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Elements of the Standard Model

I Gauge Group –

SU(2)L ×U(1)×SU(3)⇒ 3+1+8 Gauge Bosons .

The 12 gauge bosons are the W±, Z0, γ and the eight gluons.
I Fermions – 3 Generations of Quarks and Leptons:

u d e− νe

c s µ− νµ
t b τ− ντ

I The Higgs Field – needed to generate masses.

In spite of the simplicity of these elements, the SM contains a rich and subtle
structure which continues to be tested to great precision at experimental
facilities, so far with frustrating success.

It does however, leave many unanswered questions and is surely incomplete.

I The purpose of these lecture is to review the structure and status of the
SM and the tools being used to make SM calculations.
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Immediate Questions
Some immediate questions spring to mind:

I Why is Qe +QP = 0? (PDG: |(QP +Qe)/Qe| < 10−21)

Standard Model SUSSP61, Lecture 1, 9th August 2006



Introduction Introduction to Weak Decays Goldstone Bosons Abelian Higgs Model SU(2)×U(1)

Immediate Questions
Some immediate questions spring to mind:

I Why is Qe +QP = 0? (PDG: |(QP +Qe)/Qe| < 10−21)
This strongly suggests that quarks and leptons are related ⇒ Unification
of Forces ⇒ SUSY and much of BSM Physics.

I Why are there three generations?
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Immediate Questions
Some immediate questions spring to mind:

I Why is Qe +QP = 0? (PDG: |(QP +Qe)/Qe| < 10−21)
This strongly suggests that quarks and leptons are related ⇒ Unification
of Forces ⇒ SUSY and much of BSM Physics.

I Why are there three generations?

I What is the reason for the huge range of fermion masses?
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Lecture 1 — Spontaneous Symmetry Breaking

1. Weak Decays

2. Goldstone Bosons

3. Abelian Higgs Model

4. SU(2)×U(1)

Standard Model SUSSP61, Lecture 1, 9th August 2006



Introduction Introduction to Weak Decays Goldstone Bosons Abelian Higgs Model SU(2)×U(1)

Weak Decays and Massive Vector Bosons

I Short range nature of weak force (∼ 10−18 m) together with experimental
studies ⇒ Fermi Model:

L = −GF√
2

j†µ jµ

where jµ is the weak V −A current

jµ = ν̄eγµ (1− γ5)e+ ν̄µ γµ (1− γ5)µ + ν̄τ γµ (1− γ5)τ + Hadronic Terms.

Example – Muon Decay

µ

ν̄e

νµ

e

I GF is the Fermi Constant.
It has dimensions of [m]−2 (GF ' 1.17×10−5GeV−2) ⇒ loop corrections
diverge as powers of the cut-off and the 4-Fermion theory is
non-renormalizable.
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Weak Decays and Massive Vector Bosons – Cont.
I A natural suggestion for the cure of the problem of non-renormalizability

is the introduction of an intermediate vector boson, which is sufficiently
heavy to account for the short-range of the interaction.

µ

ν̄e

νµ

e ⇒ µ

νµ ν̄e

e

It may seem that

GF ∝
g2

k2−M2

where g is a dimensionless coupling constant, M is the mass of the
boson and k is the momentum flowing through the propagator.
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Weak Decays and Massive Vector Bosons – Cont.
I A natural suggestion for the cure of the problem of non-renormalizability

is the introduction of an intermediate vector boson, which is sufficiently
heavy to account for the short-range of the interaction.

µ

ν̄e

νµ

e ⇒ µ

νµ ν̄e

e

It may seem that

GF ∝
g2

k2−M2

where g is a dimensionless coupling constant, M is the mass of the
boson and k is the momentum flowing through the propagator.

I However, the propagator of a massive vector boson is

−i

k2−M2

{

gµν − kµ kν

M2

}

and the problem of non-renormalizability remains (µ ,ν are Lorentz
indices).
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Goldstone Bosons

I Today, the standard approach to the construction of a theory with
massive gauge bosons requires the introduction of scalar (Higgs) fields.

I I start however, by reminding you about Goldstone bosons.

I Consider a field theory with a single (real) scalar field φ with the
potential:

V(φ) = −µ2

2
φ2 +

λ
4!

φ4 .

The non-standard feature is that the mass term has the wrong sign.

φ

V
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Goldstone Bosons – Discrete Symmetry Cont.
V(φ) = −µ2

2
φ2 +

λ
4!

φ4 .

I The lowest-energy classical field configuration is the translationally
invariant field

φ(x) = φ0 = ±v = ±
√

6
λ

µ .

v is called the Vacuum Expectation Value of φ .

