemented in a series of tools described in Appendix C and available at

the webpage [1].

2 A Simple Simplified Model

In addition to the SM fields and interactions we consider a real vector V a
µ , a = 1, 2, 3, in the

adjoint representation of SU(2)L and with vanishing hypercharge. It describes one charged

and one neutral heavy spin-one particle with the charge eigenstate fields defined by the familiar

relations

V ±
µ =

V 1

µ ⌥ iV 2

µp
2

, V 0

µ = V 3

µ . (2.1)

Similarly to Ref. [12], we describe the dynamics of the new vector by a simple phenomenological

Lagrangian

LV = �1

4
D

[µV
a
⌫]D

[µV ⌫] a +
m2

V

2
V a
µ V

µ a

+ i gV cHV a
µH

†⌧a
$

D
µ
H +

g2

gV
cFV

a
µ J

µ a
F

+
gV
2
cV V V ✏abcV

a
µ V

b
⌫ D

[µV ⌫] c + g2V cV V HHV a
µ V

µ aH†H � g

2
cV VW ✏abcW

µ ⌫ aV b
µV

c
⌫ .

(2.2)

The first line of the above equation contains the V kinetic and mass term, plus trilinear and

quadrilinear interactions with the vector bosons from the covariant derivatives

D
[µV

a
⌫] = DµV

a
⌫ � D⌫V

a
µ , DµV

a
⌫ = @µV

a
⌫ + g ✏abcW b

µV
c
⌫ , (2.3)
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built, for each specific model as previously outlined, some care is required for the other

one. The crucial point is that the Simplified Model, di↵erently for instance from the

SM or the MSSM, is not supposed to be a complete theory and thus attention must

be paid, when comparing with the data, not to use it outside its realm of validity.

Namely, the Simplified Model is constructed to describe only the on-shell resonance

production and decay, a good experimental search should thus be only sensitive to the

on-shell process and insensitive to the o↵-shell e↵ects, of which the Simplified Model is

not a valid description. The simplest example of this situation, which we will discuss

in detail, is the Drell-Yan process where one studies the invariant mass distribution of

the final state. Aside from the resonant peak, the distribution is characterised by a low

mass tail which becomes prominent, because of the rapidly-falling parton distribution

functions, when the resonance approaches the kinematical production threshold. Many

di↵erent New Physics e↵ects, not included in the Simplified Model, might contribute

to the tail and change radically the Simplified Model prediction. This could come, for

instance, from extra contact interactions or from heavier resonances produced in the

same channel. Around the peak, and only in that region, these e↵ects are negligible

and the Simplified Model prediction is trustable. Experimental searches should focus on

the peak and avoid contamination from the other regions as much as possible. More in

general, any resonance search relies on the measurement of a given observable, either the

number of events or a distribution, restricted by suitable identification and selection cuts.

Only “on-shell” observables, which are exclusively sensitive to the resonance formation

and decay, should be employed in Simplified Model searches. Notice that whether one

observable is on-shell or not can crucially depend on the cuts, and must be checked case

by case.

Aside from addressing the conceptual issues previously outlined, the usage of on-

shell observables is also an important practical simplification. Because of factorisation,

on-shell observables are “easy” to predict, within the Simplified Model, in the sense

that they do not depend in a wild way on all the parameters of the phenomenological

Lagrangian, but only to few combinations that describe the on-shell resonance. In the

example of the invariant mass distribution, the peak region is an on-shell observable and

indeed it is uniquely predicted by the Breit-Wigner formula in terms of the resonance

mass, the width and the production cross-section times branching fraction. The tail, in-

stead, also depends on the individual couplings because it originates from to an o↵-shell

process. Therefore if the search was performed at the peak, or more in general by ex-
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Figure 3.2: Current experimental constrains in the (cH , cF ) plane for the four benchmark points at 2
TeV. The yellow region shows the exclusion from V ! l⌫ searches [63] while in blue are regions excluded
by V ! WZ searches with WZ ! jj [62] in light blue and WZ ! 3l⌫ [68] in dark blue. The solid
black lines depict constrains from EWPT at 95% CL and the dashed black line twice this limit. The
points corresponding to models A and B for the di↵erent values of gV are also shown.

3.2 Limits on the Simplified Model parameters

The experimental limits on �⇥BR can be simply converted into limits on the relevant param-

eters of the Simplified Model. In Section 2 we showed that the most relevant parameters are

the mass of the resonance, the overall scale of its couplings gV and the parameters cF and cH
describing the interactions with SM fermions and bosons respectively. In order to give an idea

of the bounds coming from present analyses we make the simple choice cF = cq = cl = c
3

and

show the bounds, for given mass and coupling, in the two-dimensional (cH , cF ) plane. The

results, as expected from the discussion of Section 2, are very weakly sensitive to the other

parameters cV VW , cV V V and cV V HH . In the plots we fixed the latter to their values in model

A (see Section 4.1) and checked explicitly that the results do not change significantly by setting

them to model B.

