

Exercise 1 (August 16th, 2006)

 Show that the L/E dependence of the 2 flavor Oscillation probability is given by

$$\sin^2\left(\frac{\Delta m^2 L}{4E}\right) = \sin^2\left(\frac{1.27\Delta m^2 (\text{eV}^2) L(\text{km})}{E(\text{GeV})}\right)$$

• hints : the left-hand side of the above equation is presented in the natural unit. Use $\hbar c = 197 MeV fm$ to get the units back.

Superbeam, Beta Beam, and Neutrino Factory (2)

Yoshitaka Kuno Osaka University

Second Lecture

61st Scottish Summer School in Physics 17 August, 2006

Outline of the Second Lecture

- What Is A Neutrino Factory ?
- Eight-fold Degeneracies
- Neutrino Factory : Sensitivity and Optimization
- Beta Beam
- Summary

Neutrino Factory

Neutrinos from Pion Decay and Muon Decay

- Pion-decay based neutrino beam
 - prompt decays

$$\pi^{+}
ightarrow \mu^{+} v_{\mu}$$
 $\pi^{-}
ightarrow \mu^{-} \overline{v}_{\mu}$

backgrounds

$$K \to \mu \nu, K \to \pi l \nu$$

- $\mu \rightarrow e v \overline{v}$
- Beam normalization ~ 10%

- Muon-decay based Neutrino beam
 - delayed decay after all pions and kaons decay.

- Less beam backgrounds
- Beam normalization can be better known.

Neutrinos from Pion Decay and Muon Decay

- Pion-decay based neutrino beam
 - prompt decays

$$\pi^{+} \rightarrow \mu^{+} v_{\mu}$$
 $\pi^{-} \rightarrow \mu^{-} \overline{v}_{\mu}$

backgrounds

$$K \rightarrow \mu \nu, K \rightarrow \pi l \nu$$

- $\mu \rightarrow e v \overline{v}$
- Beam normalization ~ 10%

- Muon-decay based Neutrino beam
 - delayed decay after all pions and kaons decay.

$$\mu^{+} \rightarrow e^{+} \nu_{e} \overline{\nu}_{\mu}$$
$$\mu^{-} \rightarrow e^{-} \overline{\nu}_{e} \nu_{\mu}$$

- Less beam backgrounds
- Beam normalization can be better known.

Neutrinos from Muon Decay

 $\mu^{+} \rightarrow e^{+} v_{e} \overline{v}_{\mu}$ $\mu^{-} \rightarrow e^{-} \overline{v}_{e} v_{\mu}$

$$P_{\mu} = 0$$

 \mathcal{V}_{μ} 1.6 (1.2)(1.2)(1.2)0.8(1.2)0.40.401.6 \mathcal{V}_{e} 1.6 $\overbrace{Z}^{1.2}$ 5 0.8 0.4 0 0.6 0.8 0.2 0:4 E./E.

- Single (almost 100%) decay mode
- Well defined kinematics

 $\frac{dN(v_{\mu})}{dxd\cos\theta_{CM}} = 2x^{2} \Big[(3-2x) \mp P_{\mu}(1-2x)\cos\theta_{CM} \Big]$ $\frac{dN(v_{e})}{dxd\cos\theta_{CM}} = 6x^{2} \Big[(1-x) \mp P_{\mu}(1-x)\cos\theta_{CM} \Big]$ $x = \frac{E_{\nu}}{E_{\max}}, \text{ where } E_{\max} = m_{\mu}/2$

Accelerate to Get More Neutrinos !

- Given the proton beam power, numbers of pions and muons are similar.
- Acceleration of the parent particles gives more neutrinos by Lorentz boosting. $N \propto E^2$
- Pion has too short lifetime.
- Only muon live long enough to accelerate.

