Standard Model of Particle Physics

Chris Sachrajda

School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK

SUSSP61, St Andrews August 8th – 23rd 2006

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering

Contents

- 1. Spontaneous Symmetry Breaking
- 2. The Electroweak Theory
- 3. QCD
- 4. Flavourdynamics and Non-Perturbative QCD I
- 5. Flavourdynamics and Non-Perturbative QCD II

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering

Lecture 3 — QCD

- 1. Introduction
- 2. Asymptotic Freedom
- 3. Infrared Safety
- **4.** $\sigma(e^+e^- \rightarrow \text{hadrons})$
- Deep Inelastic Scattering (& Hadron-Hadron Hard Scattering Processes)

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering

The QCD Lagrangian

$$\mathscr{L} = -\frac{1}{4} (F^a_{\mu\nu})^2 + \bar{\psi}(i \not\!\!D - m) \psi + \mathscr{L}_{\rm GF}$$

where a = 1, 8 is an adjoint label.

Each flavour of quark transforms under the fundamental representation of SU(3) and the gluons transform under the adjoint representation (as do all gauge bosons).

$$F^a_{\mu\nu} = \partial_{\mu}A^a_{\nu} - \partial_{\nu}A^a_{\mu} + gf^{abc}A^b_{\mu}A^c_{\nu}$$

 f^{abc} are the structure constants of SU(3)

$$[T^a, T^b] = i f^{abc} T^c, \qquad D_\mu = \partial_\mu - i g A^a_\mu T^a$$

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- \to \text{hadrons})$	Deep Inelastic Scattering

Asymptotic Freedom

$$\beta(g) \equiv \mu \frac{\partial g}{\partial \mu} = -\beta_0 \frac{g^3}{16\pi^2} - \beta_1 \frac{g^5}{(16\pi^2)^2} - \beta_2 \frac{g^7}{(16\pi^2)^3} - \cdots$$

where (β_2 is in the \overline{MS} scheme)

$$\beta_0 = 11 - \frac{2}{3}n_f \,, \quad \beta_1 = 102 - \frac{38}{3}n_f \,, \quad \beta_2 = \frac{2857}{2} - \frac{5033}{18}n_f + \frac{325}{54}n_f^2 \,,$$

where n_f is the number of quarks with mass less than the scale μ .

• β_3 is also known.

S.A.Larin et al.(1997)

The key feature is that the first term is negative ⇒ the coupling constant decreases with the scale µ.

$$\begin{aligned} \alpha_s(\mu) &\equiv \frac{g^2(\mu)}{4\pi} &= \frac{4\pi}{\beta_0 \log(\mu^2/\Lambda^2)} \left\{ 1 - \frac{\beta_1}{\beta_0^2} \frac{\log\left[\log(\mu^2/\Lambda^2)\right]}{\log(\mu^2/\Lambda^2)} + \frac{\beta_1^2}{\beta_0^4 \log^2(\mu^2/\Lambda^2)} \times \left(\left(\log\left[\log(\mu^2/\Lambda^2)\right] - \frac{1}{2} \right)^2 + \frac{\beta_2\beta_0}{\beta_1^2} + \frac{5}{4} \right) \right\}. \end{aligned}$$

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering

Running Coupling Constant

$$\begin{split} \alpha_s(\mu) &\equiv \frac{g^2(\mu)}{4\pi} = \frac{4\pi}{\beta_0 \log(\mu^2/\Lambda^2)} \left\{ 1 - \frac{\beta_1}{\beta_0^2} \frac{\log\left[\log(\mu^2/\Lambda^2)\right]}{\log(\mu^2/\Lambda^2)} + \frac{\beta_1^2}{\beta_0^4 \log^2(\mu^2/\Lambda^2)} \times \left(\left(\log\left[\log(\mu^2/\Lambda^2)\right] - \frac{1}{2} \right)^2 + \frac{\beta_2\beta_0}{\beta_1^2} - \frac{5}{4} \right) \right\} \,. \end{split}$$

 The constant of integration, Λ, can be considered as a parameter of QCD (equivalent to g)

Dimensional Transmutation $g \Leftrightarrow \Lambda$.

