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Hypersonic acoustic excitations in binary colloidal crystals:
Big versus small hard sphere control
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The phononic band structure of two binary colloidal crystals, at hypersonic frequencies, is studied
by means of Brillouin light scattering and analyzed in conjunction with corresponding dispersion
diagrams of the single colloidal crystals of the constituent particles. Besides the acoustic band of the
average medium, the authors’ results show the existence of narrow bands originating from resonant
multipole modes of the individual particles as well as Bragg-type modes due to the (short-range)
periodicity. Strong interaction, leading to the occurrence of hybridization gaps, is observed between
the acoustic band and the band of quadrupole modes of the particles that occupy the largest
fractional volume of the mixed crystal; the effective radius is either that of the large (in the
symmetric NaCl-type crystalline phase) or the small (in the asymmetric NaZns-type crystalline
phase) particles. The possibility to reveal a universal behavior of the phononic band structure for
different single and binary colloidal crystalline suspensions, by representing in the dispersion
diagrams reduced quantities using an appropriate length scale, is discussed. © 2007 American

Institute of Physics. [DOI: 10.1063/1.2429067]

I. INTRODUCTION

Colloidal systems consist of mesoscopic particles dis-
persed in a continuous medium, and it is basically the par-
ticle size that distinguishes these systems from other materi-
als, such as solutions. The hallmark of colloids is their ability
to crystallize like atomic systems and, for hard sphere inter-
actions, the one-dimensional phase diagram depends only on
their volume fraction.' The characteristic lattice spacing of
these structures falls into the submicron range and, therefore,
colloidal crystals are able to mold the flow of light (photonic
crystals)2 and sound at hypersonic frequencies.3 The propa-
gation of phonons with wavelengths commensurate with the
spacing of the colloidal crystals, i.e., with optical wave-
lengths and hence at hypersonic (gigahertz) frequencies, can
be uniquely studied by (inelastic) Brillouin light scattering
(BLS) at a selected scattering wave vector q=K;—k;, where
k; and k; are the wave vectors of the incoming and outgoing
photons.4_7 This nondestructive and noncontact high-
resolution technique is based on the scattering of single fre-
quency laser light by the phonons with wave vector k propa-
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gating in the medium at thermal equilibrium. For
homogeneous media over the length scale ~¢~', q=k, i.e., q
matches k of the selected phonon with a longitudinal or
transverse phase velocity c. In this case, the spectrum /(g, )
displays one Brillouin doublet at w=*cqg on both sides of the
elastic (at w=0) central Rayleigh line. For inhomogeneous
media exceeding the length ¢~!, additional acoustic excita-
tions are, in principle, expected.

In colloidal crystals, as requested by the translation sym-
metry of the lattice, phonons with wave vectors k and k
+G, with G being a vector of the reciprocal lattice, represent
the same wave field. This leads to a description of the fre-
quency levels of a phonon in a colloidal crystal in terms of a
family of continuous functions w,(k), n=1,2,..., each with
the periodicity of the reciprocal lattice. The information con-
tained in these functions is referred to as the phononic band
structure of the colloidal crystal, by analogy to the energy
band structure associated with the electron states in ordinary
crystalline solids.® It turns out that there are regions of fre-
quency, so-called phononic band gaps, where no propagating
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phonon modes exist in a colloidal crystal. Such gaps open
up, for example, when two phonon dispersion lines
(phononic bands) of the same symmetry cross each other,
about the crossing point, as a result of level repulsion due to
the mutual interaction. This is the case of Bragg gaps at the
Brillouin zone (BZ) boundaries where acoustic bands, origi-
nating from different points of the reciprocal lattice, cross
each other. The same mechanism also operates when bands
of different physical origins are involved (hybridization
gaps), e.g., an extended acoustic band and a narrow band
formed from interacting resonant modes of the individual
particles.

The phonon spectrum of crystalline suspensions of col-
loidal particles with radius R in the range of 120—400 nm
recorded by BLS using tandem Fabry-Pérot interferometry in
the gigahertz frequency region has revealed three character-
istic groups of elastic excitations: opticlike modes reflecting
vibration modes of the individual particles,4’6’7’9’10 mixed hy-
brid modes between acoustic phonons of the average me-
dium and particle modes, and Bragg-type modes due to some
crystalline or short-range order.”!"!? Although an adequate
overall theoretical description of the experimental rich dis-
persion relations was achieved, clear signatures from the par-
ticle (geometrical and mechanical properties) and the struc-
ture were not identifiable. In fabricated latex spheres opals,lo
a rich spectrum of multipole particle resonances (up to 21)
were identified by their angular-momentum index /. In the
colloidal suspensions, the lowest particle modes, correspond-
ing to [=2, seem to be relevant for the observed weak hy-
bridization gap.4’6’12 However, Bragg gaps at the BZ bound-
aries are also expected in the same region of the dispersion
plot. For the Bragg-type modes, which comply with the con-
dition q=k+G, a direct relation to the lattice spacing is
missing. Clearly, a fundamental understanding of the inter-
play between the various elastic excitations and the crystal
structure of the composite medium is essential.”? Experimen-
tally, binary colloidal mixtures offer the opportunity for an
independent variation of the size of the unit cell and the
particle dimensions. The former determines the frequency
position of the Bragg gaps, while the latter control the par-
ticle eigenfrequencies.lu*