I To interpret this theory, imagine quantum fluctuations close to one of the
minima, +v say. To study the quantum fluctuations it is convenient to
write

φ(x) = v+σ(x)

so that

V(σ) =
1
2

(2µ2)σ2 +

√

λ
6

µσ3 +
λ
4!

σ4 .

I This is now a standard field theory of a scalar field, with mass
√

2µ and
with cubic and quartic interactions.

I Original φ →−φ symmetry is now hidden in the relations between the
three coefficients in terms of two parameters λ and µ .
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Goldstone Bosons – Discrete Symmetry Cont.

φ

V

Comments:

I This is a simple example of spontaneous symmetry breaking, i.e. of the
discrete symmetry φ →−φ .

I In quantum mechanics the situation is qualitatively different.
Tunnelling⇒ the ground state wave function is symmetric around the
two minima.
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Goldstone Bosons – Continuous Symmetries

I More interesting features occur when we have the spontaneous
symmetry of a continuous symmetry.

I Consider the linear sigma model, describing the interactions of N real
scalar fields:

L =
1
2

(∂µ φ i)2 +
µ2

2
(φ i)2− λ

4

[

(φ i)2
]2

.

I There are implicit sums over i in each (φ i)2 over 1≤ i ≤ N .
I L is invariant under O(N) rotational symmetry.
I The potential is minimized for any {φ i

0} such that

(φ i
0)

2 =
µ2

λ
.

This is a condition only on the length of the vector φ0 and we
therefore have a continuous infinity of equivalent vacua.

I Let us choose
φ0 = (0,0,· · · ,0,v) with v =

µ√
λ

.
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Goldstone Bosons – Continuous Symmetries Cont.

L =
1
2

(∂µ φ i)2 +
µ2

2
(φ i)2− λ

4

[

(φ i)2
]2

.

φ0 = (0,0,· · · ,0,v) with v =
µ√
λ

.

I We now define the shifted fields:

φ i(x) = (π j(x),v+σ(x)) j = 1,· · · ,N −1.

in terms of which the Langrangian becomes:

L =
1
2

(∂µ π j)2 +
1
2

(∂µ σ)2− 1
2

(2µ2)σ2−
√

λ µσ3

−
√

λ µ(π j)2σ − λ
4

σ4− λ
2

(π j)2σ2− λ
4

[

(π j)2
]2

.
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Goldstone Bosons – Continuous Symmetries Cont.

L =
1
2

(∂µ φ i)2 +
µ2

2
(φ i)2− λ

4

[

(φ i)2
]2

.

φ0 = (0,0,· · · ,0,v) with v =
µ√
λ

.

I We now define the shifted fields:

φ i(x) = (π j(x),v+σ(x)) j = 1,· · · ,N −1.

in terms of which the Langrangian becomes:

L =
1
2

(∂µ π j)2 +
1
2

(∂µ σ)2− 1
2

(2µ2)σ2−
√

λ µσ3

−
√

λ µ(π j)2σ − λ
4

σ4− λ
2

(π j)2σ2− λ
4

[

(π j)2
]2

.

I The most striking feature is that there is no term proportional to (π j)2.
Thus we have N −1 massless Goldstone Bosons and 1 massive boson
(σ ) with mass

√
2µ .
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Goldstone Bosons – Continuous Symmetries Cont.

V

I The existence of Goldstone Bosons can be understood in terms of zero
modes.

I O(N) has N(N −1)/2 generators and the residual symmetry O(N −1)
has (N −1)(N −2)/2 generators.

I The number of Broken Symmetries is therefore

1
2
{N(N −1)− (N −1)(N −2)} = N −1

which is the number of Goldstone Bosons .
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Goldstone Bosons – Continuous Symmetries Cont.

I The linear sigma model is an example of Goldstone’s Theorem which
states that the number of broken symmetries is equal to the number of
Goldstone Bosons.
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Goldstone Bosons – Continuous Symmetries Cont.

I The linear sigma model is an example of Goldstone’s Theorem which
states that the number of broken symmetries is equal to the number of
Goldstone Bosons.

I There do not appear to be any massless scalar bosons in nature
(however, we’ll come back below to the pions as the pseudo-Goldstone
bosons of the spontaneous breaking of chiral symmetry).
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Goldstone Bosons – Continuous Symmetries Cont.

I The linear sigma model is an example of Goldstone’s Theorem which
states that the number of broken symmetries is equal to the number of
Goldstone Bosons.

I There do not appear to be any massless scalar bosons in nature
(however, we’ll come back below to the pions as the pseudo-Goldstone
bosons of the spontaneous breaking of chiral symmetry).

I Spontaneous Symmetry Breaking however, is a central feature in the
Higgs Mechanism for mass generation as we will now see.