 $\frac{d^2 N_{\overline{\nu}_{\mu},\nu_{\mu}}}{dy d\Omega} = \frac{4n_{\mu}}{\pi L^2 m_{\mu}^6} E_{\mu}^4 y^2 (1 - \beta \cos\varphi)$ $\times \left[\left\{ 3m_u^2 - 4E_u^2 y(1 - \beta \cos\varphi) \right\} \right]$ $\mp P_{\mu} \left\{ m_{\mu}^2 - 4 E_{\mu}^2 y (1 - \beta \cos \varphi) \right\} \right]$ $\frac{d^2 N_{\overline{v}_e, v_e}}{dy d\Omega} = \frac{24n_{\mu}}{\pi L^2 m_{\mu}^6} E_{\mu}^4 y^2 (1 - \beta \cos\varphi)$ $\times \left[\left\{ m_{\mu}^{2} - 2E_{\mu}^{2}y(1 - \beta \cos\varphi) \right\} \right]$ $\mp P_{\mu} \Big\{ m_{\mu}^2 - 2E_{\mu}^2 y (1 - \beta \cos\varphi) \Big\} \Big]$ $y = \frac{E_v}{E}; \ \beta = \sqrt{1 - m_{\mu}^2 / E_{\mu}^2}; \ n_{\mu} = \# \text{ of muons};$ φ = angle between beam and detector; L = distance

Accelerate to Get More Neutrinos !

- Given the proton beam power, numbers of pions and muons are similar.
- Acceleration of the parent particles gives more neutrinos by Lorentz boosting. $N \propto E^2$
- Pion has too short lifetime.
- Only muon live long enough to accelerate.

Exercise 1

 If a muon is polarized, neutrino spectra changes. The right figures show the energy spectra of muon neutrino and electron neutrino (not shown whether they are neutrino or anti-neutrino). Here, P=+1 (P=-1) implies that the direction of neutrino and the direction of the muon polarization is the same (opposite), Show whether this is the case of a positive muon or a negative muon ?

Storage Ring is Needed !

- Muons accelerated at high energy do not decay quickly !
 - at 10 GeV, muon lifetime is about 200 microseconds.
- A storage ring is needed with long straight sections.
 - Two straight sections give automatically two experiments (with different baselines) at a time.

Parameters for the Muon	n Storage Ring	
Energy	GeV	50
decay ratio	%	>40
Designed for inv. Emittance	m*rad	0.0032
Cooling designed for inv. Emitt.	m*rad	0.0016
β in straight	m	160
Nµ/pulse	10^{12}	6
typical decay angle of $\mu = 1/\gamma$	mrad	2.0
Beam angle $(\sqrt{\epsilon/\beta_o}) = (\sqrt{\epsilon} \gamma)$	mrad	0.2
Lifetime c* ^y * ^τ	m	3×10^5

 $\gamma = (1 - \alpha^2)/\beta$

Neutrino Cross Sections

• Deep Inelastic Scattering Processes at High Energy.

$$\nu_{\mu} + N \rightarrow \mu + X$$

 $\begin{aligned} \sigma(v) &\approx 0.67 \times 10^{-38} cm^2 \times E_v (GeV) \\ \sigma(\overline{v}) &\approx 0.34 \times 10^{-38} cm^2 \times E_v (GeV) \\ \sigma(\overline{v}) / \sigma(v) &\approx 0.5 \end{aligned}$

 Quasi Elastic Scattering Processes at 1 GeV

 $\nu_{\mu} + N \rightarrow \mu + N'$

$$\sigma(\overline{v}) / \sigma(v) \approx 1$$

Lepton Spectra from CC events

• neutrino CC events

$$\nu(\overline{\nu}) + N \rightarrow l^{-}(l^{+}) + X$$

- different for neutrinos and antineutrinos
- low energy region is important for neutrino events (not antineutrino events.)

Advantages of Neutrino Factory

- Very highly intense neutrino source
 - a few orders of magnitude higher at a few 10 GeV energy range.
- Both muon (anti-)neutrinos and electron (anti-)neutrinos are available.
 - Many variety of oscillation modes can be studied.

- Extremely low backgrounds
 - for wrong signed muon detection, a background level would be less than 10⁻⁴.
- Precise Knowledge on Neutrino Flux
 - Neutrino flux normalization can be done at the level of 0.1%.

