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Different mechanisms for dynamical arrest in largely asymmetric binary mixtures
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Using confocal microscopy we investigate binary colloidal mixtures with large size asymmetry, in particular the
formation of dynamically arrested states of the large spheres. The volume fraction of the system is kept constant,
and as the concentration of small spheres is increased we observe a series of transitions of the large spheres to
different arrested states: an attractive glass, a gel, and an asymmetric glass. These states are distinguished by the
degree of dynamical arrest and the amount of structural and dynamical heterogeneity. The transitions between
two different arrested states occur through melting and the formation of a fluid state. While a space-spanning
network of bonded particles is found in both arrested and fluid states, only arrested states are characterized by
the presence of a space-spanning network of dynamically arrested particles.
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I. INTRODUCTION

The glass transition in model one-component hard-sphere
colloidal dispersions has been the subject of many studies
[1–7]. The formation of a glass state for volume fractions
φ > 0.58 is due to the dynamical arrest of particles in cages
formed by their neighbors. Only activated processes can
release the constraints that limit the motion of the particles
to the in-cage space and then lead to diffusion [6].

Addition of a second component with a different size affects
the glass transition [8–23]. For moderate size disparities,
δ = Rs/RL � 0.35, mixing particles with different radii Rs

and RL, respectively, results in a shift of the glass transition
to larger total volume fractions φ, similar to the effect of
polydispersity [8–10]. On the other hand if the size disparity
is larger, δ � 0.35, depending on the mixing ratio xs = φs/φ,
with φs the volume fraction of small spheres, different glass
states have been predicted by mode-coupling theory (MCT)
and the self-consistent generalized Langevin equation theory
(SCGLE) [10–12,16].

The different glass states are distinguished by the arrest
mechanism of the large spheres and the mobility of the small
spheres. At small xs, a double glass is expected, in which both
species are arrested through caging of spheres of the same
species, and in addition the large particles might be bonded.
At intermediate xs a single glass occurs, in which only the
large particles are arrested while the small particles are still
mobile; for δ � 0.2 the large particles are expected to always
form an attractive glass, while for smaller δ a repulsive glass
is also predicted. At large xs, an asymmetric or torroncino
glass forms, in which the large particles are localized in a
glass of small spheres. Furthermore, it has been proposed that
equilibrium gel states of the large spheres form at intermediate
xs due to the oscillatory form of the effective potential [16].

The existence of some of these states has been verified
in experiments and simulations. A transition from a double
glass to an asymmetric glass was recently observed in
experiments for δ = 0.2 [18,19], showing similarities with
simulations on soft spheres [14,15] and asymmetric mixtures

*marco.laurati@uni-duesseldorf.de

of star polymers [24,25]. This change in caging mechanism
is responsible for glass softening, facilitated yielding and
acceleration of the dynamics of the large particles under shear
at intermediate xs [18,19]. Dynamically arrested states of the
large spheres in which the smallest component remains mobile
have been observed experimentally at δ ≈ 0.1 [13] and in
simulations [14,15].

Despite these findings, a systematic investigation of dy-
namically arrested states in largely asymmetric hard-sphere
mixtures with δ � 0.2 is still missing. In particular an
experimental characterization of the theoretically predicted
different arrested states of the large spheres as a function of the
composition xs and the total volume fraction φ and a discussion
of the role of depletion interactions and bonding at these large
size disparities are still missing.

Here we investigate, using confocal microscopy and particle
tracking, the occurrence of dynamically arrested states in
binary mixtures of hard-sphere colloids with size ratio δ ≈ 0.09
and fixed total volume fraction φ ≈ 0.60 [26]. We analyze
the average dynamics of the large particles in the mixtures
through the mean squared displacements to reveal dynamically
arrested states, and we determine the presence and spatial
distribution of dynamical heterogeneities. We complement this
dynamical information with information on the arrangement
of the large particles, namely, their pair distribution function,
the distribution of the number of bonds, and the organization of
bonded particles into clusters and eventually into a network, as
well as the degree of structural heterogeneity. Combining the
dynamical and structural information we reveal the existence
of repulsive and attractive glasses at small xs, a gel state at
intermediate xs, and an asymmetric glass of clusters at large
xs. The transition between the glass states involves the melting
of the glasses and the occurrence of fluid states.

II. MATERIALS AND METHODS

A. Samples

The samples are mixtures of polymethylmethacrylate
(PMMA) colloids with radii of the large spheres RL = 720 ±
30 nm (labeled with NBD), as determined by static light
scattering, and radii of the small spheres Rs = 65 ± 10 nm
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FIG. 1. (Color online) Mean squared displacements of the large
spheres, �r2/(2RL)2, for samples with total volume fraction φ ≈
0.60, size ratio δ = 0.09, and different compositions xs = 0.0 (•),
0.01 ( ), 0.1 ( ), 0.3 ( ), 0.5 ( ), 0.7 ( ), 0.9 ( ). Inset: Localization
length L/(2RL) as a function of xs.

(labeled with DiIC18), as determined by dynamic light scat-
tering, corresponding to a size ratio δ = RL/Rs = 0.09. The
polydispersity of the large spheres, σL ≈ 13%, was also
estimated by static light scattering. For the small spheres, the
absence of crystallization in the quiescent and sheared state
suggests σs > 12% [27]. Particles are dispersed in a mixture
of cis-decalin and cyclohexylbromide (CHB), which closely
matches their density and refractive index. In this solvent mix-
ture the particles acquire a charge, which is screened by adding
4 mM tetrabutylammoniumchloride (TBAC) [28]. Under these
conditions the particle interactions are hard-spherelike [26].

A sediment of the large particles with φ = 0.66, as
estimated from comparison with numerical simulations [29],
is diluted to yield a one-component dispersion of large spheres
with φ ≈ 0.60, where, following a recent study [30], the
uncertainty �φ can be as large or above 3%. Nevertheless
the arrested dynamics of this dispersion (Fig. 1) indicate
φ > 0.58. The sample of large spheres with φ ≈ 0.60 is
used as a reference. The volume fraction of a glass sample
containing only small particles is adjusted in order to obtain
comparable linear viscoelastic moduli after normalization of
the viscoelastic moduli with the energy density 3kBT/4πR3,
where kBT is the thermal energy, and the frequency by
the inverse free-diffusion Brownian time τ−1

0 = D0/R
2 =

kBT/6πηR3, where η = 2.2 mPa s is the solvent viscosity.
For our system the φ-dependent short-time Brownian time of
the large spheres was estimated as τB = R2

L/DL(φ) ≈ 56 s,
with DL(φ) = f (φ)DL

0 the φ-dependent long-time diffusion
coefficient. The factor f (φ) was estimated by extrapolating the
data in Fig. 8 of Ref. [3] to φ = 0.60, yielding f ≈ 1/30. The
viscoelatic moduli of the two one-component glass samples
were measured using a stress controlled AR2000ex rheometer
and a cone-plate geometry (see Ref. [18] for additional details).
In this way we obtain samples with comparable rheological
properties and, according to the generalized Stokes-Einstein
relation [31], also dynamics and hence a similar location with

respect to the glass transition. The comparable dynamics but
different polydispersities of the one-component samples imply
slightly different φ.

