GeV Cross-Sections

What's special about it? Why do we care?

- Remember this picture?
 - I-few GeV is exactly where these additional processes are turning on

It's not DIS yet! Final states & threshold effects matter

OA0°

Why is it important? Example: T2K

Goals: 1. $v_{\mu} \rightarrow v_{e}$ 2. v_{μ} disappearance E_v is 0.4-2.0 GeV

12-15 August 2006

Kevin McFarland: Interactions of Neutrinos

2 25

1.5

How do cross-sections effect oscillation analysis?

- v_u disappearance
 - at Super-K reconstruct these events by muon angle and momentum (proton below Cerenkov threshold in H₂O)
 - other final states with more particles below threshold ("non-QE") will disrupt this reconstruction

v_u + n →

(E_μ, p_μ)

How do cross-sections effect oscillation analysis?

- v_e appearance
 - different problem: signal rate is very low so even rare backgrounds contribute!

the world's data on this background

(compiled by G. Zeller, hep-ex/0312061)

This should Frighten You

- Remember the end goal of electron neutrino appearance experiments (Boris, Debbie)
- Want to compare two signals with two different sets of backgrounds and signal reactions
 - with sub-percent precision

ONS

(Quasi-)Elastic Scattering

- Elastic scattering leaves a single nucleon in the final state
 - CC "quasi-elastic" easier to observe

 $\begin{array}{c} \nu n \rightarrow l^{-} p \\ \overline{\nu} p \rightarrow l^{+} n \\ {}^{(-)} & {}^{(-)} \\ \nu \ N \rightarrow \nu \ N \end{array}$

- State of data is marginal
 - No free neutrons implies nuclear corrections
 - Low energy statistics poor
- Cross-section is calculable
 - But depends on incalculable formfactors
- Theoretically and experimentally constant at high energy
 - I GeV² is scale of Q² limit

Hmmm... What was that last cryptic remark?

- Theoretically and experimentally constant at high energy
 - I GeV² is scale of Q² limit

• Inverse μ -decay: $\nu_{\mu} + e^{-} \rightarrow \mu^{-} + \nu_{e}$ $\sigma_{TOT} \propto \int_{0}^{Q_{\text{max}}^2} dQ^2 \frac{1}{(Q^2 + M_W^2)^2}$

a maximum Q² independent of beam energy \Rightarrow constant σ_{TOT}

Elastic Scattering (cont'd) How does nucleon structure impact elastic scattering? $\nu n \rightarrow l^- p$ $\overline{\nu} p \to l^+ n$ C.H. Llewellyn Smith, Phys. Rep. 3C, 261 (1972) $< N'|J_{\mu}|N> = \overline{u}(N') \left[\gamma_{\mu} F_{V}'(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}\xi F_{V}^{2}(q^{2})}{2M} + \gamma_{5}\gamma_{\mu}F_{A}(q^{2}) \right] u(N) \xrightarrow{(-)}{\nu} N \xrightarrow{(-)}{\nu} N$ $\hookrightarrow \mathrm{M_A} = 1.032$ GeV parameters determined from data $\hookrightarrow M_{\rm V} = 0.84$ GeV $ightarrow {f F}_{A}({f q}^{2}) = rac{{f F}_{A}(0)}{(1-{f q}^{2}/{M_{a}^{2}})^{2}}; {f F}_{A}(0) = -1.25$ n.b.: we've seen $F_{v}(0)$ and $F_{A}(0)$ before in IBD discussion (g_V and g_A)

- "Form factors" modify vanilla V-A prediction of point-like scattering in Fermi theory
 - vector part can be measured in electron elastic scattering

Low W, the Resonance Region

- Intermediate to elastic and DIS regions is a region of resonance production
 - Recall mass² of hadronic final state is given by

$$W^{2} = M_{T}^{2} + 2M_{T}\nu - Q^{2} = M_{T}^{2} + 2M_{T}\nu(1-x)$$

- At low energy, nucleon-pion states dominated by N* and Δ resonances
- Leads to cross-section dominated by discrete (but smeared) W²
 - Low v, high x \sim

Quark-Hadron Duality

- Bloom-Gilman Duality is the relationship between quark and hadron descriptions of reactions. It reflects:
 - Ink between confinement and asymptotic freedom
 - transition from non-perturbative to perturbative QCD

Duality and v

$$W^2 = M_T^2 + Q^2 \left(\frac{1}{r} - 1\right)$$

Low Q² data -

DIS-Style PDF prediction

- Governs transition between resonance and **DIS** region
- Sums of discrete resonances approaches **DIS cross-section**
- Bodek-Yang: Observe in electron scattering data; apply to v cross-sections

12-15 August 2006

Kevin McFarland: Interactions of Neutrinos

0.6

1.0

Touchstone Question #7: Duality meets Reality

A difficulty in relating cross-sections of electron scattering (photon exchange) to charged-current neutrino scattering (W[±] exchange) is that some escatting reactions have imperfect v-scattering analogues.

