Neutrino

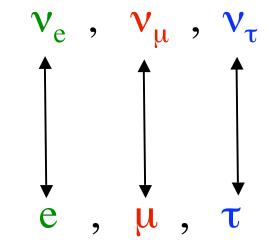
Phenomenology

Boris Kayser Scottish Summer School August 9, 2006 + The Neutrino Revolution (1998 – …)

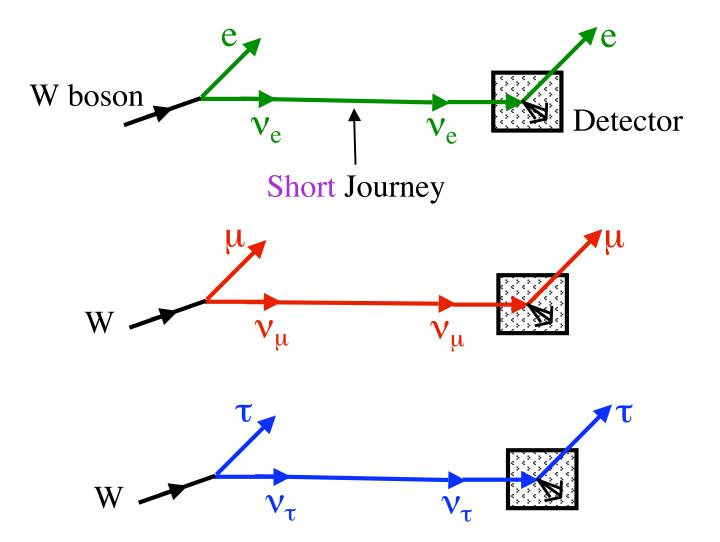
Neutrinos have nonzero masses!

Leptons mix!

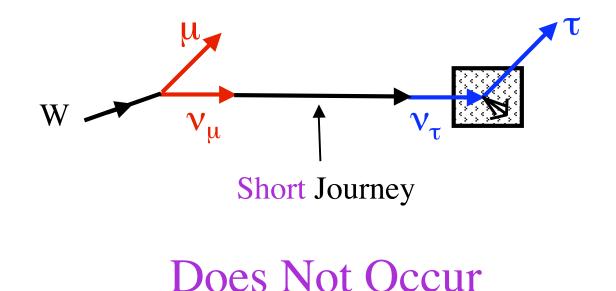
These discoveries come from the observation of *neutrino oscillation*.


The Physics of Neutrino Oscillation

4

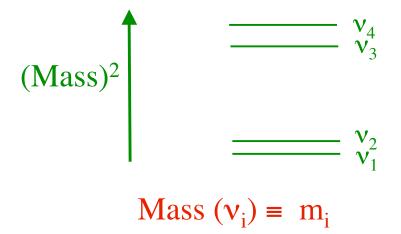

Neutrinos Come in at Least Three Flavors

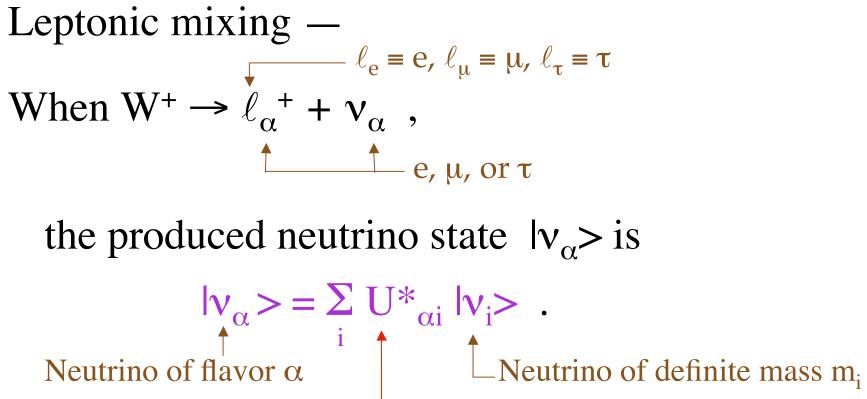
The known neutrino flavors:


Each of these is associated with the corresponding charged-lepton flavor:

The Meaning of this Association

Over short distances, neutrinos do not change flavor.




But if neutrinos have masses, and leptons mix, neutrino flavor changes do occur during *long* journeys.