In Figure 3.2 we show the allowed and excluded regions in the (cH , cF ) plane for fixed

MV and gV = 1, 3, 6 corresponding, respectively, to weak, intermediate and strong coupling.

As an illustrative example we chose MV = 2 TeV as an intermediate mass scale where the

experimental constraints are neither too strong nor too weak and thus more interesting. For

simplicity, we did not report all the relevant limits in the plots, but only the ones from charged

vector searches. The neutral ones could be easily added but would just give comparable

constraints and not change the result significantly. Obviously, the situation could have changed

if we had performed a statistical combination of the limits in the di↵erent channels rather than

a superposition of the corresponding excluded regions. However, we think that correlations

among the di↵erent channels should be taken into account by the experimental collaborations.

In the plots, the yellow region represents the exclusion from the CMS l+⌫ analysis of Ref. [67],

while the dark and light blue ones show the limits from CMS WZ ! 3l⌫ [68] and WZ !
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Figure 3.1: Bounds on the production cross-section for some of the searches listed in Table 3.1 (except
for the ones in grey) for the models AgV =1 (upper plots), BgV =3 (middle plots) and BgV =6 (lower plots)
for the ATLAS (left) and CMS (right) collaborations.

bounds on �⇥BR by the corresponding BRs and superimpose the theoretical predictions for

the production of the positively charged and neutral states. Let us discuss the results separately

for the two cases.
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Figure 3.3: Current experimental constraints in the (MV , gV ) plane in models A and B. The notation
is the same as in Figure 3.2.

jj with W/Z tagged jets [57] respectively.10 The black curves represent constraints coming

from EWPT, i.e. from the Ŝ parameter, which we computed in Appendix B. The black solid

curve corresponds to the strict 95% C.L. bound on Ŝ of Ref. [67], while the dashed line is

obtained by artificially enlarging the latter bound by a factor of two. This second line is

a more realistic quantification of the constraints than the strict limits because the EWPT

observables are eminently o↵-shell observables and thus not calculable within the Simplified

Model. Extra contributions, of the same order as the ones coming from the resonance exchange,

can easily arise in the underlying complete model. By enlarging the bound on Ŝ we take these

contributions into account and obtain a conservative exclusion limit.

Any given explicit model corresponds to one point in the plots of Figure 3.2. The two

points indicated by A and B correspond to the prediction of the two benchmarks models

for the assumed values of gV and MV . For small gV the lepton-neutrino search dominates

the exclusion (first plot) and only a narrow band around �1 . cF . 1 remains allowed. Here

EWPT are not competitive with direct searches and the di-boson searches are almost irrelevant

due to the relatively small di-boson BR (see the discussion at the end of Section 2.1). Moreover,

for small gV both our benchmark models are excluded. As gV increases we notice four main

features: the constraints from EWPT become comparable to the direct searches, di-boson

searches become more and more relevant due to the enhanced BRs, model B evades bounds

from direct searches more and more compared to model A which remains close to the excluded

region, and bounds from EWPT constrain model B more than model A. The last two features

are due to the larger value of cH predicted by model B, corresponding to a region which is

very di�cult to access with direct searches.

A second interesting way to present the experimental limits is to focus on explicit models

and draw exclusion curves in the plane of their input parameters. In both models A and B we

have two parameters, the coupling and the mass of the new vector. The limits in the (MV , gV )

10For recent theoretical developments in the search for vector resonances using boosted techniques see, for
instance, in Refs. [80–82].
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Conclusions and Outlook

Natural models of EWSB will be tested at the LHC, even a negative 
result would change our perspective on Fundamental Interactions.	


!
A pNGB Higgs with P.C. could work, robust visible signatures are:	



• Higgs couplings modifications (not yet significant)    	


• Direct observation of Top Partners (already effective)	


• Heavy Vectors (we might do 3 or 4TeV at LHC14)	



Present data are already probing part of the natural par. space.	


!
Experimentalists should not be left alone in Direct Searches. Namely, 
giving them your favorite MadGraph model is not enough!	


!
Significant improvements are possible with new channels (for Top.P.) and 
by combining different channels (for Heavy Vectors). 
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A pNGB Higgs with P.C. could work, robust visible signatures are:	



• Higgs couplings modifications (not yet significant)    	


• Direct observation of Top Partners (already effective)	


• Heavy Vectors (we might do 3 or 4TeV at LHC14)	
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