12 Oscillation Processes in a Neutrino Factory

12 Oscillation Processes from (simultaneous) beams of positive and negative muons in a neutrino Factory.

	L	✓	
$\mu^+ \to e^+ \nu_e \overline{\nu}_\mu$	$\mu^- \to e^- \bar{\nu}_e \nu_\mu$		
$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	$ u_\mu ightarrow u_\mu$	disappearance	
$\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$	$ u_{\mu} ightarrow u_{e}$	appearance (challenging)	
$\overline{ u}_{\mu} ightarrow \overline{ u}_{ au}$	$ u_\mu ightarrow u_ au$	appearance (atm. oscillation pla	atinum
$\nu_e \rightarrow \nu_e$	$\overline{\nu}_e \to \overline{\nu}_e$	disappearance	
$ u_e ightarrow u_\mu$	$\overline{ u}_e ightarrow \overline{ u}_\mu$	appearance: "golden" channel	golder
$ u_e \rightarrow \nu_{ au}$	$\overline{\nu}_e ightarrow \overline{ u}_{ au}$	appearance: "silver" channel	silver

Event Rates

• Charged Current (CC) Event Rates

$$N_{CC}(\nu_{\ell} \to \ell) \propto N_{\nu} \cdot \sigma$$
$$\propto \frac{E^2}{L^2} \cdot E = \frac{E^3}{L^2}$$

- example
 - 10²¹ muons decay /year with a 10 kton detector

	L=1000km	L=1500km
E _μ =20 GeV	3.2x10 ⁵	1.4x10 ⁵
E_{μ} =30 GeV	1.1x10 ⁶	4.8x10 ⁵

MINOS (low energy 3GeV, 732 km) : 5000 CC events/10 kton/year

Oscillation Event Rates

$$N_{osc}(\nu_{\ell} \to \ell')$$

$$\propto N_{\nu} \cdot \sigma \cdot P(\nu_{\ell} \to \nu_{\ell'})$$

$$\propto \frac{E^3}{L^2} \cdot \frac{L^2}{E^2} = E$$

Neutrino Oscillation Signature at NuFact

- The signature of neutrino oscillation is wrong-signed leptons.
- Charge identification of the lepton(s) is needed.
 - Muons are easy.
 - Electrons are difficult.

Neutrino Oscillation Signature at NuFact

- The signature of neutrino oscillation is wrong-signed leptons.
- Charge identification of the lepton(s) is needed.
 - Muons are easy.
 - Electrons are difficult.

Ratio of Wrong Sign Muon Events

- Wrong sign muons are clean signals.
- Background level for wrong sign muons would be 10⁻⁴.
- The matter effect enhance antineutrino events if $\Delta m^2_{32} < 0$, and it enhance neutrino events if $\Delta m^2_{32} > 0$.
- The band shows CP violation effect where the phase changes .

20 GeV Neutrino Factory, 4 MeV threshold. Two lines are for two mass hierarchy. The statistical error represents the sample of 1021 muon decays with a 50 kton detector.

Wrong Sign Muon Event Spectra

2E20 decays, Emu=30GeV, L=2800 km

Goals of Neutrino Oscillation Physics (at Neutrino Factory and Superbeams)

Degeneracies

Golden Appearance Channel in Neutrino Factory

$$\nu_{e} \rightarrow \nu_{\mu} \left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu} \right) \text{Oscillation} + \text{for neutrino,} - \text{for antineutrino}$$

$$P_{\nu_{e}\nu_{\mu}}^{\pm}(\theta_{13}, \delta) \approx X_{\pm} \sin^{2} 2\theta_{13} + \left(Y_{\pm}^{c} \cos \delta \mp Y_{\pm}^{s} \sin \delta \right) \sin 2\theta_{13} + Z$$
with $X_{\pm}, Y_{\pm}^{c}, Y_{\pm}^{s}$ and Z functions of the known parameters:
$$\begin{cases}
X_{\pm} = \sin^{2} \theta_{23} \left(\frac{\Delta_{23}}{\tilde{B}_{\mp}} \right)^{2} \sin^{2} \left(\frac{\tilde{B}_{\mp}L}{2} \right) \\
Y_{\pm}^{c} = \sin 2\theta_{23} \sin 2\theta_{12} \frac{\Delta_{12}}{A} \frac{\Delta_{23}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2} \right) \sin \left(\frac{\tilde{B}_{\mp}L}{2} \right) \cos \left(\frac{\Delta_{23}L}{2} \right) \\
Y_{\pm}^{s} = \sin 2\theta_{23} \sin 2\theta_{12} \frac{\Delta_{12}}{A} \frac{\Delta_{23}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2} \right) \sin \left(\frac{\tilde{B}_{\mp}L}{2} \right) \sin \left(\frac{\Delta_{23}L}{2} \right) \\
Z = \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{12}}{A} \right)^{2} \sin^{2} \left(\frac{AL}{2} \right) \end{cases}$$

where $\Delta_{ij} = \Delta m_{ij}^2/2E$, $B_{\mp} = |A \mp \Delta_{23}|$ and A is the matter parameter.