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- \to \text{hadrons})$	Deep Inelastic Scattering

The Running Coupling Cont

 $\alpha_s(\mu)$ at values of μ where they are measured, (τ -width, Υ -decays, Deep Inelastic Scattering, e^+e^- Event Shapes at 22 and 59 GeV, Z–Width, e^+e^- Event Shapes at 135 and 189 GeV (PDG(2005)).

PDG(2005) result:

 $\alpha_s(M_Z) = 0.1176 \pm 0.002$.

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering

Infrared Safety

Consider the following diagram contributing to the $e^+e^- \rightarrow q\bar{q}$ amplitude:

To illustrate the behaviour at small momenta ($|k_{\mu}| \ll \sqrt{p_1 \cdot p_2}$) consider the integral:

$$I \equiv \int \frac{d^4k}{(2\pi)^4} \frac{1}{(k^2 + i\varepsilon)((p_1 + k)^2 - m^2 + i\varepsilon)((p_2 - k)^2 - m^2 + i\varepsilon)}$$

(For small momenta the numerator is a constant and so we simply neglect it here.)

► For
$$p_1^2 = p_2^2 = m^2$$
, at small momenta
 $I \sim \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2(2p_1 \cdot k)(-2p_2 \cdot k)}$ a

and is logarithmically divergent.

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering

Infrared Safety Cont.

- ► The presence of *infrared divergences* ⇒ long-distance/low-momentum contributions are important and therefore there is a danger that asymptotic freedom may not be sufficient to calculate predictions in perturbation theory.
- For inclusive reactions, such as e⁺e⁻ → hadrons, the infrared divergences cancel between diagrams with virtual and real gluons. Generalization of Bloch-Nordsieck (1937) Theorem from QED to QCD.

For example, at $O(\alpha_s)$ the following diagrams contribute to $\sigma(e^+e^- \rightarrow \text{hadrons})$:

These also contribute infrared divergent terms to $\sigma(e^+e^- \rightarrow \text{hadrons})$ at $O(\alpha_s)$.

 $\sigma(e^+e^- \to {\rm hadrons})$ at any order of perturbation theory is free of infrared divergences.

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering

Infrared Safety Cont.

- The standard physical interpretation in QED is that in any experiment we cannot distinguish *e* from *e*+soft γs, where the γs are too soft to be detected. It is therefore not unreasonable to have to sum over all experimentally indistinguishable contributions.
- Infrared divergences are not the only source of mass singularities. Consider two massless particles moving parallel to each other (in the z-direction say).

 $q_1 = \omega_1(1,0,0,1), \ q_2 = \omega_2(1,0,0,1) \quad \Rightarrow \quad (q_1 + q_2)^2 = 0.$

When internal particles are *collinear* with external ones we get *collinear divergences*.

- The Kinoshita-Lee-Naunberg theorem ⇒ collinear divergences cancel when we sum over all degenerate final and initial states.
 For QCD perturbative corrections to σ(e⁺e⁻ → hadrons) only the sum over final states has to performed and the collinear divergences cancel.
- The standard physical interpretation is that we cannot distinguish q from q+a collinear gluon (for example), where the collinearity is below the angular resolution. Again it is therefore not unreasonable to have to sum over all experimentally indistinguishable contributions.

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering
Infrared Safe	ety Cont.			

To give you some confidence in the statements above consider the consequences of unitarity:

$$SS^{\dagger} = I \quad \Rightarrow \quad (I + iT)(I - iT^{\dagger}) = I \quad \Rightarrow \quad 2\mathrm{Im}\langle i | T | i \rangle = \sum_{n} |\langle i | T | n \rangle|^2$$

Optical Theorem

► Thus $\sigma(e^+e^- \rightarrow \text{hadrons})$ is proportional to the imaginary part of the e^+e^- forward amplitude. But when we look at diagrams such as:

power counting \Rightarrow there are no mass singularities \Rightarrow the mass singularities cancel between the separate contributions to the cross section.