Samples with constant total volume fraction φ ≈ 0.60 and
different compositions, namely, fractions of small particles
xs = φs/φ, where φs is the volume fraction of small particles,
are prepared by mixing the one-component samples. Despite
the relatively large uncertainty in φ, the important control
parameter of our study, xs, has a small uncertainty, less than
1%. This is achieved by weighting the one-component samples
before mixing. The mixture was successively homogenized in
a vortex mixer for a few minutes and in a roller mixer for at
least 12 hours.

B. Confocal microscopy

Confocal microscopy measurements were performed using
a Nikon A1R-MP confocal scanning unit mounted on a Nikon
Ti-U inverted microscope, with a 60× Nikon Plan Apo oil
immersion objective (NA = 1.40). Each stack consists of 100
frames of 512 × 512 pixels acquired at a rate of 30 fps,
except for xs = 0 and 0.01, for which each stack consists
of 150 frames of 512 × 512 pixels. One stack corresponds
to a volume of approximately 72 × 72 × 30 μm3 (xs = 0.0
and 0.01) or 72 × 72 × 20 μm3 (0.1 � xs � 0.9). Time series
of 500 stacks were acquired for five different volumes for
each sample, except for xs = 0.0 for which 1000 stacks
were acquired. The total measurement time of a time series
is tmeas ≈ 30τB (0.1 � xs � 0.9), 60τB (xs = 0.0), and 44τB

(xs = 0.01), respectively. Coordinates and trajectories of the
large particles were extracted from the time series using
standard particle tracking routines [32].

III. RESULTS AND DISCUSSION

A. Dynamics

1. Mean squared displacement and distribution of displacements

Based on the time series of three-dimensional confocal
microscopy stacks of images, particle trajectories were de-
termined and used to calculate mean squared displacements
(MSDs) �r2(t) of the large spheres in mixtures with different
compositions (Fig. 1):

�r2(t) = 〈
r2
i (t,t0) − r2

i (t0)
〉
i,t0

, (1)

where t is the delay time, t0 a time during the trajectory of a
particle i, and 〈 〉i,t0 indicates the average over all particles i in
the observation volume and all times t0.

The one-component system of large spheres (xs = 0.0)
presents arrested dynamics, as indicated by the plateau of the
MSD extending to long delay times, with particles localized on
a length scale L/2RL =

√
�r2(tmin)/2RL ≈ 0.1, with tmin the

minimum delay time at which the MSD was measured. (Note
that in samples with a less well established plateau at tmin,
the value of the localization length L is only indicative.) The
value L/2RL ≈ 0.1 is characteristic of a colloidal hard-sphere
glass, in which particles are caged by nearest neighbors.
Consistent with this observation, the distributions of particle
displacements in x direction, P (�x), calculated for different
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FIG. 2. (Color online) Distributions of displacements of the large
spheres in x direction, P (�x), over delay times �t/τB = 0.06 ( ),
0.3 ( ), 3.0 ( ), 18.0 ( ) for samples with φ ≈ 0.60, δ = 0.09, and
different compositions xs, as indicated. Lines represent Gaussian fits.

delay times t (Fig. 2) show hardly any evolution of the
dynamics and the presence of small non-Gaussian tails,
characteristic of glassy systems [5,33]. The distributions in
y and z directions show similar results. For xs = 0.01, the
dynamics are still arrested, again indicating a glass state, with
an even smaller localization length, L/2RL ≈ 0.08. A smaller
localization length indicates a tightening of the cage. Since the
volume fraction of large spheres is slightly smaller than for
xs = 0.0, the tightening of the cage is expected to result from
the intercalation of small spheres in between large spheres
and/or the exclusion of small spheres from depletion zones
between large spheres, thus inducing an effective attraction
(bonds) between the large spheres (see below). At long times
the dynamics appear to be slightly faster than for xs = 0.0.
Furthermore, the distribution of displacements P (�x) shows
comparable Gaussian contributions as the sample with xs =
0.0, but more pronounced non-Gaussian tails, which indicate
that the dynamics is significantly more heterogeneous (Fig. 2).

The dynamics of the mixture with xs = 0.1 are not arrested
(Fig. 1). Diffusive behavior is encountered at long times, while
a localization plateau might exist at very short times. Due to
the absence of a clear plateau, only an upper bound can be
estimated for the localization length, L/2RL � 0.1, which,
if it exists, is smaller than that of the one-component glass.
The displacement distributions P (�x) indicate fast dynamics,
but, at short and intermediate times, also the presence of pro-
nounced non-Gaussian tails, which again indicate significant
dynamic heterogeneities. At longer times, when particles begin
to diffuse, the non-Gaussian tails disappear (Fig. 2).

Increasing the amount of small spheres to xs = 0.3 induces
a reentrant behavior. The dynamics considerably slow down
and show a subdiffusive behavior (Fig. 1). The subdiffusive
dynamics suggest the presence of a broad distribution of
particle mobilities, and possibly dynamical heterogeneities.
This is confirmed by P (�x), which shows a relatively narrow,
Gaussian central peak, and very long, almost exponential tails
reflecting large displacements of some particles (Fig. 2). The
concave shape of the tails at long times is qualitatively different
from all other samples. Moreover, the localization length,
L/2RL � 0.055, becomes significantly smaller than that of
samples with xs = 0.0 and 0.01. The small localization length
indicates a pronounced tightening of the cage, which again
might be associated with particle-particle bonding or interca-
lation of small particles in between large particles (see below).

For xs = 0.5 the dynamics become faster and, while still
slightly subdiffusive, approach diffusion at long times. The
localization length, L/2RL ≈ 0.07, is also significantly larger
compared to xs = 0.3. The non-Gaussian tails in P (�x) are
considerably less pronounced and have a different shape than
for xs = 0.3, suggesting less heterogeneous dynamics. Further
increasing the amount of small spheres to xs = 0.7 the dynam-
ics slow down but are still almost diffusive. Furthermore, the
non-Gaussian contributions in P (�x) are much smaller than
for xs = 0.5, indicating a decreasing dynamical heterogeneity.
At the same time, the localization length, L/2RL ≈ 0.056
is smaller than for xs = 0.5 and rather comparable to xs =
0.3. For xs = 0.9 the dynamics are again arrested and the
localization length becomes even smaller, L/2RL ≈ 0.05,
about a factor 2 smaller than in the one-component glass of
large particles (Fig. 1). Also P (�x) is very narrow with hardly
any evolution of the dynamics and very small non-Gaussian
tails (Fig. 2). In summary, both the localization length L and
the degree of diffusivity of the long-time dynamics indicate a
bimodal shape as a function of xs, which reflects the transition
between different arrested states, characterized by melting and
the formation of fluid states.