Let Us Assume Neutrino Masses and Leptonic Mixing

Neutrino mass —

There is some spectrum of 3 or more neutrino mass eigenstates v_i :

Leptonic Mixing Matrix

Another way to look at W decay:

A given ℓ_{α}^{+} can be accompanied by any v_{i} . $Amp(W^{+} \rightarrow \ell_{\alpha}^{+} + v_{i}) = U^{*}_{\alpha i}$

The neutrino state $|v_{\alpha}\rangle$ produced together with ℓ_{α}^{+}

is
$$|v_{\alpha}\rangle = \sum_{i} U^{*}_{\alpha i} |v_{i}\rangle$$

According to the Standard Model, extended to include neutrino mass and leptonic mixing —

> The number of different v_i is the same as the number of different $\ell_{\alpha}(3)$.

The mixing matrix U is 3 x 3 and unitary: $UU^{\dagger} = U^{\dagger}U = 1.$

Some models include "sterile" neutrinos neutrinos that experience none of the known forces of nature except gravity.

In such models, there are N > 3 v_i , and U is N x N, but still unitary.

Just as each neutrino of definite flavor v_{α} is a superposition of mass eigenstates v_i , so each mass eigenstate is a superposition of flavors.

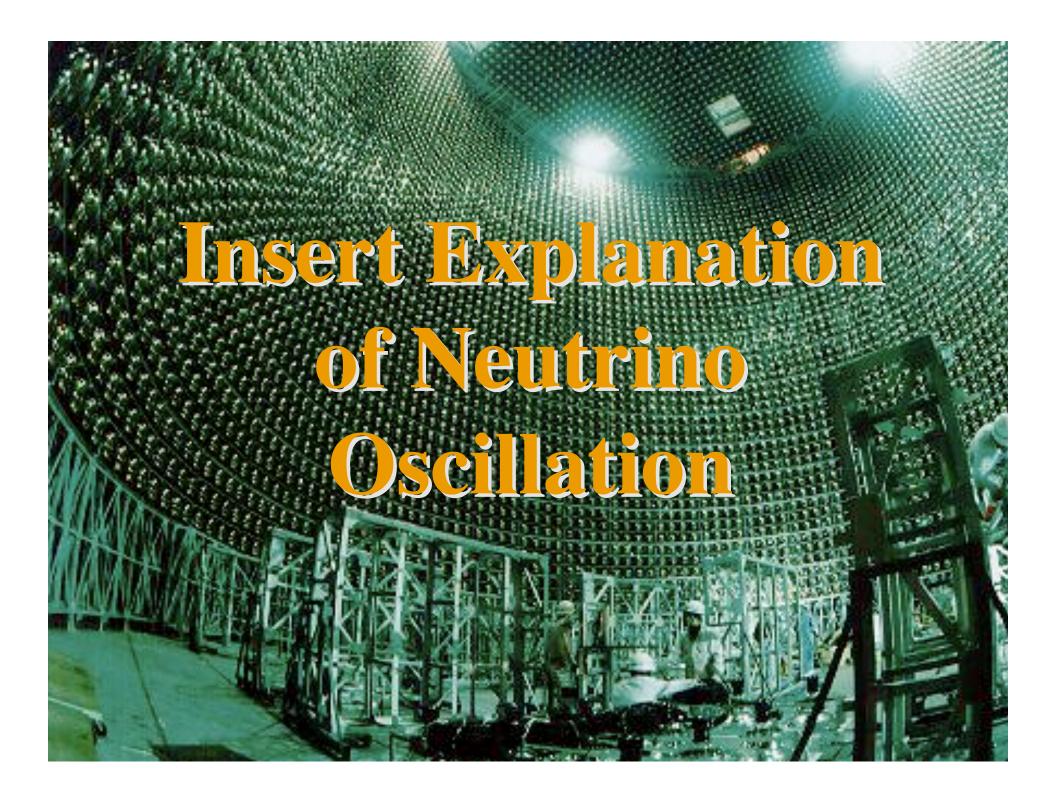
From $|v_{\alpha}\rangle = \sum_{i} U^{*}_{\alpha i} |v_{i}\rangle$ and the unitarity of U,

 $|v_i\rangle = \Sigma_{\alpha} U_{\alpha i} |v_{\alpha}\rangle.$

The flavor- α fraction of v_i is –

 $|\langle \mathbf{v}_{\alpha} | \mathbf{v}_i \rangle|^2 = |\mathbf{U}_{\alpha i}|^2$.