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- \to \text{hadrons})$	Deep Inelastic Scattering

 $\sigma(e^+e^- \rightarrow \text{hadrons})$

Consider now the cross-section for $e^+e^- o \gamma^* o$ hadrons . It takes the form

$$\sigma = \sigma_0 \left(3\sum_f Q_f^2\right) \left(1 + \frac{\alpha_s(\mu)}{\pi} + \frac{\alpha_s^2(\mu)}{(4\pi)^2} \left\{4\beta_0 \log\left(\frac{\mu^2}{Q^2}\right) + c_2\right\} + \cdots\right)$$

where

- ► σ_0 is the lowest order $e^+e^- \rightarrow \mu^+\mu^-$ cross section.
- μ is the renormalization scale at which the coupling is defined;
- the form of the logarithms is fixed by the renormalization group (i.e. independence of σ of μ) and the absence of mass-singularities;
- c₂ is a constant.
- ► In order to avoid Large Logarithms we should choose $\mu^2 \simeq Q^2$

$$\sigma = \sigma_0 \left(3\sum_f Q_f^2\right) \left(1 + \frac{\alpha_s(Q)}{\pi} + 1.411 \frac{\alpha_s^2(Q)}{(\pi)^2} - 12.8 \frac{\alpha_s^3(Q)}{(\pi)^3} + \cdots\right)$$

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering

Event Shape Variables

- For about 30 years now we have been trying to get fundamental information about quark and gluon interactions from the observed hadrons in e^+e^- annihilation.
- An instructive example of a measurable quantity which is not calculable because it is not infrared safe is *Sphericity*, proposed by the SLAC group in 1974:

$$\hat{S} \equiv \frac{3}{2} \min_{\text{axes}} \frac{\sum_i |p_{\perp}^i|^2}{\sum_i |\vec{p}^i|^2}.$$

The expectation was that $\hat{S} = 0$ for a two-jet event and 1 for an isotropic event.

 \hat{S} is experimentally measurable but is not calculable, since

$$(p_{\perp}^{1})^{2} + (p_{\perp}^{2})^{2} \neq (p_{\perp}^{1} + p_{\perp}^{2})^{2}.$$

 Today many infrared-safe event shape variables are being used. A classic example is *thrust*

$$T = \max_{\text{axes}} \frac{\sum_i |\vec{p}_i \cdot \vec{n}|}{\sum_i |\vec{p}_i|},$$

so that T = 1 for a two-jet event and 1/2 for a spherical event.

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering

Thrust

LEP QCD Working Group - Roger Jones 6/3/2003.

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering
				í

Deep Inelastic Scattering

Consider the process $ep \rightarrow e + X$:

- The incoming lepton can also be a µ or a v.
- The exchanged boson can also be a Z⁰, or in the case of charged-current interactions a W.
- The kinematic region we will be interested in has -q² and 2p · q large (where *large* means w.r.t. Λ) and

$$x \equiv \frac{-q^2}{2p \cdot q} \sim O(1).$$

x is called Bjorken x and is experimentally measurable for each event.

 $\blacktriangleright (p+q)^2 > 0 \Rightarrow q^2 + 2p \cdot q(+p^2) > 0 \Rightarrow 0 \le x \le 1.$

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- \to \text{hadrons})$	Deep Inelastic Scattering

Much intuition was gained from the Feynman-Bjorken parton picture. Noting that the typical scale of strong-interactions is 1 fm or 200 MeV, consider a frame in which $|\vec{p}|$ is large

$$(\xi p+q)^2 \simeq 0 \Rightarrow 2\xi p \cdot q + q^2 \simeq 0 \Rightarrow \xi = x.$$

The experimentally measurable quantity x gives the fraction of the proton's momentum carried by the struck quark (in the *infinite momentum* frame).

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- \to \text{hadrons)}$	Deep Inelastic Scattering

Let the probability density of finding the (anti-)quark f with longitudinal fraction x of the proton's momentum be $f_{q_f}(x)$.