Binary mixtures of monodisperse hard sphere colloids
may self-assemble to form binary crystals similar to those
encountered in atomic systems. Such superlattice structures
were identified experimentally both in natural gem opals” as
well as in synthetic ones of sterically stabilized particles.18
The symmetry of the crystal phase critically depends on the
volume fraction and size ratio of the two spheres denoted by
S and L (or M).'® For example, the equimolar LS colloidal
crystal may form a face-centered-cubic (fcc) NaCl-type crys-
talline phase, whereas the asymmetric mixture MS;; may
crystallize in the cubic NaZns structure. In these systems,
the lattice spacing can significantly deviate from the diam-
eters of the individual particles, and hence a comparison of
the phonon propagation in binary and single colloidal crys-
tals will be crucial for the assessment of the particle and
structure fingerprints in the dispersion relations. In the case
of the LS crystalline phase, the large spheres (L) control the
spacing, whereas in the superlattice structure of MSs, the
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lattice spacing is much larger than that in both M and S
individual crystals. Furthermore, the prediction of the static
and dynamic properties of binary colloidal crystals on the
ground of the component crystalline phases is of general in-
terest not only in materials science. Some properties, e.g.,
density, remain unchanged, whereas some others, e.g., elastic
excitations, witness strong modification.

Il. EXPERIMENT
A. Setup

A solid state neodymium-doped yttrium aluminum gar-
net laser with continuous wave propagation (A=532 nm)
was mounted perpendicularly to the x-y plane on the edge of
a goniometer.7 A small part of the laser beam is split and
guided through a fiber into the Fabry-Pérot interferometer.
This reference beam assures a stabilization of the interferom-
eter without loss of the sensitivity needed for long time mea-
surements. Due to optical components (such as prisms, Glan
polarizer, and mirrors) necessary to guide the laser beam
through the center of a goniometer and to insure complete
vertically polarized light with respect to the scattering plane,
the laser impinges on the sample with a power of about
60 mW. The scattered light is focused, after passing from a
Glan-Thomson polarizer to select its vertically polarized
component, through a lens onto the pinhole aperture (&
=200 wm) of a six-pass tandem Fabry-Pérot interferometer
(TFPI). A synchronized mechanical shutter placed in front of
the entrance of the interferometer cuts out the Rayleigh peak,
which originates from elastic scattering, when the TFPI pi-
ezoelectrically scans through the frequency of the incident
light. By rotating the arm of the goniometer we can change
the scattering angle 6 without moving around the complete
TFPI setup. Because of setup limitations, the scattering angle
ranges only from #=6° to §=150°. An avalanche photodiode
connected to a multichannel analyzer transfers the collected
scattered light to a PC for further signal processing. The
measured spectra presented in the next section were taken at
different free spectral ranges (6, 7.5, 15, 20, and 30 GHz) so
that both high resolution and broad frequency range for the
different systems investigated could be assured.

B. Systems

Two binary mixtures of colloidal systems, with different
dimensions of their single component colloids, were investi-
gated. The hard spheres used in both binary systems consist
of poly (methylmethacrylate) (PMMA) particles, which are
sterically stabilized by a thin layer of poly-12-hydroxystearic
acid about 10 nm thick. The elastic constants of PMMA and
the stabilizing layer are different mainly because of interpen-
etration of solvent in the thin layer, so the latter should have
elastic constants between those of PMMA and the solvent.
But these cannot be easily evaluated. However, the layer is
thin and thus we may assume that the particles are homoge-
neous with the elastic properties of PMMA.” The colloids
were then dispersed in a solvent mixture consisting of
70% cis-decalin and 30% tetralin, in order to achieve a better
refractive index matching and thus eliminate multiple
scattering.

Downloaded 16 Feb 2007 to 129.215.166.109. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



014707-3 Acoustic excitations in binary colloidal crystals

Colloidal hard sphere suspensions are known to exhibit a
liquid to crystal transition, due to entropic reasons only, at a
volume fraction of 0.494.' Up to a volume fraction of 0.545
the system is in a liquid-crystal coexistence with the dense
crystal phase (0.545) occupying the bottom part of the vial
and the liquid phase (0.494) the top part due to an overall
density mismatch. The phase separation normally lasts a few
to several hours, after preparation of the sample, depending
on the particle polydispersity. At volume fractions higher
than 0.545 the system is fully crystalline; although above
around 0.58, the system is kinetically trapped in a metastable
glassy state.! Binary mixtures of hard spheres, on the other
hand, may form a variety of complicated crystal structures
depending on the total colloid volume fraction, the particle
size ratio, and the stoichiornetry.l’18 Similar to their single-
particle counterparts they need several hours, or more, to
phase separate, and the two phases separate due to gravity
with the crystal phase at the bottom. Thus, the volume frac-
tion and type of crystal structure are predetermined by the
total colloid volume fraction and stoichiometry of the spe-
cific sample (with certain size ratio).