from S. Rigolin, NuFACT05

Degeneracies of δ and θ_{13} (1) - Just One Counting Measurement

- With neutrino oscillation of given L/ E, for the true value set of ($\overline{\delta}, \overline{\theta}_{13}$), another set of (δ, θ_{13}) would give the same oscillation probability.
- ullet no sensitivity to $\,\delta\,$
- large uncertainty in $heta_{13}$

Appearance Oscillation Channels

 $\nu_e \to \nu_\mu \ (\bar{\nu}_e \to \bar{\nu}_\mu)$ Oscillation + for neutrino, - for antineutrino $P_{\nu_e\nu_\mu}^{\pm}(\theta_{13},\delta) \approx X_{\pm} \sin^2 2\theta_{13} + \left(Y_{\pm}^c \cos\delta \mp Y_{\pm}^s \sin\delta\right) \sin 2\theta_{13} + Z$ with $X_{\pm}, Y_{\pm}^{c}, Y_{\pm}^{s}$ and Z functions of the known parameters: $X_{\pm} = \left[\sin^2 \theta_{23}\right] \left(\frac{\Delta_{23}}{\tilde{B}_{\pm}}\right)^2 \sin^2 \left(\frac{\tilde{B}_{\pm}L}{2}\right)$ $Y_{\pm}^{c} = \frac{\sin 2\theta_{23}}{\sin 2\theta_{12}} \sin 2\theta_{12} \frac{\Delta_{12}}{A} \frac{\Delta_{23}}{\tilde{B}_{\mp}} \sin\left(\frac{AL}{2}\right) \sin\left(\frac{\tilde{B}_{\mp}L}{2}\right) \left[\cos\left(\frac{\Delta_{23}L}{2}\right)\right]$ $\boxed{\sin 2\theta_{23}} \sin 2\theta_{12} \ \frac{\Delta_{12}}{A} \ \frac{\Delta_{23}}{\tilde{B}_{\pm}} \sin\left(\frac{AL}{2}\right) \sin\left(\frac{\tilde{B}_{\mp}}{2}L\right) \left[\sin\left(\frac{\Delta_{23}L}{2}\right)\right]$ $Y^s_{\pm} =$ $Z = \left[\cos^2 \theta_{23} \right] \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{A} \right)^2 \sin^2 \left(\frac{AL}{2} \right)$

where $\Delta_{ij} = \Delta m_{ij}^2/2E$, $B_{\mp} = |A \mp \Delta_{23}|$ and A is the matter parameter.

from S. Rigolin, NuFACT05

Degeneracies of δ and θ_{13} (2) Compare Neutrinos and Anti-Neutrinos

- We have the same measurements for neutrino (P_+) and anti-neutrinos $(P_{-})_{-}$
- Two solutions to give the same oscillation probabilities.
 - one is the true, and the other is clone.

$$P_{+}(\bar{\theta}_{13}, \bar{\delta}) = P_{+}(\theta_{13}, \delta)$$
$$P_{-}(\bar{\theta}_{13}, \bar{\delta}) = P_{-}(\theta_{13}, \delta)$$

from S. Rigolin, NuFACT05

from S. Rigolin, NuFACT05

Degeneracies of δ and θ_{13} (3) - Compare Different L/E

- We have the same measurements for neutrino (P₊) and anti-neutrinos (P₋) for either
 - two counting experiments at two different L/E values, or
 - binning the energy spectra (where each energy bin corresponds to different experiments).

More Degeneracies - Eight-fold !

• Besides δ and θ_{13} , the following values are not known.

Eight-fold Degeneracy

intrinsic degeneracy (Burguet01)

 $N_i^{\pm}(\bar{\theta}_{13}, \bar{\delta}; \bar{s}_{atm}, \bar{s}_{oct}) = N_i^{\pm}(\theta_{13}, \delta; s_{atm} = \bar{s}_{atm}, s_{oct} = \bar{s}_{oct})$

Eight-fold Degeneracy sign degeneracy (Minakata01)

$$N_i^{\pm}(\bar{\theta}_{13}, \bar{\delta}; \bar{s}_{atm}, \bar{s}_{oct}) = N_i^{\pm}(\theta_{13}, \delta; s_{atm} = -\bar{s}_{atm}, s_{oct} = \bar{s}_{oct})$$

octant degeneracy (Fogli96, Barger01)