2. Spatial distribution of mobile particles

Beyond the average dynamics of the large particles,
quantified by �r2(t) and P (�x), we investigated the spatial
distribution of single particle mobilities, in particular whether
they show spatial heterogeneities [34], and whether they are
related to the spatial distribution of the small spheres. The
particles which, in a given sample, perform the 20% largest
displacements over a time interval of about τB/4 are identified
and highlighted in Fig. 3 [35]. Qualitatively similar results are
obtained for longer time intervals; time intervals up to 5τB are
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FIG. 3. (Color online) Rendering of 3 μm thick slices of a central
region of 44 × 33 μm2, in the bulk of samples with φ ≈ 0.60,
δ = 0.09 and different compositions xs (as indicated) as obtained
from coordinates extracted from confocal microscopy images. Left:
Large particles with the 20% largest displacements over a time
interval of about τB/4 are shown in red (light gray). Right: Large
particles with the 20%–30% smallest number of bonds per particle
are shown in green (light gray). The small particles are not
shown.

examined. In the fluid samples the dynamical heterogeneities
reduce once the diffusive regime is reached.

In the one-component glass of large spheres, xs = 0.0,
the particles with a large mobility appear to be grouped in
small clusters, which are randomly distributed in the sample.
For xs = 0.01, the 20% fastest particles are still distributed
throughout the sample, but seem to coincide with regions
with only few large spheres and a clear majority of small
particles (which are not visible and therefore appear as voids
in the images). This correlation becomes particularly evident
in mixtures with xs = 0.1, 0.3, and 0.5. This suggests that
contact with the more mobile small spheres enhances the
dynamics of the large spheres, as already observed in mixtures
with smaller size asymmetry [36,37]. Further increasing xs, the
large particles become more dilute and hence the voids expand.
Concomitantly, the most mobile particles again become more
homogeneously distributed in the sample.

B. Structure

1. Pair distribution function

The particle positions calculated using the confocal mi-
crographs allow us to determine the pair distribution function
g(r) = N (r)/4πρr2 dr , with N (r) the number of particles in a
shell of thickness dr at distance r from a selected particle and
ρ = 3φ/(4πR3

L){1 − xs(1 − 1/δ3)} the average bulk number
density of colloids (Fig. 4). For all xs the g(r) indicate
an amorphous ordering, with the first peak representing the
first shell of nearest neighbors and the following peaks the
successive shells. The increasing dilution of the large spheres
with increasing xs is evident in the snapshots in Fig. 3 and
also in the g(r) for small and large xs; the first peak decreases
and shifts to larger interparticle distances, and the fluctuations
at longer distances become less pronounced. However, at
intermediate xs, additional effects like bonding and structural
heterogeneity, also visible in Fig. 3, lead to nonmonotonic and
nontrivial variations of the heights, areas, and positions of the
peaks and minima as a function of xs (Fig. 5).
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FIG. 4. (Color online) Pair distribution function g(r) of large
particles with radius RL in mixtures with φ ≈ 0.60, δ = 0.09 and
different compositions xs = 0.0 (•), 0.01 ( ), 0.1 ( ), 0.3 ( ), 0.5
( ), 0.7 ( ), 0.9 ( ). Data for xs > 0 are shifted vertically for
clarity. Dashed lines indicate particle-particle distances r = 2RL,
r = 2(RL+Rs), r = 2(RL+2Rs), and r = 2(RL+3Rs).
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FIG. 5. (Color online) (a) Value of the pair distribution function
g(r), shown in Fig. 4, at the first peak, gmax (left y axis) and peak
area Amax(right y axis), (b) position of the first peak rmax/2RL (left y

axis) and second peak r2max/2RL (right y axis), dashed lines indicate
particle-particle distances r = 2RL, r = 2(RL+Rs), r = 2(RL+2Rs),
(c) depth of the first minimum �gmin = 1 − g(rmin), and (d) position
of the first minimum rmin/2RL, as a function of xs.

Upon addition of a tiny fraction of small spheres, i.e., from
xs = 0.0 to xs = 0.01, the height gmax and area Amax of the
first peak increase, while its position rmax shifts to slightly
larger values [Figs. 5(a) and 5(b)]. Thus, while the large
spheres are slightly diluted and hence the peak is shifted, their
contacts are more pronounced, suggesting the formation of
particle-particle bonds. Hence the reduction of the localization
length in the MSD of this sample (Fig. 1) seems to be
associated to bond formation rather than to the intercalation of
small particles between the large spheres, which is supported
by the fact that rmax < 2(RL+Rs).

With the addition of a larger fraction of small spheres,
xs = 0.1, the first peak remains at approximately the same
position, but its height gmax and area Amax decrease, and

it becomes broader [Figs. 4, 5(a), and 5(b)], indicating a
smaller number of particles in the first shell of neighbors.
In contrast, the first minimum shifts to smaller distances
and becomes less pronounced [Figs. 4, 5(c), and 5(d)]. A
less pronounced first peak could be related to the increasing
dilution of the large spheres, but, together with its broadening
and the shifted and flatter first minimum, might also indicate a
more heterogeneous structure, possibly associated with cluster
formation. An increase of the structural heterogeneity is also
evidenced by the snapshots shown in Fig. 3 and will be
discussed in more detail below.

For xs = 0.3 the first peak increases in height but decreases
in area with respect to xs = 0.1 while it remains at the same
position [Figs. 4, 5(a), and 5(b)]. This suggests that on average
there are less particles in the first shell, which, however, tend to
be in closer contact. The first minimum shifts to considerably
smaller distances [Figs. 4 and 5(d)]. Its depth is comparable to
that of xs = 0.1 [Figs. 4 and 5(c)], but it is much more extended
with the second maximum becoming less pronounced (Fig. 4).
This indicates a further increase of structural heterogene-
ity, which is also evident in the snapshots of Fig. 3 and
might reflect the dynamical heterogeneities described above
(Sec. III A).

Further increasing xs to 0.5 the height gmax and area Amax

of the first peak decrease significantly and the first peak moves
to larger values of r [Figs. 4, 5(a), and 5(b)]. At the same time
the peak broadens and an extended shoulder is observed in
between the main peak and the first minimum at r/2RL ≈ 1.5,
which is also more pronounced [Figs. 4 and 5(c)]. The
relatively weak second maximum is now located at r/2RL ≈
2.0, i.e., at a distance corresponding to a second spherical
shell of neighbors. The shift of the peaks and minimum to
larger distances, and the decrease of the first peak height gmax

and area Amax, are consistent with the progressive dilution of
the large spheres, their looser structural organization and the
reduction of the number of particle contacts. At the same time,
the reduction of the peak and its broadening with an extended
shoulder between the first peak and first minimum also
indicate the presence of structural heterogeneity, also visible in
Fig. 3.