Write all possible v_{μ} CC reactions involving the same target particle and isospin rotations of the final state for each of the following...

(a)
$$e^{-}n \rightarrow e^{-}n$$

(b) $e^{-}p \rightarrow e^{-}p$
(c) $e^{-}p \rightarrow e^{-}n\pi^{+}$
(d) $e^{-}n \rightarrow e^{-}p\pi^{-}$

12-15 August 2006

Coherent Inelastic Scattering

- An inelastic charged-current or neutral-current reaction, at low Q², with EM field of the nucleus!
- Not shockingly, this is difficult to calculate
- A dependence essentially unknown.
 - Probably increases with increasing A...
- Low energy dependence controversial

Measuring GeV Cross-Sections

Quasi-Elastic Events

12-15 August 2006

Quasi-Elastic Region (Low Q²) on ¹²C

 First glimpses at quasi-elastic rich low Q² region on C nuclei...

Q2 distribution for K2K SciBar detector

Q2 distribution for MiniBooNE

Resonance Region Data

- Data here, again, is impressively imprecise
 - This will be a problem if details of cross-sections are needed where resonance production is dominant. Need differential distributions! o ~1-2 GeV important for T2K (background), NOvA (signal)

Kevin McFarland: Interactions of Neutrinos

How to measure resonance region cross-sections?

 Need a high granularity detector (like SciBar) but in a higher energy beam and with improved containment of γ, π[±], μ

- MINERvA at NuMI
 - "chewy center" (active target)

with a crunchy shell of muon, hadron and EM absorbers 12-15 August 2006
12-15 August 2006

More Precise Tracking...

- A Liquid Ar TPC offers near bubble chamber precision in tracking
 - can be in magnetic field (momentum precision limited by dense medium)
- Not simple or inexpensive
- Not easy to incorporate other nuclei

Cross-Sections on Nucleons in a Nucleus

Nuclear Effects in Elastic Scattering

Two effects

- In a nucleus, target nucleon has some initial momentum which modifies the observed scattering
 - Often handled in a "Fermi Gas" model of nucleons filling available states up to some initial state Fermi momentum, k_F

- Outgoing nucleon can interact with the target o Usually treated as a simple binding energy
 - Also, Pauli blocking for nucleons not escaping nucleus... states are already filled with identical nucleon

Nuclear Effects in Elastic Scattering (cont'd)

- Also other final states can contribute to apparent "quasi-elastic" scattering through absorption in the nucleus...
 - kinematics may or may not distinguish the reaction from elastic

- Theoretical uncertainties are large
 - At least at the 10% level
 - If precise knowledge is needed for target (e.g., water, liquid argon, hydrocarbons), dedicated measurements will be needed o Most relevant for low energy experiments, i.e., T2K

Low Q² Data on ¹²C

Glimpses at quasi-elastic rich low Q² region on ¹²C...

Q2 distribution for K2K SciBar detector

Q2 distribution for MiniBooNE

- Data suggests nuclear effects are not well modeled
 - K2K working on program of determining which of the many contributions has the deficit
 - K2K has indications it is coherent contribution. Ongoing story...

Nuclear Effects in Resonance Region

- Production kinematics are modified by nuclear medium
 - at right have photoabsorption showing resonance structure
 - line is proton; data is ¹²C
 - except for first Δ peak, the structure is washed out
 - interactions of resonance inside nucleus

 $n \xrightarrow{\Delta^{+}} p \xrightarrow{\pi^{0}}$ nucleus

 μ^{-}

Nuclear Effects in Resonance ν Region (cont'd) model of ν_μ μ E. Paschos, NUINT04

12

10

π⁰

- How does nucleus affect π^0 after production
- Rescattering. Absorption.
- Must measure to predict v_e backgrounds!

io/dP_{*} (fb/GeV) before interactions after interactions 0 0.4 0.5 0.6 0.7 0.8 0.3 0.1 0.2 P. (GeV) do/dP_{*} (h/GeV) π^+ 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P. (GeV)

Touchstone Question #8 Two questions with (*hint*) related answers... 1. Remember that W² is...

$$W^{2} = M_{P}^{2} + 2M_{P}\nu - Q^{2}$$

= $M_{P}^{2} + 2M_{P}\nu(1-x)$

the square of the invariant mass of the hadronic system. ($v=E_v-E_{\mu}$; x is the parton fractional momentum) It can be measured, as you see above with only leptonic quantities (neutrino and muon 4-momentum). In neutrino scattering on a scintillator target, you observe an event with a recoiling proton and with W reconstructed (perfectly) from leptonic variables <M_p. Explain this event.