 $N_i^{\pm}(\bar{\theta}_{13}, \bar{\delta}; \bar{s}_{atm}, \bar{s}_{oct}) = N_i^{\pm}(\theta_{13}, \delta; s_{atm} = \bar{s}_{atm}, s_{oct} = -\bar{s}_{oct})$

mixed degeneracy (Barger01)

$$N_i^{\pm}(\bar{\theta}_{13}, \bar{\delta}; \bar{s}_{atm}, \bar{s}_{oct}) = N_i^{\pm}(\theta_{13}, \delta; s_{atm} = -\bar{s}_{atm}, s_{oct} = -\bar{s}_{oct})$$

Sensitivity of θ_{13} and δ

Example

Eight-fold degeneracy

from S. Rigolin, NuFACT05

Silver Appearance Channel in Neutrino Factory

$$\begin{split} \nu_{e} &\rightarrow \nu_{\tau} \left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{\tau} \right) \text{ Oscillation} \\ P_{\nu_{e}\nu_{\tau}}^{\pm}(\theta_{13}, \delta) \approx X_{\pm}^{\tau} \sin^{2} 2 \theta_{13} + \left(Y_{\pm}^{\tau,c} \cos \delta \mp Y_{\pm}^{\tau,s} \sin \delta \right) \sin 2 \theta_{13} + Z^{\tau} \\ \text{ with } X_{\pm}^{\tau}, Y_{\pm}^{\tau,c}, Y_{\pm}^{\tau,s} \text{ and } Z^{\tau} \text{ functions of the known parameters:} \\ \begin{cases} X_{\pm}^{\tau} &= \cos^{2} \theta_{23} \left(\frac{\Delta_{23}}{\bar{B}_{\mp}} \right)^{2} \sin^{2} \left(\frac{\bar{B}_{\mp}L}{2} \right) \\ Y_{\pm}^{\tau,c} &= - Y_{\pm}^{c} \\ Y_{\pm}^{\tau,s} &= - Y_{\pm}^{s} \\ Z^{\tau} &= \sin^{2} \theta_{23} \sin^{2} 2 \theta_{12} \left(\frac{\Delta_{12}}{A} \right)^{2} \sin^{2} \left(\frac{AL}{2} \right) \\ P_{\nu_{e}\nu_{\tau}} = P_{\nu_{e}\nu_{\mu}} \left(s_{23}^{2} \rightarrow c_{23}^{2}, \sin^{2} 2 \theta_{23} \rightarrow - \sin^{2} 2 \theta_{23} \right) \end{split}$$

Platinum Appearance Channel in Neutrino Factory

$$\nu_{\mu} \rightarrow \nu_{e} \ (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$$
 Oscillation

Exercise

The oscillation probability of the silver channel is given from that of golden channel by the following transformation.

$$P_{\nu_e\nu_\tau} = P_{\nu_e\nu_\mu}(s_{23}^2 \to c_{23}^2, \sin^2 2\theta_{23} \to -\sin^2 2\theta_{23})$$

Show what transformation would give the oscillation probability of the platinum channel from that of the golden channel ?

Combine Golden and Platinum Channels

Use different channels to solve the degeneracy

Neutrino Factory Sensitivities And Optimization

Comments : Definitions of Sensitivity Plots with Systematics, Correlations, degeneracies

a la M. Lindner et al.

Exclusion Sensitivity to $\sin^2 2\theta_{13}$

Huber, Lindner, Winter, hep-ph/0204352

Exclusion Sensitivity to Mass Hierarchy

Huber, Lindner, Winter, hep-ph/0204352

CP Coverage

- Neutrino Factory overperforms for most of the cases, except for large $\sin^2 2\theta_{13}$.
- For large $\sin^2 2\theta_{13}$, systematics dominates. In particular, uncertainty of matter effects is important.
- Need to study matter density or others.

CP (anti-) Coverage for Different $\sin^2 2\theta_{13}$

CP (anti-) Coverage for Different $\sin^2 2\theta_{13}$

CP (anti-) Coverage for Different $\sin^2 2\theta_{13}$

NuFACT Strategy Optimization to Resolve Degeneracies

- Combine with anti-neutrinos
- Combine with "Silver Channel" $u_e \to
 u_\mu$ Donini, Meloni, Migliozzi, 2002; Autiero et al, 2004.
- Combine with "Platinum Channel" $u_{\mu}
 ightarrow
 u_{e}$
- Use better detectors with high energy resolutions and low threshold.
- Locate the second detector at the magic baseline.