If the fraction of small spheres is further increased to
xs = 0.7 and 0.9, the first and second peaks again shift to
larger distances, and the first peak height gmax and area Amax

are reduced [Figs. 4, 5(a), and 5(b)]. The first minimum,
while staying at the same location, becomes increasingly
more shallow [Figs. 4, 5(c), and 5(d)]. Furthermore, the
shoulder in between the main peak and first minimum is less
pronounced at xs = 0.7 and disappears at xs = 0.9 (Fig. 4).
This suggests that the structural organization of the large
spheres tends to that of a fluid of isolated large particles
and the large particles appear as homogeneously distributed
impurities in the dense structure of small spheres (Fig. 3).
For xs = 0.9, however, g(r) is significantly different from
that of a one-component dispersion of large spheres with
volume fraction φ(1 − xs) = 0.06. The first peak is observed
at r ≈ 2RL+2Rs, corresponding to a configuration in which
two large particles are separated by a small particle, an
“extended dimer configuration.” The existence of such dimers
is attributed to the depletion interactions at this large size
disparity.
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FIG. 6. (Color online) Left: Rendering of 4 μm thick slices of
area 58 × 42 μm2 in the bulk of samples with φ ≈ 0.60, δ = 0.09 and
different compositions xs (as indicated) as obtained from coordinates
extracted from confocal microscopy images. (Left) Large particles
have different color (gray-scale value) according to their number of
bonds NB (as indicated). (Right) Large particles pertaining to the
same cluster are indicated with the same color (gray-scale value).
The small particles are not shown.

2. Particle bonds and cluster sizes

We analyzed in more detail the formation and rearrange-
ment of network structures by determining the number of
bonds per particle, Nb, as well as its distribution, P (Nb). Two
particles are considered bonded if their centers are closer than
the first minimum of g(r) of the sample with xs = 0.0, i.e.,
if r � 2.85RL. We verified that slightly different definitions

FIG. 7. (Color online) (a) Distribution of the number of bonds
Nb per large particle, P (Nb). Inset: Most likely number of bonds
Nmax

b (•, left axis) and width WN of P (Nb) ( , right) as a function
of composition xs. (b) Cluster size distribution P (Nc), with Nc the
number of particles forming the cluster. Lines are fits of a power-law
dependence f (Nc) = AN−γ

c exp(−Nc/kc). Inset: Fit parameters A,
γ , and kc as a function of xs (c) Remoteness distribution, P (ξ ),
Inset: Average remoteness 〈ξ〉 as a function of xs. The mixtures had
φ ≈ 0.60, δ = 0.09 and different compositions xs = 0.0 (•), 0.01 ( ),
0.1 ( ), 0.3 ( ), 0.5 ( ), 0.7 ( ), 0.9 ( ).

of the bond length do not qualitatively affect the results.
The samples are then rendered with the particles colored
according to their number of bonds (Fig. 6, left) [35] and
the corresponding distribution of the number of bonds P (Nb)
is calculated taking into account and averaging all stacks of a
time series [Fig. 7(a)]. For the one-component purely repulsive
hard-sphere glass also particle-particle bonds are identified
due to the definition of the bond length (Fig. 6, left). The
distribution of bonds per particle presents a maximum for
Nmax

b = 4 [Fig. 7(a)]. For xs = 0.01, there is a significant
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increase in Nb (Fig. 6) and, accordingly, the distribution
shifts to larger values of Nb, with the maximum occurring
at Nmax

b = 5, and becomes broader [Fig. 7(a)]. The number of
bonds decreases again for xs = 0.1 (Fig. 6), and the distribution
is almost identical to that of xs = 0.0, suggesting that small
particles start to intercalate between large particles breaking
part of the bonds present for xs = 0.01. Upon a dilution of
the large spheres to xs = 0.3, Nb remains almost unchanged
(Fig. 6) with only a slight shift of the distribution P (Nb) to
smaller values. This can be attributed to the formation of
clusters within which large particles maintain their average
number of bonds due to the increased local concentration
of large particles. This implies that the sample becomes
heterogeneous on a mesoscopic length scale, as also suggested
by the increased width of P (Nb) [Fig. 7(a)]. Upon further
increasing xs, however, Nb considerably decreases (Fig. 6)
and the distribution shifts to progressively smaller values of
Nb and becomes narrower, suggesting a decreasing structural
heterogeneity. Nevertheless, bonds are present in all samples,
including xs = 0.9, where a significant number of dimers is
found, consistent with our other findings. The xs dependence
of Nb closely resembles that of Amax, as expected from the
criterion chosen to define a bond. Furthermore, the width of
the distributions, WN, presents a bimodal shape as a function
of xs, similar to that of the localization length L and the
maximum of g(r). Bonded large particles organize into clusters
of different sizes, i.e., different numbers of large particles
Nc belonging to the same cluster, that eventually connect to
form a network. This is illustrated in Fig. 6, which shows
rendered sample volumes, with particles pertaining to the same
cluster having the same color. It is evident that for xs � 0.7
a percolating network of bonded particles spans the whole
system. This is confirmed by the distribution of cluster sizes,
P (Nc) [Fig. 7(b)]. Most of the particles organize into one
big cluster representing the space spanning network [the data
points at the far right in Fig. 7(b)], while also a few small
clusters, composed of at most 100 particles, are present in these
samples. [Note that P (Nc) is the probability for a cluster, not
for a particle to be located in a cluster, of size Nc.] Whereas
the distributions are very similar for samples with xs = 0.0,
0.1, 0.3, and 0.5, the mixture with xs = 0.01 shows very few
small clusters, suggesting a more homogeneous structure in
comparison to the samples with higher xs. For the sample with
xs = 0.7 a network is still present [Figs. 6 and 7(b)], but P (Nc)
is significantly broader for the smaller clusters, extending to
sizes beyond 50 particles per cluster. This indicates a transition
from a network structure of large particles to isolated clusters
of large particles immersed in a “sea” of small particles. This
transition is completed for xs = 0.9, where no large clusters
are observed.

The function f (Nc) = AN
−γ
c exp(−Nc/kc) fits the exper-

imental distributions P (Nc), where the fit parameters A, γ ,
and kc are not completely uncorrelated and thus their values
have to be treated with care. The fit function is expected
to describe the cluster distribution of irreversible physical
gels [38]. An exponent γ < 3 indicates the presence of a
space spanning network of clusters. Initially (xs � 0.5) the
exponent is approximately constant, γ ≈ 3 ± 0.5, and then
decreases with a minimum at xs = 0.7. These values of γ are

consistent with the presence of a space-spannning network.
The exponential cutoff kc quantifies the limiting cluster size.
It is almost constant except a minimum for xs = 0.01 and a
maximum for xs = 0.7. The intercept A, which is related to
the fraction of particles not pertaining to any cluster, shows a
slight decrease except for a peak at xs = 0.01 and a minimum
for xs = 0.7. The trends of the fit parameters are consistent
with the more homogeneous structure of sample xs = 0.01
and confirm the broad distribution of cluster sizes of sample
xs = 0.7.

3. Remoteness

In order to investigate the degree of structural heterogene-
ity, we determined the distribution of particle remoteness
P (ξ ) [39,40] [Fig. 7(c)]. Particle remoteness ξ measures the
distance of a point from the surface of the closest particle. A
large value of the remoteness ξ is therefore an indication of
large voids or open arrangements and a broad distribution of ξ

of heterogeneous structures. Although our samples are densely
packed with φ = 0.60, we are interested in the arrangement of
the large spheres only and hence consider as “void” any volume
which is not occupied by large spheres. A large fraction of the
voids is thus occupied by small (invisible) particles.