Standard Model SUSSP61, Lecture 1, 9th August 2006



Introduction Introduction to Weak Decays Goldstone Bosons Abelian Higgs Model SU(2)×U(1)

The Abelian Higgs Model

An instructive example is the theory of a complex scalar field coupled to the
electromagnetic field (and itself)

L = −1
4

(Fµν )2 + |Dµ φ |2−V(φ)

where D is the covariant derivative, Dµ = ∂µ + ieAµ and

V(φ) = −µ2 φ∗φ +
λ
2

(φ∗φ)2 .

I L is invariant under the local (Abelian) U(1) gauge transformation:

φ(x) → eiα(x)φ(x) , Aµ (x) → Aµ (x)− 1
e

∂µ α(x) .

I For µ2 < 0 this is simply the quantum electrodynamics of a charged
scalar boson.

I For µ2 > 0 the U(1) symmetry is spontaneously broken.
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The Abelian Higgs Model Cont.

V(φ) = −µ2 φ∗φ +
λ
2

(φ∗φ)2 .

I The minimum of this potential is at:

|〈φ〉| = |φ0| =
(

µ2

λ

)

1
2

.

I Consider the minimum to be in the positive real direction (i.e. φ0 to be
real and positive) and define the shifted fields φ1,2:

φ(x) = φ0 +
1√
2

(φ1(x)+ iφ2(x)) .

I The potential can be rewritten in terms of the fields φ1,2:

V(φ) = − 1
2λ

µ4 +
1
2

2µ2φ2
1 +O(φ3

i ) .

I φ1 is a scalar with mass
√

2µ and φ2 is the massless Goldstone Boson.
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The Abelian Higgs Model Cont.

|Dµ φ |2 =
1
2

(∂µ φ1)
2 +

1
2

(∂µ φ2)
2 +

√
2eφ0 Aµ ∂ µ φ2 + e2φ2

0 Aµ Aµ + · · · .
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The Abelian Higgs Model Cont.

|Dµ φ |2 =
1
2

(∂µ φ1)
2 +

1
2

(∂µ φ2)
2 +

√
2eφ0 Aµ ∂ µ φ2 + e2φ2

0 Aµ Aµ + · · · .
I The photon has acquired a mass

m2
A = 2e2φ2

0 .
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The Abelian Higgs Model Cont.

|Dµ φ |2 =
1
2

(∂µ φ1)
2 +

1
2

(∂µ φ2)
2 +

√
2eφ0 Aµ ∂ µ φ2 + e2φ2

0 Aµ Aµ + · · · .
I The photon has acquired a mass

m2
A = 2e2φ2

0 .

I There is a peculiar two-point term between the Goldstone Boson φ2 and
the photon: √

2eφ0 Aµ ∂ µ φ2 .

k
µ = i

√
2eφ0 (−ikµ ) = mAkµ

Standard Model SUSSP61, Lecture 1, 9th August 2006



Introduction Introduction to Weak Decays Goldstone Bosons Abelian Higgs Model SU(2)×U(1)

The Abelian Higgs Model Cont.

|Dµ φ |2 =
1
2

(∂µ φ1)
2 +

1
2

(∂µ φ2)
2 +

√
2eφ0 Aµ ∂ µ φ2 + e2φ2

0 Aµ Aµ + · · · .
I The photon has acquired a mass

m2
A = 2e2φ2

0 .

I There is a peculiar two-point term between the Goldstone Boson φ2 and
the photon: √

2eφ0 Aµ ∂ µ φ2 .

k
µ = i

√
2eφ0 (−ikµ ) = mAkµ

I To interpret this it is convenient to go to the Unitary Gauge, i.e. to
choose a gauge transformation α(x) at each point such that φ2(x) = 0.

I Theory with a real scalar field φ1 and a massive vector field Aµ .
I Degrees of Freedom:

Massless Vector + Complex Scalar 2+2 = 4
Massive Vector + Real Scalar 3+1 = 4.
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The Abelian Higgs Model Cont.

Degrees of Freedom:

Massless Vector + Complex Scalar 2+2 = 4
Massive Vector + Real Scalar 3+1 = 4.

I The Goldstone Boson becomes the longitudinal degree of freedom of
the massive vector boson.

I It is frequently said that the GB has been eaten by the vector.

I In the unitary gauge the propagator of the vector boson is:

−i

k2−M2
A

(

gµν − kµ kν

M2
A

)

.

The spectrum is the physical one, but renormalizability is not manifest.
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The Abelian Higgs Model Cont.

I To define the ’t Hooft gauges we add a gauge-fixing term to the
Lagrangian:

LGF = − 1
2ξ
(

∂µ Aµ +ξ MAφ2
)2

.

Now the propagator of the vector boson is

−i

k2−M2
A

(

gµν − kµ kν

k2

)

− iξ
k2−ξ M2

A

kµ kν

k2 ,

and that of φ2 is
i

k2−ξ M2
A

.