The first binary system examined is a NaCl (fcc) crystal,
which has a stoichiometry of LS. This consists of large (L)
particles with a radius of 344 nm arranged in a fcc lattice
containing small particles (S) with a radius of 140 nm in the
octahedral interstitial holes, as shown in the model in Fig.
1(a). Laser light crystallography was used to determine the
lattice parameter a as 1006 nm. This corresponds to volume-
filling fractions 0.670 and 0.045, for the L and S particles,
respectively, resulting in a total volume-filling fraction ¢
=0.715. However, to make absolutely sure that the sample
has the required LS stoichiometry (and was not, say, fcc LS,
or even just a crystal of pure L, both of which could give a
very similar crystallographic scattering trace to that of fcc
LS), scanning electron microscopy (SEM) pictures of the
crystal were also taken. This involved drying down some of
the samples under ambient conditions and sticking the result-
ant white powder on a microscope stub and sputter-coating it
with a very thin layer of gold to make it conductive to the
imaging electrons. The sample was then examined using a
Cambridge S250 SEM. Pictures collected this way are shown
in Figs. 1(b) and 1(c), and, when compared with the fcc LS
model next to them, both the square (001) and the hexagonal
(111) planes of the structure can be seen in the colloidal
crystal.

The second binary system examined is a MS,5 superlat-
tice structure made up of large (M) particles with a radius of
241 nm and small (S) particles with a radius of 140 nm. In
this structure the large spheres form a cube inside of which
sit 13 small spheres, arranged at the 12 vertices and the cen-
ter of an icosahedron. The icosahedra of neighboring cubes
are rotated by 90° with respect to each other to give a super-
lattice structure made up of eight simple cubic subcells, as
shown in the inset of Fig. 1(d). For the sample under inves-
tigation, laser light crystallography18 was used to confirm the
exact structure present and determine the crystal lattice con-
stant. This is shown in Fig. 1(d). The peaks are indexed using
Miller indices with the usual simple cubic parameters being
doubled because the lattice constant of the primitive cell is
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FIG. 1. (a) A model of the LS fcc binary crystal. (b) The (111) plane of the
binary fcc LS crystal from the actual sample. The black spots show the
position of the small spheres within this plane, while the white spots show
the gaps between them in which sit the large spheres from the layer above.
(c) The (001) plane of the actual fcc LS crystal with the white spots showing
the square arrangement of the large L spheres and the black spots the small
S spheres sat between them. (d) The laser light scattering trace of the MS;
binary crystal (here, ¢ denotes the magnitude of the difference between the
wave vectors of the diffracted and the incident light beams). The inset shows
models of the central icosohedal packing of the 13 small spheres, a cubic
subunit made up of a cube of large M spheres and the orientation of the
icosahedron within it, and the full superlattice structure showing the 90°
rotation of the icosohedra between neighboring subunits.

S

twice the edge of the cubic subcell. The presence of the (531)
line confirms that the structure seen is the superlattice MS 3
and from the position of the other peaks the lattice constant a
is calculated to be 1420 nm. From the above values of the
particle radii and the lattice constant, the volume-filling frac-
tions of the M and S particles are calculated to be 0.164 and
0.418, respectively, resulting in a total volume-filling fraction
$=0.582.

The lattice constant of the single colloidal crystals S, M,
and L was deduced from the relation a/R=(167/3¢)"3
which holds for fcc crystals, at the given volume-filling frac-
tion ¢=0.545. The geometrical characteristics of the differ-
ent crystals are given in Table I. The elastic properties of the
colloid particles and the solvent mixture are determined”'*
by the longitudinal and transverse sound velocities in
PMMA, c¢,,=1400 m/s and c,;=2700 m/s respectively, as
well as the (longitudinal) sound velocity ¢=1500 m/s in the
pure solvent. The densities used for the particle and solvent
were the literature values of p,=1180 kg/ m? and p
=926 kg/m?, respectively.
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TABLE I. Characteristic dimensions of the crystalline colloidal (PMMA)

Tommaseo et al.

suspensions.
Sample R (nm) a (nm) alR b
N 140 438.6 3.133 0.545
M 241 755 3.133 0.545
L 344 1077.6 3.133 0.545
LS 344/140 1006 2.924/7.186 0.670/0.045
MS3 241/140 1420 5.892/10.143 0.174/0.418

lll. RESULTS
A. Brillouin light scattering spectra

Typical experimental BLS spectra of the crystalline sym-
metric binary LS colloidal suspensions at low and high scat-
tering wave vector q recorded at two free spectral ranges (7.5
and 30 GHz) are shown in Fig. 2 along with the spectra of
the single colloidal suspensions of the constituent particles, L
and S, for comparison. The BLS spectra were represented by
a superposition of up to five Lorentzian line shapes convo-
luted with instrumental function. Each Lorentzian line is
characterized by three parameters: the amplitude A;, the peak
position f; (=w;/2), and the half-width at half maximum I';.
For example, the individual Lorentzian components in the
total BLS spectrum of L are shown in the lower panel of Fig.
2. The central region of the spectrum about +1 GHz around
the Rayleigh line is kept for the reference beam used for the
stabilization of the interferometer and is hence omitted in the
plots of the experimental spectra of Figs. 2—4. An inspection
of the spectra of Fig. 2 reveals closer similarity between LS
and L than between the LS and S systems.

