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The QCD Lagrangian

L = −1
4
(Fa

µν )2 + ψ̄(i 6D−m)ψ +LGF

where a = 1,8 is an adjoint label.

Each flavour of quark transforms under the fundamental representation of
SU(3) and the gluons transform under the adjoint representation (as do all
gauge bosons).

Fa
µν = ∂µ Aa

ν −∂ν Aa
µ +gf abcAb

µ Ac
ν

f abc are the structure constants of SU(3)

[Ta,Tb] = if abcTc , Dµ = ∂µ − igAa
µ Ta
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Asymptotic Freedom
I Asymptotic Freedom ⇒ we can make perturbative predictions in QCD

for a large range of important hard processes.

β (g) ≡ µ
∂g
∂ µ

= −β0
g3

16π2 −β1
g5

(16π2)2 −β2
g7

(16π2)3 −·· ·

where (β2 is in the MS scheme)

β0 = 11− 2
3

nf , β1 = 102− 38
3

nf , β2 =
2857

2
− 5033

18
nf +

325
54

n2
f ,

where nf is the number of quarks with mass less than the scale µ .
I β3 is also known. S.A.Larin et al.(1997)

I The key feature is that the first term is negative ⇒ the coupling constant
decreases with the scale µ.

αs(µ) ≡ g2(µ)

4π
=

4π
β0 log(µ2/Λ2)

{

1− β1

β 2
0

log
[

log(µ2/Λ2)
]

log(µ2/Λ2)
+

β 2
1

β 4
0 log2(µ2/Λ2)

×
(

(

log[log(µ2/Λ2)]− 1
2

)2

+
β2β0

β 2
1

− 5
4

)}

.
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Running Coupling Constant

αs(µ) ≡ g2(µ)

4π
=

4π
β0 log(µ2/Λ2)

{

1− β1

β 2
0

log
[

log(µ2/Λ2)
]

log(µ2/Λ2)
+

β 2
1

β 4
0 log2(µ2/Λ2)

×
(

(

log[log(µ2/Λ2)]− 1
2

)2

+
β2β0

β 2
1

− 5
4

)}

.

I The constant of integration, Λ, can be considered as a parameter of
QCD (equivalent to g)

Dimensional Transmutation g ⇔ Λ .

+ ghosts

1
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The Running Coupling Cont

αs(µ) at values of µ where they are measured, (τ-width, ϒ-decays, Deep
Inelastic Scattering, e+e− Event Shapes at 22 and 59 GeV, Z–Width, e+e−

Event Shapes at 135 and 189 GeV (PDG(2005)).

PDG(2005) result:
αs(MZ) = 0.1176±0.002.
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Infrared Safety
Consider the following diagram contributing to the e+e− → qq̄ amplitude:

e+

e−

γ
k

p1

p2

To illustrate the behaviour at small momenta (|kµ | �
√

p1 ·p2) consider the
integral:

I ≡
∫

d4k

(2π)4

1
(k2 + iε)((p1 + k)2−m2 + iε)((p2− k)2−m2 + iε)

.

(For small momenta the numerator is a constant and so we simply neglect it
here.)

I For p2
1 = p2

2 = m2, at small momenta

I ∼
∫

d4k

(2π)4

1
k2(2p1 · k)(−2p2 · k)

and is logarithmically divergent.
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Infrared Safety Cont.

I The presence of infrared divergences ⇒ long-distance/low-momentum
contributions are important and therefore there is a danger that
asymptotic freedom may not be sufficient to calculate predictions in
perturbation theory.

I For inclusive reactions, such as e+e− → hadrons, the infrared
divergences cancel between diagrams with virtual and real gluons.
Generalization of Bloch-Nordsieck (1937) Theorem from QED to QCD.

For example, at O(αs) the following diagrams contribute to
σ(e+e− → hadrons):

e+

e−

γ e+

e−

γ

These also contribute infrared divergent terms to σ(e+e− → hadrons) at
O(αs).
σ(e+e− → hadrons) at any order of perturbation theory is free of infrared
divergences.
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Infrared Safety Cont.
I The standard physical interpretation in QED is that in any experiment we

cannot distinguish e from e+soft γ s, where the γ s are too soft to be
detected. It is therefore not unreasonable to have to sum over all
experimentally indistinguishable contributions.

I Infrared divergences are not the only source of mass singularities.
Consider two massless particles moving parallel to each other (in the
z-direction say).

q1 = ω1 (1,0,0,1), q2 = ω2 (1,0,0,1) ⇒ (q1 +q2)
2 = 0.

When internal particles are collinear with external ones we get collinear
divergences.

I The Kinoshita-Lee-Naunberg theorem ⇒ collinear divergences cancel
when we sum over all degenerate final and initial states.
For QCD perturbative corrections to σ(e+e− → hadrons)only the sum
over final states has to performed and the collinear divergences cancel.

I The standard physical interpretation is that we cannot distinguish q from
q+a collinear gluon (for example), where the collinearity is below the
angular resolution. Again it is therefore not unreasonable to have to sum
over all experimentally indistinguishable contributions.
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Infrared Safety Cont.