Now the power-counting is manifestly correct for a renormalizable theory
but unitarity is not manifest.

I ’t Hooft and Veltmann’s Nobel Prize in 1999 was for for elucidating the
quantum structure of electroweak interactions in physics which included
the demonstration of the renormalizability and consistency of
spontaneously broken field theories, particularly non-Abelian ones (to
which we now turn).
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Towards SU(2)×U(1)

Textbooks give many examples of the spontaneous breaking of non-abelian
gauge symmetries.

In general the number of massive vector bosons = the number of broken
generators, i.e. the number of symmetries of the action which are not
symmetries of a vacuum state.

An illustrative example is the Georgi-Glashow Model (1972) in which an
SU(2) gauge theory with the Higgs in the adjoint representation → U(1).

I The U(1) could be electromagnetism and the two massive vectors could
have been the W±.

I 3 Scalars + 3 Massless Vectors have 3+6=9 degrees of freedom.

I 1 (physical) scalar + 1 massless vector + 2 massive vectors have
1+2+6=9 degrees of freedom

√
.

I The demonstration of the existence of weak neutral current interactions
implied that we also need a neutral massive vector (Z0) and hence a
different theory ⇒ SU(2)×U(1) .
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SU(2)×U(1)
The covariant derivative for the SU(2)×U(1) theory, with the complex Higgs
fields in the fundamental representation (complex doublet = 4 real fields), is:

Dµ φ = (∂µ − igAa
µ τa − 1

2
g′Bµ )φ

I τa = σ2/2 and the σ ’s are the Pauli spin matrices.

I Gauge transformation:
φ → eiαaτa

eiβ/2φ
where a U(1) charge +1/2 has been assigned to the Higgs fields.

I Imagine that the Higgs Potential is such that a minimum occurs at

〈φ 〉 =
1√
2

(

0
v

)

.

I Gauge transformation with α1 = α2 = 0 and α3 = β leaves 〈φ〉
unchanged ⇒ SU(2)×U(1)→ U(1).

I We therefore expect 1 massless vector boson (the photon) and three
massive vectors (W±,Z0) and one physical Higgs scalar.
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SU(2)×U(1) Cont.

Dµ φ = (∂µ − igAa
µ τa − 1

2
g′Bµ )φ

The mass terms for the vector bosons come from |Dµ φ |2:

1
2

(

0 v
)

(

gAa
µ τa +

1
2

g′Bµ

)(

gAµ bτb +
1
2

g′Bµ
)(

0
v

)

which, using the properties of the σ -matrices, can readily be rewritten as

1
2

v2

4

{

g2 (A1
µ )2 +g2 (A2

µ )2 +(−gA3
µ +g′Bµ )2

}

.

Thus we have the expected spectrum of vector bosons:

W± =
1√
2

(

A1
µ ∓ iA2

µ

)

mW = g
v
2

Zµ =
1

√

g2 +g′2

(

gA3
µ −g′Bµ

)

mz =

√

g2 +g′2
v
2

Aµ =
1

√

g2 +g′2

(

g′A3
µ +gBµ

)

mγ = 0.
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SU(2)×U(1) Cont.

Zµ =
1

√

g2 +g′2

(

gA3
µ −g′Bµ

)

Aµ =
1

√

g2 +g′2

(

g′A3
µ +gBµ

)

I It is convenient to define the weak mixing angle θW :
(

Z0

A

)

=

(

cosθW −sinθW
sinθW cosθW

) (

A3

B

)

so that

cosθW =
g

√

g2 +g′2
, and sinθW =

g′
√

g2 +g′2
.

I At tree level
mW = mZ cosθW .

I Inclusion of Fermions - Lecture 2
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What is the likely value of the Higgs’ Mass?
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What is the Mass of the Higgs Boson?

I Preferred Value mh = 89+42
−30GeV .

I LEP-2 Direct Search Limit Mh > 114.4GeV . hep-ex/0306033

I The relation mW = mz cosθw holds experimentally (up to radiative
corrections). Does this imply a single complex Higgs doublet and a
single physical Higgs boson? Not necessarily.
• The sector of the theory responsible for the symmetry breaking has a
global SU(2)×U(1) symmetry (promoted to a local symmetry when
couplings to the gauge bosons are introduced).
• If, as the gauge symmetry is broken, the global SU(2) symmetry
remains unbroken and the three Goldstone bosons and the
corresponding Noether currents transform as triplets under this custodial
SU(2) symmetry ⇒ we recover the above relation.
• Chiral Symmetry breaking in QCD is one possible example. Custodial
SU(2) = vector isospin symmetry. However the value of the decay
constant fπ ,

〈0|J5
µ |π(p)〉 = i fπ pµ

is O(103) too small (fπ = 132MeV).
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