Figure 3 shows representative BLS spectra of the asym-
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FIG. 2. Experimental BLS spectra of the symmetric binary LS, and the
single L and S component crystals recorded at two different values of the
wave number using different free spectral ranges (7.5 GHz in the upper
panel and 30 GHz in the lower panel) to achieve optimal resolution. The
central region of the spectrum used for the reference beam to stabilize the
interferometer is omitted for clarity reasons. A representative fitting of the
experimental spectra by superposition of Lorentzian line shapes convoluted
with the instrumental function is shown in the case of the L system by
displaying the five necessary contributions (lower panel).
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FIG. 3. Experimental BLS spectra of the asymmetric binary MS,3, and the
single M and S component crystals recorded at two different values of the
wave number using different free spectral ranges (6 GHz in the upper panel
and 15 GHz in the lower panel). A representative fitting of the experimental
spectra by superposition of Lorentzian line shapes convoluted with the in-
strumental function is shown in the case of the M system by displaying the
three necessary contributions (lower panel). As in Fig. 2, the central region
of the spectrum is omitted.

metric binary crystalline colloidal suspension MS;; along
with the spectra of the constituent M and S colloidal crystals
recorded at 6 and 15 GHz at low and high ¢, respectively.
Their representation by superposition of Lorentzian line
shapes convoluted with the instrumental function is shown in
the case of the M system as an example. Both Figs. 2 and 3
indicate that the BLS line shapes become quite rich as the
spatial resolution increases with g. This already occurs in the
first BZ, as depicted in the two panels of Fig. 4, which dis-
play BLS spectra of LS and MS;; at different g values.
While at the lowest ¢ the asymmetric MS;3 exhibits only a

Intensity (a.u.)

—

ST T T
/(GHz)

FIG. 4. The evolution of the BLS spectral features in the two binary colloi-
dal mixtures with g; ¢ varies from 0.003 to 0.011 nm™' for LS and from
0.008 to 0.015 nm™! for MS;.
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FIG. 5. Phonon dispersion relations of the single crystalline colloidal sus-
pensions. The two lower particle eigenmodes, corresponding to /=2 and /
=3, are indicated by the arrows on the frequency axis. The extension of the
first BZ is marked, in each case, by the gray-shaded area. The dashed lines
in each diagram show effective-medium dispersion curves originating from
the central and from the first neighboring points of the reciprocal lattice
(Bragg modes).

single doublet, as anticipated for a homogeneous effective
medium in the low ¢ limit, the symmetric LS displays more
than one acoustic excitation and the evolution of the BLS
with ¢ is different. The character of the observed acoustic
modes is reflected in the dispersion diagrams of the system.

B. Dispersion relations

The frequencies f; (i=1,2,...) of the different modes in
the three single colloidal crystals are plotted versus ¢ in Fig.
5. The different modes are grouped in four types character-
ized by their dispersion and location in reciprocal space, i.e.,
¢ larger or smaller than G. These are (i) the long-wavelength
acoustic phonon modes of the average medium (gR < 1), (ii)
flatbands originating from the interacting resonant 2/-pole
modes of the individual particles, identified by the corre-
sponding angular-momentum index /, (iii) Bragg-type modes
which are the fingerprints of the crystalline structure or
short-range liquidlike order usually observed at high g/low f,
and (iv) g-dependent modes in the gR>1 region. We note
that the present colloidal suspensions are polycrystalline and,
therefore, the direction of q in reciprocal space is not well
defined. The extension of the boundaries of the first BZ of
the three single colloidal suspensions is marked, in each
panel of Fig. 5, by a gray-shaded area (the distance of the
boundaries from the center of the fcc BZ varies between
\37r/a in the T'L direction and V57/a in the I'W direction).
The two arrows in the f axis for each system indicate the
eigenfrequencies of the /=2,3 lowest particle modes, as ob-
tained from single-particle scattering calculations.*®7"13

The acoustic range of the average medium is restricted
in the gR=<1 region, i.e., when the phonon wavelength
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exceeds 27R. The corresponding sound velocity amounts to
1650+40 m/s, which is about 4% lower than the value de-
duced from the effective-medium theory.19 However, since
the hybridized bands are pushed down below the crossing
point,'3 the sound velocity should be deduced from low-
frequency (and hence low-¢) data, well below the hybridiza-
tion region, in order to avoid underestimation of its value.
Since this cannot be always insured experimentally, we have
used the theoretical effective sound velocity, c.;=1730 m/s,
for S, M, and L (¢=0.545) to draw the effective-medium
dispersion lines in Fig. 5 (dashed lines). This is calculated
from the equation:19