 $f_{q_f}(x)$ is called the *parton distribution function*.

In the parton model:

$$\sigma(e^{-}(k)p(p) \to e^{-}(k')X) = \int_{0}^{1} d\xi \sum_{f} f_{q_{f}}(\xi) \,\sigma(e^{-}(k)q_{f}(\xi p) \to e^{-}(k')q_{f}(\xi p+q))$$

We will consider the QCD corrections later.

In the parton model

$$\frac{d^2\sigma}{dxdy} = \left(\sum_f x f_{q_f}(x) Q_f^2\right) \frac{2\pi\alpha^2 s}{q^4} \left[1 + (1-y)^2\right],$$

where $s = (p+k)^2 \simeq 2p \cdot k$ and $y = (2p \cdot q)/s$.

- In the rest-frame of the proton, y is the fraction of the electron's energy which is transferred to the proton.
- DIS \Rightarrow information about momentum distribution of quarks in the proton.
- Information about different linear combinations of the distribution functions can be obtained from v scattering (and by including the Z⁰ contribution).

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- \to \text{hadrons})$	Deep Inelastic Scattering

$$\frac{d^2\sigma(vp \to \mu^- X)}{dx dy} = \frac{G_F^2 s}{\pi} \left[xf_d(x) + x(1-y)^2 f_{\bar{u}}(x) \right]$$
$$\frac{d^2\sigma(\bar{v}p \to \mu^+ X)}{dx dy} = \frac{G_F^2 s}{\pi} \left[x(1-y)^2 f_u(x) + xf_{\bar{d}}(x) \right]$$

By combining information from e, μ and v DIS (and more) we get information about each of the distribution functions.

Hard Scattering Processes in Hadronic Collisions

 Before leaving the parton model, consider some hard scattering process in hadron-hadron collisions.

► For example, *Y* can be a heavy particle (resonance, Higgs, i.e. Drell-Yan Processes) or two (or more) jets at large transverse momentum.

$$\sigma(h_1(p_1) + h_2(p_2) \to Y + X) = \int_0^1 dx_1 \int_0^1 dx_2 \sum_{f_1, f_2} f_{f_1}(x_1) f_{f_2}(x_2) \sigma(f_1 + f_2 \to Y) \,.$$

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering

Hard Scattering Processes in Hadronic Collisions

$$\sigma(h_1(p_1) + h_2(p_2) \to Y + X) = \int_0^1 dx_1 \int_0^1 dx_2 \sum_{f_1, f_2} f_{f_1}(x_1) f_{f_2}(x_2) \sigma(f_1 + f_2 \to Y).$$

- The f_{fi} s are "known" from Deep Inelastic Scattering.
- It is in this way (modified to take QCD corrections into account) that we were able to make predictions for the cross sections for W and Z production at the SPS or are able to make predictions for Higgs Boson production at the LHC.

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- \rightarrow hadrons)$	Deep Inelastic Scattering
Deep Inelasti	c Scattering and Q	CD	μν	
	$\Sigma_n \rightarrow 0$	$\left n \right ^2 = 2 \ln 1$	n →O→	-

Using the optical theorem, we need to evaluate the virtual forward Compton amplitude:

$$W^{\mu\nu}(x,q^2) = i \int d^4x \; e^{iq \cdot x} \langle p \,|\, T\{J^{\mu}(x)J^{\nu}(0)\} \,|\, p \,\rangle$$

► Lorentz & Parity Invariance and Current Conservation ⇒

$$W^{\mu\nu} = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) W_1(x,q^2) + \left(p^{\mu} - q^{\mu}\frac{p \cdot q}{q^2}\right) \left(p^{\nu} - q^{\nu}\frac{p \cdot q}{q^2}\right) W_2(x,q^2),$$

where $W_{1,2}$ are scalar functions.

• With weak interactions, so that parity is no longer a good symmetry, there is a third *structure function* W_3 multiplying the tensor $\varepsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}$.

Deep Inelastic Scattering and QCD Cont.