Lipari, 2002 ; Burguet-Gastell et al. 2001; Barger, Mafatia, Whisnant, 2002; Huber, Winter, 2003; others

Magic Baseline (7300 - 7600 km)

$$\sin\left(\frac{AL}{2}\right) = 0 \to \sqrt{2}G_F n_e L = 2\pi \to L \sim 7300 - 7600 \text{km}$$
$$P_{\nu_e\nu_\mu}^{\pm}(\theta_{13},\delta) \approx X_{\pm} \sin^2 2\theta_{13} + \left(Y_{\pm}^c \cos\delta \mp Y_{\pm}^s \sin\delta\right) \sin 2\theta_{13} + Z$$

with $X_{\pm}, Y_{\pm}^{c}, Y_{\pm}^{s}$ and Z functions of the known parameters:

$$\begin{cases} X_{\pm} = \sin^2 \theta_{23} \left(\frac{\Delta_{23}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \left(\frac{\tilde{B}_{\mp}L}{2}\right) \\ Y_{\pm}^c = \sin 2\theta_{23} \sin 2\theta_{12} \frac{\Delta_{12}}{A} \frac{\Delta_{23}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp}L}{2}\right) \cos \left(\frac{\Delta_{23}L}{2}\right) \\ Y_{\pm}^s = \sin 2\theta_{23} \sin 2\theta_{12} \frac{\Delta_{12}}{A} \frac{\Delta_{23}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp}L}{2}\right) \sin \left(\frac{\Delta_{23}L}{2}\right) \\ Z = \cos^2 \theta_{23} \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \left(\frac{AL}{2}\right) \end{cases}$$

where $\Delta_{ij}=\Delta m_{ij}^2/2E$, $B_{\mp}=|A\mp\Delta_{23}|$ and A is the matter parameter.

Magic Baseline (7300 - 7600 km)

$$\sin(\frac{AL}{2}) = 0 \to \sqrt{2}G_F n_e L = 2\pi \to L \sim 7300 - 7600 \text{km}$$

$$P_{\nu_e\nu_\mu}^{\pm}(\theta_{13},\delta) \approx X_{\pm} \sin^2 2\theta_{13} + \left(Y_{\pm}^c \cos\delta \mp Y_{\pm}^s \sin\delta\right) \sin 2\theta_{13} + Z$$

with $X_{\pm}, Y_{\pm}^{c}, Y_{\pm}^{s}$ and Z functions of the known parameters:

$$\begin{cases} X_{\pm} = \frac{\sin^2 \theta_{23}}{\sin^2 \theta_{23}} \left(\frac{\Delta_{23}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \left(\frac{\tilde{B}_{\mp}L}{2}\right) & \text{only this term !} \\ Y_{\pm}^c = \frac{\sin 2\theta_{23}}{\sin 2\theta_{12}} \frac{\Delta_{12}}{A} \frac{\Delta_{23}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp}L}{2}\right) \cos \left(\frac{\Delta_{23}L}{2}\right) \\ Y_{\pm}^s = \frac{\sin 2\theta_{23}}{\sin 2\theta_{12}} \frac{\Delta_{12}}{A} \frac{\Delta_{23}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp}L}{2}\right) \sin \left(\frac{\Delta_{23}L}{2}\right) \\ Z = \cos^2 \theta_{23} \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \left(\frac{AL}{2}\right) \end{cases}$$

where $\Delta_{ij} = \Delta m_{ij}^2/2E$, $B_{\mp} = |A \mp \Delta_{23}|$ and A is the matter parameter.