-12

4 -1
Catr= ¢ piff[l —¢+¢ﬁ[<c,,l/c>2——<c,,t/c>2} ] ,
p Pp 3
where

1-¢+(2+d)p,lp
Plv2¢+200= d)p,lp

Similarly, for the effective sound velocities of LS
(¢=0.715) and MS,3 (¢=0.582), we use the corresponding
theoretical values 1849 and 1753 m/s, respectively. The ex-
tended region of the pure acoustic behavior well beyond the
first BZ in the different systems is remarkable.

The observed phononic gap is (as will be shown below)
a hybridization gap; it results from the interaction of the
lowest (I=2) particle modes with the acoustic modes of the
average medium.”® In other words, this is not a Bragg
gap3’14716 occurring at the boundaries of the first BZ as can
be seen, e.g., in the dispersion diagram of the S colloidal
crystalline suspension where the gap is clearly inside the BZ.
Besides this gap, there is a splitting of the effective-medium
band in the vicinity of the eigenfrequency of the /=3 particle
mode in all three single colloidal crystals. For colloids of
bigger spheres, there is a larger number of particle eigen-
modes in the frequency region under consideration. There-
fore the experimental points in the high-f region for the M
and especially for the L systems that deviate from the disper-
sion line of the effective medium (dashed line starting from
¢=0) may belong to flatbands originating from higher-order
particle modes. The most pertinent finding in the single col-
loidal crystals under consideration is the appearance of a
clear phononic gap in the vicinity of the eigenfrequency of
the lowest quadrupole particle mode.

The Bragg modes usually observed at high g/low f,
which require crystalline structure or short-range liquidlike
order, are also clearly visible. Particularly in the M system,
the lattice constant of which allows a clear observation of
two neighboring BZs within the accessible range of ¢ values,
the majority of the observed Bragg modes follow nicely an
effective-medium dispersion line originating from the first
neighboring reciprocal lattice point (lower dashed line). Hy-
bridization with the relevant flatbands of particle modes is
also discernible. Similar is the case of the S system. On the
other hand, in the L system, though higher-order Bragg
modes are also experimentally accessible, the formation of
corresponding bands cannot be easily deduced from the data
available.

Peff =
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FIG. 6. Phonon dispersion diagrams of the binary colloidal crystals LS and
MS 5. The notation is as in Fig. 5. The thick and the thin arrows indicate the
eigenfrequencies of the modes of the large and the small particles,
respectively.

In the mixtures, the presence of two spheres of different
sizes, each sphere with a different volume-filling fraction,
and the different crystalline structures (a symmetric NaCl
structure and a superlattice MS,3) will have an impact on the
phonon propagation, and the main objective of this study is
to quantify the induced changes and possibly account for
them. The ultimate goal is then to reliably predict the acous-
tic properties of the colloidal mixtures based on the geomet-
ric and/or structural characteristics of the constituent compo-
nents. The two binary crystalline colloidal suspensions under
consideration possess distinct similarities and disparities
with the crystalline suspensions of the single constituent par-
ticles, as suggested by the ratio a/R in Table 1.

The characteristic feature of the symmetric LS is the
closeness of its lattice constant to that of the colloidal crystal
of the large component, i.e., a(LS)=a(L). This system will
allow us to distinguish and identify the main modes in the
dispersion relations which selectively depend on one of the
two lengths, a and R. According to the upper panel of Fig. 6,
three particle eigenmodes are discernible in the LS binary
mixture. From these, two modes of the large particles (those
with [=2,3) are clearly resolved, whereas the presence of the
(I=2) modes of the small particles is witnessed by the split-
ting of the effective-medium band. It is the flatband of quad-
rupole modes of the large particles with the lowest frequency
which is found to determine the phononic gap in LS. The
band of quadrupole modes of the small particles is respon-
sible for the splitting of the effective-medium band at about
3 GHz. Opverall, the phonon propagation in LS resembles
that in L.

For the MS;; system, the characteristic feature is its
large spacing which is distinctly different from the lattice
parameter in the individual M and S crystalline components,
i.e., a(MS3)>a(M)>a(S). In this case, the large disparity
between a and R of the constituent particles (see Table I) will
help us to assign the relevance of the morphological and
particle characteristics on sound propagation in these hyper-
sonic crystalline colloidal suspensions. Like in LS, three par-
ticle eigenmodes indicated by arrows in the lower panel of
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FIG. 7. A reduced phonon dispersion diagram for the three single colloidal
crystals using the experimental points of Fig. 5, the relevant dimensions
from Table I, and the (longitudinal) sound velocity ¢ in the solvent. The
notation is as in Fig. 5. Inset: A detailed view of the corresponding wR/c vs
gR dispersion diagram about the hybridization gaps, with R being the par-
ticle radius. The lines are guide to the eye.