In the parton model

$$\operatorname{Im} W_1(x) = \pi \sum_f Q_f^2 f_f(x) \quad \text{and} \quad \operatorname{Im} W_2(x) = \frac{4\pi}{ys} \sum_f Q_f^2 x f_f(x) \quad \text{so that} \quad \operatorname{Im} W_1 = \frac{ys}{4x} \operatorname{Im} W_2.$$

In a commonly used notation $v = p \cdot q$, $F_1 \equiv \text{Im } W_1$, $F_2 \equiv \text{Im } vW_2$ so that in the parton model $F_2 = 2xF_1$.

In QCD there are diagrams such as

- These one-loop diagrams give a contribution proportional to $\alpha_s \log(q^2/p^2)$.
- The (collinear) mass singularities do not cancel, in spite of the KLN theorem, because we do not sum over all degenerate initial states.
- Thus the structure functions (and parton distribution functions) are functions of q² as well as x.

Deep Inelastic Scattering and QCD Cont.

- I refer to the standard textbook for the use of the Operator Product Expansion (OPE) to determine the q² behaviour of the structure functions.
- ► The same results can be obtained from the DGLAP equations (let $t = \log(q^2/q_0^2)$):

$$\frac{dq^{NS}(x,t)}{dt} = \frac{\alpha_s(t)}{2\pi} \int_x^1 \frac{dy}{y} q^{NS}(y,t) P_{q \to q}\left(\frac{x}{y}\right)$$

$$\frac{dq^S(x,t)}{dt} = \frac{\alpha_s(t)}{2\pi} \int_x^1 \frac{dy}{y} \left\{ q^S(y,t) P_{q \to q}\left(\frac{x}{y}\right) + g(y,t) P_{g \to q}\left(\frac{x}{y}\right) \right\}$$

$$\frac{dg(x,t)}{dt} = \frac{\alpha_s(t)}{2\pi} \int_x^1 \frac{dy}{y} \left\{ q^S(y,t) P_{q \to g}\left(\frac{x}{y}\right) + g(y,t) P_{g \to g}\left(\frac{x}{y}\right) \right\}$$

$$\frac{dg(x,t)}{dt} = \frac{\alpha_s(t)}{2\pi} \int_x^1 \frac{dy}{y} \left\{ q^S(y,t) P_{q \to g}\left(\frac{x}{y}\right) + g(y,t) P_{g \to g}\left(\frac{x}{y}\right) \right\}$$

$$\frac{dg(x,t)}{dt} = \frac{\alpha_s(t)}{2\pi} \int_x^1 \frac{dy}{y} \left\{ q^S(y,t) P_{q \to g}\left(\frac{x}{y}\right) + g(y,t) P_{g \to g}\left(\frac{x}{y}\right) \right\}$$

Deep Inelastic Scattering and QCD – Comments

- We can calculate the (logarithmic) scaling violations, i.e. the behaviour of the structure functions with q^2 . We cannot calculate the structure functions themselves.
- The behaviour of the distribution functions with q² is the intuitive one as q² increases there are fewer partons at large x and more at small x.
- By measuring the behaviour of the structure functions with q² we are able to determine the gluon distribution in the proton (even though the γ, Z⁰ and the W's do not couple to the gluons).
- The factorization of hadron-hadron hard-scattering cross sections into a convolution of parton distribution functions (as measured in DIS experiments) and perturbatively calculable parton scattering cross sections is also valid in QCD.
- We can therefore make predictions for specific cross sections (such as that for Higgs production) at the LHC.

Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- \to \text{hadrons})$	Deep Inelastic Scattering

Quark Distribution Functions (PDG2005)

Introduction Asymptotic Freedom infrared Safety $\sigma(e^+e^- \rightarrow \text{nadrons})$ Deep inelastic Scattering	Introduction	Asymptotic Freedom	Infrared Safety	$\sigma(e^+e^- ightarrow$ hadrons)	Deep Inelastic Scattering
---	--------------	--------------------	-----------------	-------------------------------------	---------------------------

Scaling Violations (PDG2005)