The one-component glass of large spheres shows a P (ξ )
which is peaked at a small value, ξ ≈ 0.2RL and shows only
a very small probability for ξ > RL. This reflects the small
interstitial voids between densely packed large spheres. For
xs = 0.01, the P (ξ ) is shifted to smaller ξ and the probability
of large voids is further suppressed. This is also indicated by the
smaller average remoteness 〈ξ 〉 [Fig. 7(c), inset]. In contrast,
for xs = 0.1, while the main peak remains at about the same
position, the distribution considerably broadens and ξ > RL

becomes more probable, with a second very weak maximum
at ξ ≈ 2.25RL and 〈ξ 〉 is increased. Thus larger unoccupied
regions exist. The probability of larger ξ , including the weak
maximum and 〈ξ 〉, increase further for xs = 0.3 while the main
peak remains at ξ ≈ 0.2RL. This suggests the presence of a
backbone of bonded particles in close contact, i.e., a network
of large particles. For xs = 0.5 and 0.7 the probability of large
ξ/RL > 2 remains almost unchanged, but the main peak shifts
to larger ξ and 〈ξ 〉 slightly increases while the distribution
broadens. For xs = 0.9 the whole distribution is significantly
shifted to large values of ξ . This is an indication that the
gel network starts to melt due to the increasing dilution of
large spheres (increase of 〈ξ 〉) and for xs = 0.9 disappears,
and isolated particles or “extended dimer configurations” are
prevailing. The presence of a few, homogeneously distributed
isolated particles or extended dimers is consistent with a more
homogeneous distribution of remoteness.

C. Comparison of dynamics and structure:
Glass, gel, and fluid states

1. Different arrested states

The information on the dynamics and structure is now
combined to provide a comprehensive characterization of the
different states as a function of the sample composition xs.
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The dynamics indicate that the one-component system of
large spheres, xs = 0.0, and the mixtures with a majority of
one species, i.e., xs = 0.01 and 0.9, as well as an intermediate
composition, xs = 0.3, present very slow, arrested dynamics,
characteristic of glasses and gels. These samples show, how-
ever, significantly different degrees of arrest, subdiffusion and
localization lengths of the large spheres. In the following we
discuss these differences, and later compare the dynamically
arrested states with the fluid states which occur at intermediate
compositions xs = 0.1 as well as xs = 0.5 and 0.7.

Considering the arrested states, the localization length of
the large spheres decreases continuously from xs = 0.0 to
0.01, 0.3, and 0.9. In the fluid states that characterize the
transitions between two arrested states, instead the localization
lengths are larger. Dynamical arrest is particularly pronounced
for xs = 0.0 and 0.9, and less so for xs = 0.3. The extended
plateau in the MSD with a small localization length of sample
xs = 0.01 implies a tight cage and is attributed to the formation
of interparticle bonds, which are characteristic for an attractive
glass state. This is supported by the structural analysis; the
arrangement of the large particles is amorphous although in
a space spanning network with an increased average number
of bonds per particle. Nevertheless, on a mesoscopic scale
the large particles are homogeneously distributed with the
distribution of remoteness indicating the absence of large
voids unoccupied by large particles (but by small particles).
Again, this is typical for an attractive glass rather than a gel.
As proposed recently, caging is possibly still the origin of
dynamical arrest in attractive glasses [41].

For xs = 0.3 the localization length is even smaller, but the
plateau and subdiffusion are less pronounced. The structure
of this sample indicates that the tight localization in the
dynamics is caused by a high probability for particle contacts
due to depletion attraction induced by the small particles. Fur-
thermore, the presence of significant structural heterogeneity
seems responsible for the broad distribution of relaxation times
leading to the subdiffusive MSD. These observations suggest a
gellike state of this mixture, which is supported by the presence
of a large cluster.

The mixture with xs = 0.9 exhibits the smallest localization
length with an extended plateau and the most pronounced
dynamical arrest. There is no network in this sample, but many
small clusters and a few slightly larger clusters. Furthermore,
due to the large dilution, large particles are not caged by
other large particles and the pair correlation function shows
fluidlike particle organization. The dynamical arrest of the
large particles therefore must be caused by the small particles.
This suggests an asymmetric glass state, in which individual
large particles or small clusters of a few large particles are
caged by small particles. Due to the ability of small particles
to tightly pack around large particles, these cages are smaller
than cages formed by large spheres, even by attractive large
spheres. Therefore, we observe four different arrested states:
a repulsive glass (xs = 0.0), an attractive glass (xs = 0.01), a
gel (xs = 0.3), and an asymmetric glass (xs = 0.9).

The transitions between these arrested states (except be-
tween the repulsive and attractive glasses) involve the melting
of the glasses and the formation of fluids. We observe diffusive
dynamics for samples with xs = 0.1, separating the attractive
glass and gel state, as well as xs = 0.5 and 0.7, separating

the gel and the asymmetric glass states. Despite the diffusive
dynamics, these fluids are characterized by particle-particle
bonds and dynamic networks. It is conceivable that, for
xs = 0.1, the volume fraction of large spheres is too small for
a glass state, as it exists for xs = 0.01, and the volume fraction
of small spheres too small for depletion attraction to induce
gelation, like for xs = 0.3. For xs = 0.5 and 0.7 melting can
be associated with the dilution of the gel structure and thus
a breakdown of the system-spanning network on one hand
(from xs = 0.3 to 0.5) and dilution of the glass matrix of small
spheres on the other hand (from xs = 0.9 to 0.7).

The comparison between arrested and fluid states indicates
that the presence of a space-spanning network, defined on the
basis of a structural criterion (particle distances) is not suffi-
cient to distinguish between the two states. We thus combine
structural and dynamical information. For each composition
xs, we identify the particles that, over the whole observation
time tmeas ≈ 45τB, perform displacements which are smaller
than the typical cage size of the one-component glass (xs =
0.0), quantified by its localization length L (Fig. 1). We call
these particles “arrested.” The fraction of arrested particles as
a function of xs (Fig. 8) shows that the glass states (xs = 0.0,
0.01 and 0.9) are characterized by the largest fractions of
arrested particles, while the gel state (xs = 0.3) presents a
lower fraction, which is still larger than that of the neighbor
fluid states. Then clusters of arrested particles are determined
by applying the same criterion used previously to define
bonded particles and are shown in Fig. 9. In the repulsive and
attractive glasses (xs = 0.0 and 0.01, respectively), the arrested
particles form a dense space-spanning network. In contrast,
for xs = 0.1 there is only a small fraction of arrested particles,
which in addition do not form a space-spanning network. For
xs = 0.3, instead, a dense space-spanning network of arrested
particles is again observed. Subsequently, for xs = 0.5, the
arrested particles are organized in smaller clusters which
are not space spanning. Again, a space-spanning but open
network is observed for xs = 0.7. Finally, for xs = 0.9 there are
only isolated arrested particles or individual small clusters of
arrested particles. This suggests that the glass (xs = 0.0, 0.01)
and gel (xs = 0.3) states are characterized by the presence of a
dense space-spanning network of arrested large particles, while

FIG. 8. Fraction of arrested particles Narr/N as a function of
composition xs.
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FIG. 9. (Color online) Rendering of the arrested large particles
in samples with φ ≈ 0.60, δ = 0.09, and different compositions xs

(as indicated) as obtained from trajectories extracted from confocal
microscopy images. Only arrested large particles are shown with
particles pertaining to the same cluster indicated with the same color
(gray-scale value). Particles within two diameters of the surface of
the observation volumes are not shown.

this network is not present in the fluid states (xs = 0.1, 0.5) and
in the asymmetric glass (xs = 0.9). The sample with xs = 0.7
shows an intermediate behavior.