Fig. 6 are resolved. In this mixed crystal, however, the two
higher eigenmodes (/=2,3) belong to the small particles, and
the lowest quadrupole modes are associated with the large
colloidal particles. The phononic gap is now determined by
the band of quadrupole modes of the small and not of the
large particles. In contrast to the LS system, no appreciable
interaction is manifested between the flatband of quadrupole
modes of the large particles and the acoustic band of the
average medium. The extended region of the pure acoustic
behavior well beyond the first BZ is remarkable. Overall, the
behavior resembles that of the S component.

The phonon dispersion relations in the polycrystalline
colloidal suspensions under consideration depend on both the
size of the colloidal particles and their structural arrange-
ment, which control the particle vibrations and the displace-
ment field in the composite medium. In the case of the single
colloidal crystals, at a given ¢, the two length scales R and a
are equivalent since a=2.56R/ "3, and the scaling of the
experimental dispersion curves applies for both lengths R
and a. This equivalence, however, is removed in the mixed
crystals progressively from LS to MS;; (Table I). We shall
next examine the scaling concepts in the dispersion diagrams
of the different colloidal crystals under consideration.

IV. DISCUSSION
A. Single colloidal crystals

A successful superposition of all observed modes in the
three single colloidal crystals is obtained in the presentation
walc versus ga of Fig. 7 with no adjustable parameter. Other
alternative plots, such as wR/c versus gR, wR/c versus qa,
and wa/c versus gR, would look alike since the ratio a/R is
the same for the three systems; this of course does not apply
for the binary crystals. The plot of Fig. 7 nicely demonstrates
that the hybridization gap occurs in the vicinity of the eigen-
frequency of the quadrupole particle modes.

According to the above, tuning of the gap is possible
through the size of the particle, its elastic properties, and the
volume-filling fraction in a given medium. Crystallinity is
not a prerequisite for the existence of the hybridization gap,

which occurs even in the disordered state (d><0.5)4’12 pro-
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vided that the average distance between neighboring par-
ticles is within the decay length of the phonon. The latter
~cCegg/ ' ~3—4 um (as estimated using an effective sound
velocity ¢~ 1700 m/s and a Brillouin linewidth I
~0.5 GHz) is of the order of the lattice constant due to the
relatively short lifetime (~1/I") of the thermal phonons in
liquids. For the smallest particle diameter, ¢ could be as low
as 0.1. However, both the width of the gap]3 and the experi-
mental signal decrease with dilution. This can be understood
as follows. As ¢ decreases, the interaction between neigh-
boring particles becomes weaker and the bands originating
from the multipole modes of the interacting particles get nar-
row. The wave field associated with these band modes is
strongly localized about the individual particles and the over-
lap with the acoustic field of the extended states in the (ho-
mogeneous) effective medium is reduced. Consequently, the
hybridization between bands of particle modes and the
effective-medium band becomes weaker, and the gaps that
open up as a result of this hybridization narrow. On the other
hand, the particle modes are more strongly localized as !/
increases, and this explains why only the gap corresponding
to the lowest quadrupole particle mode is discernible.

The Bragg modes usually observed at high g/low f,
which require a crystalline structure or a short-range liquid-
like order, are superimposed in all three systems in the pre-
sentation of Fig. 7. Noncrystalline dense colloidal suspen-
sions exhibit also high g/low f modes,'? but their intensity is
higher in the presence of crystalline order.” Most likely,
Bragg-type modes emerge as soon as a liquidlike ordering is
established in dense colloidal suspensions.

The experimental points in the high-f region that deviate
from the effective-medium band are essentially obtained
only in the L system and may belong to flatbands of higher-
order particle modes. However, the distribution of these
points is relatively sparse in order to unambiguously substan-
tiate this interpretation.

B. LS (NaCl structure)

In the crystalline binary mixtures, there are two spheres
of different sizes and a proper length scale should be chosen
in order to construct a reduced dispersion diagram for the
mixed crystal and its constituents. The characteristic feature
of LS is the closeness of the lattice constants of the mixed
crystal and the single crystal L of the large particles, i.e.,
a(LS)=a(L). As can be seen in Fig. 8, a successful super-
position of all observed modes in LS, L, and S is obtained in
the presentation wa/c versus ga with no adjustable param-
eter. Superposition of the dispersion curves in LS and the
single crystalline components L and S in a wR/c versus gR
diagram is successfully obtained only if the effective radius
R(LS) in LS equals R(L), the radius of the large particles. In
this case, according to Table I, a/R is (almost) the same for
the above three systems (of course, a/R is much different for
the S particles of LS, but the effect of the eigenmodes of
these particles on the dispersion diagram is marginal for rea-
sons that will be explained below), and thus the wR/c versus
gR and the wa/c versus ga diagrams are equivalent. As
shown in the inset of Fig. 8, in the low-¢q region, the phonon
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FIG. 8. A reduced phonon dispersion diagram for LS, L, and S, using the
experimental points of Figs. 5 and 6, the relevant dimensions from Table I,
and the (longitudinal) sound velocity ¢ in the solvent. The notation is as in
Fig. 5. The inset shows a detailed view of the corresponding wR/c vs gR
dispersion diagram about the hybridization gaps, with R being the particle
radius (for LS, R is the radius of the L particles). The lines are a guide to the
eye.