2. In the same scintillator target, you observe the reaction.. $\nu_{\mu}^{12}C \rightarrow \mu^{-}p\pi^{-}$ + remnant nucleus Why might this be puzzling? Explain the process.

Nuclear Effects in DIS

- Well measured effects in charged-lepton DIS
 - Maybe the same for neutrino DIS; maybe not... all precise neutrino data is on Ca or Fe targets!
 - Conjecture: these can be absorbed into effective nucleon PDFs in a nucleus
 Anti-shadowing

Kevin McFarland: Interactions of Neutrinos

127

Example: LSND Reactions

- At 10s of MeV, anti-neutrino charged-current interactions
 - can occur from free protons
 - but no allowed states are present in a potential recoil ¹²B nucleus
- By contrast, neutrino charged-current interactions
 - produce ¹²N which has energetically allowed exicted states (and rare transition to ground state)

-167 tons of Liquid Scintillator (CH2)

$$\overline{v}_{\mu} p \to \mu^{+} n \\
\overline{v}_{e} p \to e^{+} n$$

oscillation signatures

 $\nu_{\mu}C \rightarrow \mu^{-}N^{*}$ $\nu_e C \rightarrow e^- N^*$ $\nu_{\mu}C \rightarrow \mu^{-}N_{GS}$ $v_e C \rightarrow e^- N_{GS}$

LSND (and KARMEN) Results:

- LSND anti- v_e excess
 - Detected by coincidence of positron and delayed neutron capture (gammas)
 - 87.9±22.4±6.0 events
 - Not confirmed by KARMEN experiment at ISIS

131

10

10

∆m²[eV²]

Connections to Low Energy and Ultra-High Energy Cross-Sections

Ultra-High Energies

- At energies relevant for UHE Cosmic Ray studies (e.g., IceCube, ANITA)
 - ν-parton cross-section is dominated by high Q², since dσ/dQ² is constant

o at high Q², scaling violations have made most of nucleon momentum carried by sea quarks
 o see a rise in σ/ E_ν from growth of sea at low x
 o neutrino & anti-neutrino cross-sections nearly equal

 Until Q²»M_W², then propagator term starts decreasing and cross-section becomes constant

 $\frac{d\sigma}{da^2} \propto \frac{1}{\left(a^2 - M^2\right)^2}$

Touchstone Question #9: Where does σ Level Off?

 Until Q²»M_W², then propagator term starts decreasing and cross-section becomes constant

$$\frac{d\sigma}{dq^2} \propto \frac{1}{(q^2 - M^2)^2}$$

 At what beam energy for a target at rest will this happen?

(a) $E_{\nu} \sim 10 \text{TeV}$ (b) $E_{\nu} \sim 10,000 \text{TeV}$ (c) $E_{\nu} \sim 10,000,000 \text{TeV}$

Threshold Effects

- At 1-few GeV, crosssection makes a transition between DIS-like and resonant/elastic
 - Why? "Binding energy" of target (nucleon) is ~1 GeV, comparable to mean Q²

- What are other thresholds?
 - Binding energy of nucleus is >>(M_n-M_p)≈1 MeV, typically 1/10ths – 10s of MeV
 - Binding energies of atoms are $\langle Z^2 m_e c^2 \alpha_{EM}/2 \rangle \langle 10-10^5 eV$

1.25

Binding energies of v, l[±], quarks (into hypothetical constituents that we haven't found yet) are > 10 TeV

Example: SNO

 Three reactions for observing v from sun (E_v ~ few MeV

 $v_r + e^- \Rightarrow v_r + e^-$

Example: Ultra-High Energies

- At UHE, can we reach thresholds of non-SM processes?
 - E.g., structure of quark or leptons, black holes from extra dimensions, etc.
 - Th

12-15 August 2006

Conclusions

What Should I Remember from These Lectures?

- Understanding neutrino interactions is key to precision measurements of neutrino oscillations at accelerators
- Weak interactions couple to single chirality of fermions
 - Consequences for scattering on point-like particles
- Neutrino scattering rate proportional to energy
 - Point-like target (electron, quark), below real boson exchange
- Target (proton, nucleus) structure is a significant complication to theoretical prediction of cross-section
 - Particularly problematic near inelastic thresholds
 - We can learn things by analogy with DIS (duality) and electron scattering
 - But improved neutrino cross-section measurements are required by next generation oscillation experiments

12-15 August 2006