Magic Baseline (7300 - 7600 km)

$$\begin{aligned} \sin\left(\frac{AL}{2}\right) &= 0 \to \sqrt{2}G_F n_e L = 2\pi \to L \sim 7300 - 7600 \mathrm{km} \\
\overset{P_{\nu_e\nu_{\mu}}(\ell)}{\text{with}} & \text{a clean determination of } \sin^2 2\theta_{13} \\
\begin{cases} X_{\pm} &= \boxed{\sin^2 \theta_{23}} \left(\frac{\Delta_{23}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \left(\frac{\tilde{B}_{\mp L}}{2}\right) & \text{only this term !} \\
Y_{\pm}^c &= \boxed{\sin 2\theta_{23}} \sin 2\theta_{12} \frac{\Delta_{12}}{A} \frac{\Delta_{23}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp L}}{2}\right) \left(\cos \left(\frac{\Delta_{23}L}{2}\right)\right) \\
Y_{\pm}^s &= \boxed{\sin 2\theta_{23}} \sin 2\theta_{12} \frac{\Delta_{12}}{A} \frac{\Delta_{23}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp L}}{2}\right) \left(\cos \left(\frac{\Delta_{23}L}{2}\right)\right) \\
Z &= \boxed{\cos^2 \theta_{23}} \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \left(\frac{\Delta_{12}}{A}\right) \\
\end{aligned}$$

where $\Delta_{ij} = \Delta m_{ij}^2/2E$, $B_{\mp} = |A \mp \Delta_{23}|$ and A is the matter parameter.

Optimization of L/E

- Magic baseline is useful to resolve degeneracy.
- L=2000 4000 km is good for statistics

 $\sin^2 2\theta_{13}$

CP Violation

L=3000 - 5000 km for CPOptimization of L/EL>6000 km for mass hierarchy.

CP Violation

Add Platinum Channel

degeneracy can be resolved for large θ_{13}

CP Violation

Add Silver Channels

Matter density correlation better not competitive to platinum with detector upgrade

Single Detector Effort

CP Violation

Double Detector Effort

Physics Case : Large $\sin^2 2\theta_{13}$

Physics Case : Intermediate $\sin^2 2\theta_{13}$

- Typical physics case for a neutrino factory.
- Improved detector and magic baseline is sufficient to make physics case.

Physics Case : Small $\sin^2 2\theta_{13}$

- Clear Physics Case for neutrino factory with een with moderate improvement.
- Optimal reach for improved detector and magic baseline.

Summary of Neutrino Factory Optimization

- A lot of works have been done and more works are being undertaken.
- For $\sin^2 2\theta_{13} < 0.01$ there is a strong case for a neutrino factory, which gives the best sensitivity of CP violation.
- For $\sin^2 2\theta_{13} > 0.01$, T2HK and a neutrino factory are comparable. For a neutrino factory, systematic uncertainty, in particular from matter density, is important and should be reduced. (The study is going.)

Summary of the Second Lecture

• A neutrino factory is a next-generation highly intense neutrino facility.

Beta Beam

What Is a Beta Beam ?

- The "Beta beam" is a future neutrino facility which produce pure and intense (anti) electron neutrino beams, by accelerating radioactive ions and storing them in a decay ring.
- Proposed by Piero Zucchelli
 - Phys. Lett. B532 (2002) 166 172.

Ion Choice for Beta Beam

Considerations

- need to produce reasonable amounts of ions.
- not too short lifetime to get reasonable intensities.
- not too long lifetime otherwise no decays at high energy.

Electron Anti-neutrinos

$${}_2^6He \rightarrow {}_3^6Li + e^- + \bar{\nu}_e$$

average energy = 1.94 MeV lifetime = 1.94 MeV

Electron Neutrinos

$$^{18}_{10}Ne \rightarrow ^{18}_{9}F + e^+ + \nu_e$$

average energy = 1.86 MeV

lifetime = 1.86 MeV

Acceleration

Neutrino source

Beta Beam Concept

Monochromatic Neutrino Beam (Electron Capture)

Decay	T _{1/2}	BR _ν	EC/v		B(GT)	E_{GR}	$\Gamma_{\sf GR}$	Q_{EC}	E_{v}	ΔE_{v}
¹⁴⁸ Dy→ ¹⁴⁸ Tb [*]	3.1 m	1	0.96	0.96	0.46	620		2682	2062	
¹⁵⁰ Dy→ ¹⁵⁰ Tb [*]	7.2 m	0.64	1	1	0.32	397		1794	1397	
$^{152}\text{Tm2}^{-} \rightarrow ^{152}\text{E}_{\text{T}}^{*}$	8.0 s	1	0.45	0.50	0.48	4300	520	8700	4400	520
¹⁵⁰ Ho2 ⁻ → ¹⁵⁰ Dy [*]	72 s	1	0.77	0.56	0.25	4400	400	7400	3000	400

9-3 (CHQ)