dispersion in the binary crystal LS is indistinguishable from
those in the single crystalline components L and S. The
effective-medium sound velocity in LS is by about 6%
higher than that in L and S because of the larger fractional
volume occupied by the particles (see Table I). However, the
acoustic phonon of the average medium in the region gR
=<1 is experimentally accessible only in the S system, and
the above difference is not discernible in the figure.

The hybridization gap in the vicinity of the eigenfre-
quencies of particle modes is manifested in LS about the
quadrupole mode of the large (L) and not of the small (S)
particles. A rationalization of this finding stems from an in-
spection of the unit cell of the LS crystal in Fig. 1(a). In the
NaCl-type crystalline arrangement of the L and S particles,
the larger volume-filling fraction [¢(L)/p(S)~15] appar-
ently facilitates the interaction between the relatively more
extended band of quadrupole modes of the L particles and
the acoustic band of the effective medium, thus leading to a
clear hybridization gap. This interaction is progressively sup-
pressed for higher multipole modes because of their stronger
localization about the particles. On the other hand, the S
particles, though the same in number as the L ones, interact
very weakly because of the relatively large interparticle spac-
ing and form a very narrow band of strongly localized
modes, which is not clearly observed experimentally.

It is interesting to note that, in LS, the band of quadru-
pole modes of the L particles is also the lowest in frequency,
which intersects first with the effective-medium band. How-
ever, in general, responsible for the dominant hybridization
gap is not the lowest in frequency but the most extended band
of particle modes. And this band, according to the well-
known tight-binding model in solid state physics,8 will be the
band formed from the particle modes that interact more
strongly. These are the lowest multipole (quadrupole) modes
of those particles which are closer to each other, i.e., those
which occupy the largest volume of the colloidal crystal. It
becomes clear now why the choice R=R(L) for LS in the
reduced frequency wR/c or, equivalently, the choice wa/c as
reduced frequency ensures the successful superposition of all
the observable bands of particle modes and hybridization
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walc

FIG. 9. A reduced phonon dispersion diagram for MS,;, M, and S using the
experimental points of Figs. 5 and 6, the relevant dimensions from Table I
and the (longitudinal) sound velocity ¢ in the solvent. The notation is as in
Fig. 5. The inset shows a detailed view of the corresponding wR/c vs gR
dispersion diagram about the hybridization gaps, with R being the particle
radius (for MS;3, R is the radius of the S particles). The lines are guide to the
eye.

gaps in the LS, L, and S systems. The relevant particle reso-
nances occur at the same reduced frequencies and, moreover,
the fractional volume occupied by the particles involved is
not much different in all three systems (see Table I) implying
interparticle interactions of comparable strength.

The Bragg modes, which are strong in crystalline struc-
tures are superimposed in all three systems in the presenta-
tion of Fig. 8. This is not surprising because the underlying
Bravais lattice is the same (fcc) and the reduced wave num-
ber ga (or gR) is defined in terms of the appropriate lattice
constant. In LS, the Bragg modes follow those of the L single
crystal due to the similar a values.

The high-frequency modes that deviate from the
effective-medium band in LS and L also show similar behav-
iors. This is in line with the interpretation of these modes as
higher-order particle modes since, as explained above, the
modes of the L particles in LS are more clearly manifested.

C. MS,; (cubic superlattice of NaZn,; type)

In the MS,; system, the lattice spacing a assumes a quite
different value in the mixed crystal and in the individual
single colloidal crystals M and S. Due to this disparity, MS;
is suited for the differentiation between a hybridization and a
Bragg phononic gap.13 Superposition of the dispersion dia-
grams of the mixed MS 5 crystal and the M and S crystals of
the constituent particles in the low g region is successful
only if the effective particle size of the binary MS 5 crystal is
set equal to R(S), the radius of the small particles, as shown
in the inset to Fig. 9. If the lattice spacing a were chosen as
the characteristic length, the superposition would fail as
shown in the main plot of Fig. 9. Though in all three systems
the effective-medium bands have almost the same slope (ac-
cording to Table I the total fractional volume occupied by the
particles is more or less the same in these three systems) and
thus the corresponding points follow the same dispersion
line, the position of the narrow bands of particle modes and
the corresponding hybridization gaps is different. This was
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more or less expected from the large disparity of the ratio
alR for M, S, and the spheres of MS;; (see Table I). The
particle resonances occur at the same reduced frequencies
wR/c but at very different reduced frequencies wa/c.