I To give you some confidence in the statements above consider the
consequences of unitarity:

SS† = I ⇒ (I + iT)(I − iT†) = I ⇒ 2Im〈i |T | i〉 = ∑
n
|〈 i |T |n〉|2

Optical Theorem

I Thus σ(e+e− → hadrons) is proportional to the imaginary part of the
e+e− forward amplitude. But when we look at diagrams such as:

e+

e−

e+

e−

power counting ⇒ there are no mass singularities ⇒ the mass
singularities cancel between the separate contributions to the cross
section.
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σ(e+e− → hadrons)

Consider now the cross-section for e+e− → γ∗ → hadrons. It takes the form

σ = σ0

(

3∑
f

Q2
f

)

(

1+
αs(µ)

π
+

α2
s (µ)

(4π)2

{

4β0 log

(

µ2

Q2

)

+ c2

}

+ · · ·
)

where

I σ0 is the lowest order e+e− → µ+µ− cross section.

I µ is the renormalization scale at which the coupling is defined;

I the form of the logarithms is fixed by the renormalization group (i.e.
independence of σ of µ) and the absence of mass-singularities;

I c2 is a constant.

I In order to avoid Large Logarithms we should choose µ2 ' Q2

σ = σ0

(

3∑
f

Q2
f

)

(

1+
αs(Q)

π
+1.411

α2
s (Q)

(π)2 −12.8
α3

s (Q)

(π)3 + · · ·
)
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Event Shape Variables

I For about 30 years now we have been trying to get fundamental
information about quark and gluon interactions from the observed
hadrons in e+e− annihilation.

I An instructive example of a measurable quantity which is not calculable
because it is not infrared safe is Sphericity, proposed by the SLAC
group in 1974:

Ŝ ≡ 3
2

min
axes

∑i |pi
⊥
|2

∑i |~p i|2 .

The expectation was that Ŝ = 0 for a two-jet event and 1 for an isotropic
event.
Ŝ is experimentally measurable but is not calculable, since
(p1

⊥
)2 +(p2

⊥
)2 6= (p1

⊥
+p2

⊥
)2.

I Today many infrared-safe event shape variables are being used. A
classic example is thrust

T = max
axes

∑i |~pi ·~n|
∑i |~pi|

,

so that T = 1 for a two-jet event and 1/2 for a spherical event.
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Thrust
LEP QCD Working Group - Roger Jones 6/3/2003 .
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Deep Inelastic Scattering

Consider the process ep → e+X:

e−
e−

p

γ∗(q)

X

I The incoming lepton can also be a µ or a ν .

I The exchanged boson can also be a Z0, or in the case of
charged-current interactions a W .

I The kinematic region we will be interested in has −q2 and 2p·q large
(where large means w.r.t. Λ) and

x ≡ −q2

2p·q ∼ O(1).

x is called Bjorken x and is experimentally measurable for each event .

I (p+q)2 > 0 ⇒ q2 +2p·q(+p2) > 0 ⇒ 0≤ x ≤ 1 .
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Deep Inelastic Scattering Cont.

e−
e−

p

ξ p
ξ p+q

q

Much intuition was gained from the Feynman-Bjorken parton picture. Noting
that the typical scale of strong-interactions is 1 fm or 200 MeV, consider a
frame in which |~p | is large

(ξ p+q)2 ' 0 ⇒ 2ξ p ·q+q2 ' 0 ⇒ ξ = x .

The experimentally measurable quantity x gives the fraction of the proton’s
momentum carried by the struck quark (in the infinite momentum frame).
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Deep Inelastic Scattering Cont.

e−
e−

p

ξ p
ξ p+q

q

I Let the probability density of finding the (anti-)quark f with longitudinal
fraction x of the proton’s momentum be fqf (x).
fqf (x) is called the parton distribution function.

I In the parton model:

σ(e−(k)p(p)→ e−(k′)X)=
∫ 1

0
dξ ∑

f
fqf (ξ )σ(e−(k)qf (ξ p)→ e−(k′)qf (ξ p+q))

I We will consider the QCD corrections later.
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Deep Inelastic Scattering Cont.

I In the parton model

d2σ
dxdy

=

(

∑
f

x fqf (x)Q2
f

)

2πα2s

q4 [1+(1− y)2] ,

where s = (p+ k)2 ' 2p· k and y = (2p·q)/s.

I In the rest-frame of the proton, y is the fraction of the electron’s
energy which is transferred to the proton.

I DIS ⇒ information about momentum distribution of quarks in the proton.

I Information about different linear combinations of the distribution
functions can be obtained from ν scattering (and by including the Z0

contribution).
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Deep Inelastic Scattering Cont.