Furthermore, we observed that in samples with a hetero-
geneous network structure, 0.1 � xs � 0.7, the fastest large
particles are located in regions sparse of large particles (Fig. 3,
left), and thus one might expect them to have also a smaller
number of bonds with other large particles than an average
particle. This, however, is true only for very few cases (Fig. 3,
right). Therefore, despite their lower local volume fraction
they typically maintain their number of bonds. This suggests
that the fast particles form anisotropic clusters with other
large particles, which allows them to keep their average
coordination with other large particles while increasing the
number of contacts with small particles. This could increase
their mobility due to the vicinity of the more mobile small
particles. Moreover, the mobility of the particles also depends
on the strength (or rather weakness) of the bonds, which is
experimentally not accessible to us.

2. Dependence on size disparity

We compare these findings with results obtained in previous
work for δ = 0.38 and 0.2 [17–19] as well as previous
experiments for δ = 0.1 [13] and theory predictions [11,12].
They are summarized in a state diagram as a function of
composition xs and size ratio δ (Fig. 10). In binary mixtures
with δ = 0.38 only a repulsive glass state is observed, while in
mixtures with δ = 0.2 two glass states of the large spheres
are observed, namely, for small xs a glass in which the
large spheres are caged by large spheres and for large xs

an asymmetric glass. No evidence for a gel state was found.
Very small values of xs, like xs = 0.01, were not investigated
for δ = 0.2 and therefore the existence of an attractive glass
cannot be excluded. The asymmetric glass state observed for

FIG. 10. (Color online) State diagram of samples with different
composition xs and size ratios; δ = 0.09 (present work), δ =
0.106 [13], δ = 0.2 and 0.38 [17–19]. Different arrested states are
identified in the present work: repulsive glass (•), attractive glass
(�), asymmetric glass ( ), and gel ( ). Open symbols indicate fluid
states. In [13] fluids (�), fluid-crystal coexistence (♦), and amorphous
solids (�) were distinguished.
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δ = 0.2 is different from the one in this work: only individual
large particles but no dimers or other small clusters were
found. Since small particles can pack less effectively around
dimers and small clusters than around single particles, particles
forming dimers and small clusters are possibly less localized.
This is consistent with the fact that for δ = 0.2 the reduction of
the localization length in the asymmetric glass with respect to
the one-component glass, L(xs = 0.9)/L(xs = 0.0) ≈ 0.2 =
δ is considerably larger than in the case δ = 0.09, namely,
L(xs = 0.9)/L(xs = 0.0) ≈ 0.5 > δ.

Previous experiments on binary mixtures of silica particles
with δ ≈ 0.1 [13] revealed an arrested state in which both
components are arrested at large xs (Fig. 10, �), and an
arrested state in which only the large spheres are arrested
at intermediate xs (Fig. 10, �), while fluid-crystal coexistence
was observed at small xs (Fig. 10, ♦) and metastable fluid
states at large intermediate xs (Fig. 10, �). The arrested states
of the large spheres were not further characterized in that
work. Our findings suggest that the glass they observed at large
xs [13] is an asymmetric glass. Moreover, the arrested state at
intermediate xs might correspond to the gel state observed in
the present work. At small xs we find amorphous glass states
or fluids, but no evidence of crystallization, which we attribute
to the considerably larger polydispersity of our system, in
particular of the small spheres.

Size disparities as large as δ = 0.1 were not investigated by
MCT or SCGLE theories [11,12]. Nevertheless, the attractive
glass state observed for xs = 0.01 might be related to the
depletion-driven glass state predicted by MCT in this region
of the phase diagram for δ � 0.2 (minimum value investigated
δ = 0.18). Moreover, an asymmetric glass state at large xs is
predicted by MCT and SCGLE for δ � 0.35. The asymmetric
glass of single particles observed for δ = 0.2 and xs = 0.9,
and predicted by theory, might be observed for δ = 0.09 for
values of xs > 0.9. Asymmetric glass states were also reported
for binary mixtures of size asymmetric star polymers [24,25],
possibly indicating that in general this state is induced by
a dynamical asymmetry irrespective of the details of the
interaction potential.

To our knowledge, gels formed by binary mixtures have
only been reported by Dinsmore and coworkers [42]. Their
gels collapsed under gravity and thus represent transient states.
Furthermore, gel formation in binary mixtures was observed
under confinement with the addition of polymers as deple-
tants [43]. In contrast, the gel state we observe is long lived
and forms without addition of polymers but shows structural
and dynamical analogies with gels formed by colloid-polymer
mixtures at intermediate colloid volume fraction [44–51];
for example a large structural heterogeneity and a broad
distribution of particle dynamics. The mechanism responsible
for gel formation in our binary mixtures is not clear at present.
Different mechanisms have been proposed for colloid-polymer
mixtures, among them arrested phase separation [45,52–54],
glasslike arrest [55] and rigidity percolation [56]. Moreover,
equilibrium gelation in binary mixtures has been predicted as
a result of the specific form of the interaction potential in these

systems [16]. In order to investigate the route leading to gela-
tion and the subsequent aging, time-resolved structural mea-
surements are needed and will be the subject of future work.

IV. CONCLUSIONS

Different arrested states are observed for large spheres
in binary mixtures with size disparity δ = 0.09 and total
volume fraction φ ≈ 0.60. While the one-component system
of large spheres forms a repulsive glass, all arrested states
in the mixtures are characterized by bonding, as a result of the
strong depletion interaction induced by the small spheres at
this size ratio. The arrested states in the mixtures significantly
differ in terms of the arrest mechanism as well as structure and
dynamics. If a small amount of small spheres is added to the
repulsive glass of large spheres, depletion-induced attractions
induce bonding and formation of an attractive glass (xs =
0.01). This state is melted by further addition of small spheres
(xs = 0.1), possibly due to the dilution of the large spheres
and a concomitant melting of the cage. Only if the amount of
small spheres is increased (xs = 0.3) the attraction becomes
strong enough to cause dynamical arrest in the form of
gelation, i.e., the formation of a network of bonded and arrested
particles. This gel state shows a structural organization of the
large spheres analogous to that observed in colloid-polymer
mixtures. Also the gel state is melted by further dilution of
the large spheres. Nevertheless, clusters of particles and a
space spanning network persist (xs = 0.5, 0.7) which are not
arrested but fluid like. At large values of xs an additional arrest
mechanism is observed; isolated small clusters of large spheres
are arrested by the highly concentrated small spheres, which
possibly form a glass (xs = 0.9). While asymmetric glass
states were already observed for a smaller size asymmetry
δ = 0.2 [18,19] and for mixtures of star polymers [24,45],
this asymmetric glass state is special in that depletion-induced
bonding between the dilute large spheres leads to the formation
of clusters, in particular “extended clusters.”