The Standard Model (SM) description of neutrino *interactions* (not masses or leptonic mixing) is well-confirmed.


We will assume it is true, and extend it to include mixing.

For the lepton couplings to the W boson, we then have — Left-handed

$$L_{SM} = -\frac{g}{\sqrt{2}} \sum_{\alpha=e,\mu,\tau} \left(\overline{\ell}_{L\alpha} \gamma^{\lambda} v_{L\alpha} W_{\lambda}^{-} + \overline{v}_{L\alpha} \gamma^{\lambda} \ell_{L\alpha} W_{\lambda}^{+} \right)$$

$$= -\frac{g}{\sqrt{2}} \sum_{\substack{\alpha=e,\mu,\tau\\i=1,2,3}} \left(\overline{\ell}_{L\alpha} \gamma^{\lambda} U_{\alpha i} v_{Li} W_{\lambda}^{-} + \overline{v}_{Li} \gamma^{\lambda} U_{\alpha i}^{*} \ell_{L\alpha} W_{\lambda}^{+} \right)$$

Taking mixing into account

13

Experimental Evidence

Evidence For Flavor Change

Neutrinos Evidence of Flavor Change

Solar Reactor (L ~ 180 km) Compelling Compelling

Atmospheric Accelerator (L = 250 and 735 km) Compelling Compelling

Stopped μ^+ Decay $\begin{pmatrix} LSND \\ L \approx 30 \text{ m} \end{pmatrix}$

Unconfirmed

What Happens To Solar Neutrinos

Solar $v_e \rightarrow v_{\mu} / v_{\tau}$ is now well established. The mechanism for this flavor conversion is the — *Large Mixing Angle* version of the — Mikheyev Smirnov Wolfenstein — Effect.

This occurs as the neutrinos stream outward through solar material. It requires both interactions with matter and neutrino mass and mixing.

How Does the Large Mixing Angle MSW Effect Work?

- The solar *matter effect* is important for the highenergy ⁸B neutrinos, not the low-energy pp neutrinos.
- Since v_3 couples at most feebly to electrons (to be discussed), and solar neutrinos are born v_e , the solar neutrinos are mixtures of just v_1 and v_2 .
- This is a 2-neutrino system.
- Convention: v_2 heavier than v_1 .
- Solar neutrino flavor change is $v_e \rightarrow v_x$, where v_x is some combination of v_{μ} and v_{τ} .

In the sun,

$$H = \frac{\Delta m_{sol}^2}{4E} \begin{bmatrix} -\cos 2\theta_{sol} & \sin 2\theta_{sol} \\ \sin 2\theta_{sol} & \cos 2\theta_{sol} \end{bmatrix} + \sqrt{2}G_F N_e \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \mathbf{v}_e \\ \mathbf{v}_x \end{bmatrix}$$

At the center of the sun,

 $\sqrt{2} G_F N_e \approx 0.75 \times 10^{-5} eV^2 / MeV$.

For $\Delta m_{sol}^2 \approx 8 \times 10^{-5} \text{ eV}^2$ and typical ⁸B neutrino energy of ~ 8 MeV,

 $\Delta m_{sol}^2 / 4E \approx 0.25 \times 10^{-5} \text{ eV}^2 / \text{MeV}$.

The interaction term in H dominates, and ν_e is approximately an eigenstate of H.*

*For the (E ~ 0.2MeV) pp neutrinos, H_{Vac} dominates.

The ⁸B solar neutrino propagates outward adiabatically.

It remains the slowly - changing heavier eigenstate of the slowly - changing H.

It emerges from the sun as the heavier eigenstate of H_{Vac} , v_2 .*

It stays v_2 until it reaches the earth. Nothing "oscillates"! Since $v_2 = v_e \sin\theta_{sol} + v_x \cos\theta_{sol}$, (See 2 × 2 U matrix) Prob[See v_e at earth] = $\sin^2\theta_{sol}$.

*Good to 91% (Nunokawa, Parke, Zukanovich-Funchal)