ν
e−,µ−

d (ū)
u(d̄)

W+

ν̄
e+,µ+

u(d̄)
d (ū)

W−

d2σ(νp → µ−X)

dxdy
=

G2
Fs

π
[x fd(x)+ x(1− y)2 fū(x) ]

d2σ(ν̄p → µ+X)

dxdy
=

G2
Fs

π
[x(1− y)2 fu(x)+ x fd̄(x) ]

By combining information from e,µ and ν DIS (and more) we get information
about each of the distribution functions.
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Hard Scattering Processes in Hadronic Collisions

I Before leaving the parton model, consider some hard scattering process
in hadron-hadron collisions.

p1

p2

x1p1

x2p2
} Y

I For example, Y can be a heavy particle (resonance, Higgs, i.e. Drell-Yan
Processes) or two (or more) jets at large transverse momentum.

σ(h1(p1)+h2(p2) → Y +X) =
∫ 1

0
dx1

∫ 1

0
dx2 ∑

f1,f2

ff1(x1)ff2(x2)σ(f1 + f2 → Y) .
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Hard Scattering Processes in Hadronic Collisions

p1

p2

x1p1

x2p2
} Y

Calculable in Perturbation Theory

σ(h1(p1)+h2(p2) → Y +X) =
∫ 1

0
dx1

∫ 1

0
dx2 ∑

f1,f2

ff1(x1)ff2(x2)σ(f1 + f2 → Y) .

I The ffi s are “known” from Deep Inelastic Scattering.

I It is in this way (modified to take QCD corrections into account) that we
were able to make predictions for the cross sections for W and Z
production at the SPS or are able to make predictions for Higgs Boson
production at the LHC.

Standard Model SUSSP61, Lecture 3, 11th August 2006



Introduction Asymptotic Freedom Infrared Safety σ(e+e− → hadrons) Deep Inelastic Scattering

Deep Inelastic Scattering and QCD

} n

2

∑n = 2 Im

µ ν

I Using the optical theorem, we need to evaluate the virtual forward
Compton amplitude:

Wµν (x,q2) = i
∫

d4x eiq·x 〈p |T{Jµ (x)Jν (0)}|p〉

I Lorentz & Parity Invariance and Current Conservation ⇒

Wµν =

(

−gµν +
qµ qν

q2

)

W1(x,q
2)+

(

pµ −qµ p ·q
q2

)(

pν −qν p ·q
q2

)

W2(x,q
2) ,

where W1,2 are scalar functions.

I With weak interactions, so that parity is no longer a good symmetry,
there is a third structure function W3 multiplying the tensor ε µναβ pα qβ .
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Deep Inelastic Scattering and QCD Cont.
I In the parton model

Im W1(x) = π ∑
f

Q2
f ff (x) and ImW2(x)=

4π
ys ∑

f
Q2

f xff (x) so that ImW1 =
ys
4x

Im W2.

In a commonly used notation ν = p ·q, F1 ≡ Im W1, F2 ≡ Im νW2 so that
in the parton model F2 = 2xF1 .

I In QCD there are diagrams such as

p p

q q

I These one-loop diagrams give a contribution proportional to
αs log(q2/p2).

I The (collinear) mass singularities do not cancel, in spite of the KLN
theorem, because we do not sum over all degenerate initial states.

I Thus the structure functions (and parton distribution functions) are
functions of q2 as well as x.
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Deep Inelastic Scattering and QCD Cont.
I I refer to the standard textbook for the use of the Operator Product

Expansion (OPE) to determine the q2 behaviour of the structure
functions.

I The same results can be obtained from the DGLAP equations (let
t = log(q2/q2

0)):

dqNS(x, t)
dt

=
αs(t)
2π

∫ 1

x

dy
y

qNS(y, t)Pq→q

(

x
y

)

dqS(x, t)
dt

=
αs(t)
2π

∫ 1

x

dy
y

{

qS(y, t)Pq→q

(

x
y

)

+g(y, t)Pg→q

(

x
y

)}

dg(x, t)
dt

=
αs(t)
2π

∫ 1

x

dy
y

{

qS(y, t)Pq→g

(

x
y

)

+g(y, t)Pg→g

(

x
y

)}

y x

Pq→q(x/y)

y x

Pq→g(x/y)

y x

Pg→q(x/y)

y x

Pg→g(x/y)
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Deep Inelastic Scattering and QCD – Comments

I We can calculate the (logarithmic) scaling violations, i.e. the behaviour
of the structure functions with q2. We cannot calculate the structure
functions themselves.

I The behaviour of the distribution functions with q2 is the intuitive one –
as q2 increases there are fewer partons at large x and more at small x.

I By measuring the behaviour of the structure functions with q2 we are
able to determine the gluon distribution in the proton (even though the
γ, Z0 and the W ′s do not couple to the gluons).

I The factorization of hadron-hadron hard-scattering cross sections into a
convolution of parton distribution functions (as measured in DIS
experiments) and perturbatively calculable parton scattering cross
sections is also valid in QCD.

I We can therefore make predictions for specific cross sections (such as
that for Higgs production) at the LHC.
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Quark Distribution Functions (PDG2005)
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Scaling Violations (PDG2005)
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