Size asymmetric binary mixtures therefore represent a tun-
able model system to investigate transitions between different
arrested states, which can be obtained by only changing the
composition of the mixture. Thus the properties and behavior
of different arrested states can be investigated in a consistent
way using a single model system.
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[12] R. Juárez-Maldonado and M. Medina-Noyola, Phys. Rev. E 77,

051503 (2008).
[13] A. Imhof and J. K. G. Dhont, Phys. Rev. Lett. 75, 1662 (1995).
[14] A. Moreno and J. Colmenero, J. Chem. Phys. 125, 164507

(2006).
[15] A. J. Moreno and J. Colmenero, Phys. Rev. E 74, 021409 (2006).
[16] P. Germain and S. Amokrane, Phys. Rev. Lett. 102, 058301

(2009).
[17] T. Sentjabrskaja, D. Guu, M. P. Lettinga, S. U. Egelhaaf, and

M. Laurati, AIP Conf. Proc. 1518, 206 (2013).
[18] T. Sentjabrskaja, R. Babaliari, J. Hendricks, M. Laurati,

G. Petekidis, and S. U. Egelhaaf, Soft Matter 9, 4524 (2013).
[19] T. Sentjabrskaja, M. Hermes, W. C. K. Poon, C. D. Estrada,
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Rev. Lett. 106, 105704 (2011).