In MS;3;, responsible for the dominant hybridization gap
is the band of quadrupole modes of the small (S) and not of
the large (M) particles. The flatband which originates from
the quadrupole modes of the large particles, though the low-
est in frequency, does not interact appreciably with the
acoustic band of the effective medium, as can be seen in the
lower panel of Fig. 6. This is the opposite situation of that in
the LS system, where the large particles control the hybrid-
ization gap and can be easily understood. An inspection of
the MS,; structure in Fig. 1(d), reveals that the closest prox-
imity is that between the S particles in an icosahedral ar-
rangement in the subcell, while the M particles are quite far
from each other. In addition, the S particles are in majority
with ¢(S)/ H(M) ~2.5.

The superposition of the Bragg modes in the mixed
MS,; and the individual single colloidal crystals M and S is
not only a matter of choice of the effective a in MSy3, i.e.,
the subcell (=710 nm) versus the primitive unit cell (a
=1420 nm), shown in Fig. 1(d). In this case, the Bravais
lattices of MS,5 (simple cubic) and M and S (both fcc) are
different. Therefore the reciprocal lattice points (and conse-
quently the Bragg modes) cannot be superimposed.

V. CONCLUDING REMARKS

Binary mixtures of monodisperse hard sphere colloids
may self-assemble to form binary crystals similar to those
encountered in atomic systems. The phonon propagation
with wave number ¢ was investigated in the case of two such
polycrystalline suspensions at hypersonic frequencies f. The
first binary system is a NaCl (fcc) crystal, which has a sto-
ichiometry of LS and consists of large (L) particles with a
radius R=344 nm arranged in a fcc lattice containing small
particles (S) with a radius of 140 nm in the octahedral inter-
stitial holes [Fig. 1(a)]. The second binary system is a MS;
superlattice structure made up of large (M) particles with R
=241 nm and small (S) particles with a radius of 140 nm. In
this structure the large spheres form a cube inside of which
sit 13 small spheres, arranged at the 12 vertices and the cen-
ter of an icosahedron. The lattice constants (a) of the mixed
crystal LS and the single crystal L of the large particles are
very close. Alternatively, the characteristic feature of the
MS,; system is its large spacing which is distinctly different
from the lattice parameter in the individual M and S crystal-
line components, i.e., a(MS,3)a(M)>a(S).

For both binary crystals, it is clearly demonstrated that
the acoustic behavior is determined by the reduced quantity
gR (insets of Figs. 8 and 9) and not ga (main plot of Fig. 9).
However, the effective R is either that of the large particles
(in LS) or that of the small particles (in MS3). It is the same
R that determines the eigenfrequency of the quadrupole par-
ticle modes responsible for the gap. The wR/c versus gR
scaling seems to work only in the low-g/low-f region and for
the specific systems under consideration. This pertinent find-
ing can be rationalized as follows: In this region, only the
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effective-medium band interacts with the dominant bands of
particle modes. The slope of the effective-medium band is
nearly the same for all systems if their (total) volume-filling
fractions are not very different. The position of the particle
modes in wR/c units is also the same. On the other hand, if
in a binary system the volume-filling fractions of the con-
stituent particles are very different, only the modes of the
particles that occupy the largest volume dominate the disper-
sion relation. Choosing the radius of these particles in the
wR/c versus gR plot, the position of the relevant particle
modes in wR/c units is the same. Moreover, the hybridiza-
tion strength is very similar at comparable volume-filling
fractions of the relevant particles irrespective of their size.
A desirable universal dispersion diagram encompassing
the present findings for the phonon propagation in mixed
colloidal crystals, even if they are made of the same materi-
als cannot be easily constructed. It is not evident that such a
diagram can encompass different particle concentrations and
structural characteristics. For instance, particle concentra-
tions influence, besides the effective-medium behavior, the
size of the hybridization gaps. At relatively large volume
fraction ¢ (0.418, 0.545, 0.670) one clearly observes bands
of quadrupole (and octapole) particle modes as well as the
corresponding hybridization gaps. At ¢»=0.174 one can see a
flatband of quadrupole particle modes but not a hybridization
gap. Finally, at ¢=0.045, even the flatband of quadrupole
particle modes is hardly discernible. On the other hand, the
structural arrangement is crucial for the Bragg-type modes.
The degree of order is also an issue. For all the above rea-
sons, a universal dispersion diagram and general conclu-
sions, deduced from results on a restricted number of specific
systems, might be misleading and missing their purpose.
Finally, it should be noted that, while for the occurrence
of the phononic hybridization gap [resulting from the inter-
action of the lowest (/=2) particle modes with the acoustic
modes of the average medium] crystalline order is not a pre-
requisite, the formation of a Bragg gap (occurring at the
boundaries of the first BZ) requires single crystalline struc-
tures. For hypersonic gaps, fabrication at the submicron scale
is necessary, using state-of-the-art techniques such as self
assembly3 and holographic interference lithography.20 Be-
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sides the fundamental research interest in phononic crystals
in general, hypersonic crystals hold promise for new poten-
tial applications.
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