032308-11

http://dx.doi.org/10.1103/PhysRevE.58.6073
http://dx.doi.org/10.1103/PhysRevE.58.6073
http://dx.doi.org/10.1103/PhysRevE.58.6073
http://dx.doi.org/10.1103/PhysRevE.58.6073
http://dx.doi.org/10.1088/0953-8984/1/39/027
http://dx.doi.org/10.1088/0953-8984/1/39/027
http://dx.doi.org/10.1088/0953-8984/1/39/027
http://dx.doi.org/10.1088/0953-8984/1/39/027
http://dx.doi.org/10.1126/science.287.5453.627
http://dx.doi.org/10.1126/science.287.5453.627
http://dx.doi.org/10.1126/science.287.5453.627
http://dx.doi.org/10.1126/science.287.5453.627
http://dx.doi.org/10.1103/PhysRevLett.102.085703
http://dx.doi.org/10.1103/PhysRevLett.102.085703
http://dx.doi.org/10.1103/PhysRevLett.102.085703
http://dx.doi.org/10.1103/PhysRevLett.102.085703
http://dx.doi.org/10.1088/0034-4885/75/6/066501
http://dx.doi.org/10.1088/0034-4885/75/6/066501
http://dx.doi.org/10.1088/0034-4885/75/6/066501
http://dx.doi.org/10.1088/0034-4885/75/6/066501
http://dx.doi.org/10.1103/PhysRevE.64.041502
http://dx.doi.org/10.1103/PhysRevE.64.041502
http://dx.doi.org/10.1103/PhysRevE.64.041502
http://dx.doi.org/10.1103/PhysRevE.64.041502
http://dx.doi.org/10.1103/PhysRevLett.91.085701
http://dx.doi.org/10.1103/PhysRevLett.91.085701
http://dx.doi.org/10.1103/PhysRevLett.91.085701
http://dx.doi.org/10.1103/PhysRevLett.91.085701
http://dx.doi.org/10.1103/PhysRevE.67.021502
http://dx.doi.org/10.1103/PhysRevE.67.021502
http://dx.doi.org/10.1103/PhysRevE.67.021502
http://dx.doi.org/10.1103/PhysRevE.67.021502
http://dx.doi.org/10.1209/0295-5075/96/36006
http://dx.doi.org/10.1209/0295-5075/96/36006
http://dx.doi.org/10.1209/0295-5075/96/36006
http://dx.doi.org/10.1209/0295-5075/96/36006
http://dx.doi.org/10.1103/PhysRevE.77.051503
http://dx.doi.org/10.1103/PhysRevE.77.051503
http://dx.doi.org/10.1103/PhysRevE.77.051503
http://dx.doi.org/10.1103/PhysRevE.77.051503
http://dx.doi.org/10.1103/PhysRevLett.75.1662
http://dx.doi.org/10.1103/PhysRevLett.75.1662
http://dx.doi.org/10.1103/PhysRevLett.75.1662
http://dx.doi.org/10.1103/PhysRevLett.75.1662
http://dx.doi.org/10.1063/1.2361286
http://dx.doi.org/10.1063/1.2361286
http://dx.doi.org/10.1063/1.2361286
http://dx.doi.org/10.1063/1.2361286
http://dx.doi.org/10.1103/PhysRevE.74.021409
http://dx.doi.org/10.1103/PhysRevE.74.021409
http://dx.doi.org/10.1103/PhysRevE.74.021409
http://dx.doi.org/10.1103/PhysRevE.74.021409
http://dx.doi.org/10.1103/PhysRevLett.102.058301
http://dx.doi.org/10.1103/PhysRevLett.102.058301
http://dx.doi.org/10.1103/PhysRevLett.102.058301
http://dx.doi.org/10.1103/PhysRevLett.102.058301
http://dx.doi.org/10.1063/1.4794569
http://dx.doi.org/10.1063/1.4794569
http://dx.doi.org/10.1063/1.4794569
http://dx.doi.org/10.1063/1.4794569
http://dx.doi.org/10.1039/c3sm27903k
http://dx.doi.org/10.1039/c3sm27903k
http://dx.doi.org/10.1039/c3sm27903k
http://dx.doi.org/10.1039/c3sm27903k
http://dx.doi.org/10.1039/C4SM00577E
http://dx.doi.org/10.1039/C4SM00577E
http://dx.doi.org/10.1039/C4SM00577E
http://dx.doi.org/10.1039/C4SM00577E
http://dx.doi.org/10.1103/PhysRevLett.104.015701
http://dx.doi.org/10.1103/PhysRevLett.104.015701
http://dx.doi.org/10.1103/PhysRevLett.104.015701
http://dx.doi.org/10.1103/PhysRevLett.104.015701
http://dx.doi.org/10.1103/PhysRevE.57.908
http://dx.doi.org/10.1103/PhysRevE.57.908
http://dx.doi.org/10.1103/PhysRevE.57.908
http://dx.doi.org/10.1103/PhysRevE.57.908
http://dx.doi.org/10.1103/PhysRevE.75.041503
http://dx.doi.org/10.1103/PhysRevE.75.041503
http://dx.doi.org/10.1103/PhysRevE.75.041503
http://dx.doi.org/10.1103/PhysRevE.75.041503
http://dx.doi.org/10.1140/epje/i2007-10270-8
http://dx.doi.org/10.1140/epje/i2007-10270-8
http://dx.doi.org/10.1140/epje/i2007-10270-8
http://dx.doi.org/10.1140/epje/i2007-10270-8
http://dx.doi.org/10.1038/nmat2286
http://dx.doi.org/10.1038/nmat2286
http://dx.doi.org/10.1038/nmat2286
http://dx.doi.org/10.1038/nmat2286
http://dx.doi.org/10.1021/ma801894x
http://dx.doi.org/10.1021/ma801894x
http://dx.doi.org/10.1021/ma801894x
http://dx.doi.org/10.1021/ma801894x
http://dx.doi.org/10.1039/C2SM26245B
http://dx.doi.org/10.1039/C2SM26245B
http://dx.doi.org/10.1039/C2SM26245B
http://dx.doi.org/10.1039/C2SM26245B
http://dx.doi.org/10.1051/jphys:01987004805070900
http://dx.doi.org/10.1051/jphys:01987004805070900
http://dx.doi.org/10.1051/jphys:01987004805070900
http://dx.doi.org/10.1051/jphys:01987004805070900
http://dx.doi.org/10.1038/nature01328
http://dx.doi.org/10.1038/nature01328
http://dx.doi.org/10.1038/nature01328
http://dx.doi.org/10.1038/nature01328
http://dx.doi.org/10.1007/BF02183148
http://dx.doi.org/10.1007/BF02183148
http://dx.doi.org/10.1007/BF02183148
http://dx.doi.org/10.1007/BF02183148
http://dx.doi.org/10.1039/C1SM06083J
http://dx.doi.org/10.1039/C1SM06083J
http://dx.doi.org/10.1039/C1SM06083J
http://dx.doi.org/10.1039/C1SM06083J
http://dx.doi.org/10.1007/s003970000094
http://dx.doi.org/10.1007/s003970000094
http://dx.doi.org/10.1007/s003970000094
http://dx.doi.org/10.1007/s003970000094
http://dx.doi.org/10.1006/jcis.1996.0217
http://dx.doi.org/10.1006/jcis.1996.0217
http://dx.doi.org/10.1006/jcis.1996.0217
http://dx.doi.org/10.1006/jcis.1996.0217
http://dx.doi.org/10.1126/science.287.5451.290
http://dx.doi.org/10.1126/science.287.5451.290
http://dx.doi.org/10.1126/science.287.5451.290
http://dx.doi.org/10.1126/science.287.5451.290
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1103/PhysRevE.78.031410
http://dx.doi.org/10.1103/PhysRevE.78.031410
http://dx.doi.org/10.1103/PhysRevE.78.031410
http://dx.doi.org/10.1103/PhysRevE.78.031410
http://dx.doi.org/10.1039/C0SM00756K
http://dx.doi.org/10.1039/C0SM00756K
http://dx.doi.org/10.1039/C0SM00756K
http://dx.doi.org/10.1039/C0SM00756K
http://dx.doi.org/10.1122/1.4878838
http://dx.doi.org/10.1122/1.4878838
http://dx.doi.org/10.1122/1.4878838
http://dx.doi.org/10.1122/1.4878838
http://dx.doi.org/10.1209/epl/i2002-00278-2
http://dx.doi.org/10.1209/epl/i2002-00278-2
http://dx.doi.org/10.1209/epl/i2002-00278-2
http://dx.doi.org/10.1209/epl/i2002-00278-2
http://dx.doi.org/10.1039/b606039k
http://dx.doi.org/10.1039/b606039k
http://dx.doi.org/10.1039/b606039k
http://dx.doi.org/10.1039/b606039k
http://dx.doi.org/10.1073/pnas.0902294106
http://dx.doi.org/10.1073/pnas.0902294106
http://dx.doi.org/10.1073/pnas.0902294106
http://dx.doi.org/10.1073/pnas.0902294106
http://dx.doi.org/10.1103/PhysRevE.52.4045
http://dx.doi.org/10.1103/PhysRevE.52.4045
http://dx.doi.org/10.1103/PhysRevE.52.4045
http://dx.doi.org/10.1103/PhysRevE.52.4045
http://dx.doi.org/10.1039/c3sm51879e
http://dx.doi.org/10.1039/c3sm51879e
http://dx.doi.org/10.1039/c3sm51879e
http://dx.doi.org/10.1039/c3sm51879e
http://dx.doi.org/10.1088/0953-8984/14/33/201
http://dx.doi.org/10.1088/0953-8984/14/33/201
http://dx.doi.org/10.1088/0953-8984/14/33/201
http://dx.doi.org/10.1088/0953-8984/14/33/201
http://dx.doi.org/10.1088/0953-8984/19/32/323101
http://dx.doi.org/10.1088/0953-8984/19/32/323101
http://dx.doi.org/10.1088/0953-8984/19/32/323101
http://dx.doi.org/10.1088/0953-8984/19/32/323101
http://dx.doi.org/10.1063/1.3103889
http://dx.doi.org/10.1063/1.3103889
http://dx.doi.org/10.1063/1.3103889
http://dx.doi.org/10.1063/1.3103889
http://dx.doi.org/10.1039/c0sm00957a
http://dx.doi.org/10.1039/c0sm00957a
http://dx.doi.org/10.1039/c0sm00957a
http://dx.doi.org/10.1039/c0sm00957a
http://dx.doi.org/10.1122/1.3571554
http://dx.doi.org/10.1122/1.3571554
http://dx.doi.org/10.1122/1.3571554
http://dx.doi.org/10.1122/1.3571554
http://dx.doi.org/10.1088/0953-8984/15/27/308
http://dx.doi.org/10.1088/0953-8984/15/27/308
http://dx.doi.org/10.1088/0953-8984/15/27/308
http://dx.doi.org/10.1088/0953-8984/15/27/308
http://dx.doi.org/10.1021/la026303j
http://dx.doi.org/10.1021/la026303j
http://dx.doi.org/10.1021/la026303j
http://dx.doi.org/10.1021/la026303j
http://dx.doi.org/10.1103/PhysRevE.74.041403
http://dx.doi.org/10.1103/PhysRevE.74.041403
http://dx.doi.org/10.1103/PhysRevE.74.041403
http://dx.doi.org/10.1103/PhysRevE.74.041403
http://dx.doi.org/10.1103/PhysRevLett.95.238302
http://dx.doi.org/10.1103/PhysRevLett.95.238302
http://dx.doi.org/10.1103/PhysRevLett.95.238302
http://dx.doi.org/10.1103/PhysRevLett.95.238302
http://dx.doi.org/10.1038/nature06931
http://dx.doi.org/10.1038/nature06931
http://dx.doi.org/10.1038/nature06931
http://dx.doi.org/10.1038/nature06931
http://dx.doi.org/10.1039/c3sm52951g
http://dx.doi.org/10.1039/c3sm52951g
http://dx.doi.org/10.1039/c3sm52951g
http://dx.doi.org/10.1039/c3sm52951g
http://dx.doi.org/10.1103/PhysRevLett.92.148302
http://dx.doi.org/10.1103/PhysRevLett.92.148302
http://dx.doi.org/10.1103/PhysRevLett.92.148302
http://dx.doi.org/10.1103/PhysRevLett.92.148302
http://dx.doi.org/10.1103/PhysRevLett.106.105704
http://dx.doi.org/10.1103/PhysRevLett.106.105704
http://dx.doi.org/10.1103/PhysRevLett.106.105704
http://dx.doi.org/10.1103/PhysRevLett.106.105704



