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Direct experimental evidence of growing dynamic length scales in confined colloidal liquids

Prasad S. Sarangapani,1 Andrew B. Schofield,2 and Yingxi Zhu1,*

1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
2School of Physics, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JZ, United Kingdom
(Received 21 June 2010; revised manuscript received 3 February 2011; published 28 March 2011)

The modification of the glass transition in confined domains, particularly the length scales associated
with cooperative motion, remains a mystery. Hard-sphere suspensions are confined between two surfaces to
progressively smaller dimensions to probe the confinement effect on the growth of dynamic heterogeneities via
confocal microscopy. The confinement length scale is defined as the critical spacing where deviations from bulk
behaviors begin and is observed to occur at progressively larger gap spacings as the volume fraction is increased.
However, dynamic length scales extracted from the four-point correlation function are on average smaller than
the confinement length scale.
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Soft matter confined between surfaces or at interfaces
occurs ubiquitously in nature and modern technological
applications [1–3]. Despite extensive interest and activity
of research in this area, major questions regarding the
modification of material properties in confined domains
remain. Among the myriad physical phenomena observed
in confined domains, the modification of the glass transition
temperature, Tg , in confinement has received the most attention
yet remains contentious [4,5]. Understanding the nature of
the glass transition in confinement has significant impact on
many unresolved problems ranging from the instability of
sub-100 nm polymer nanostructures in data storage applica-
tions to protein folding [6,7].

Interest in the confinement effect on the dynamics close
to the glass transition was initially motivated by the desire to
extract a “dynamic” length scale of molecular cooperativity,
which is often masked in ensemble-averaged measures [8].
When a supercooled liquid is confined to a critical dimen-
sion where strong deviations from bulk behaviors occur, a
dynamic length scale for the glass transition can be possibly
obtained [9]. However, in search of this parameter, numerous
experiments [4,8–16] and computer simulations [4–6] with
freestanding polymer thin films as well as glass formers
confined in nanopores have produced contradictory results:
Tg can increase [8], decrease [4,10], or remain the same [16],
depending on the nature of molecule-surface interactions.

The length scales for the onset of the confinement effect
on glass forming liquids, commonly referred to as the
“confinement length scale,” have also been reported in the
literature [10]. Computer simulations have predicted that
the confinement length scale is typically larger than the size
of cooperatively rearranging regions [17], which implies that
the confinement length scales are not representative of the
length scales associated with dynamical heterogeneities. Both
confinement and dynamic length scales have been extracted
from experimental data [18], however, the correlation between
these two length scales has not been explored experimentally.

Colloidal hard-spheres have been proven as excellent
model systems to study the glass transition with the distinct
advantage of facile and direct visualization using a surfeit
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of microscopic methods ranging from wide-field microscopy
to confocal scanning microscopy [19,20]. Using confocal
microscopy, direct access to dynamical heterogeneities in
dense “supercooled” colloidal liquids in three-dimensions
becomes possible, and this technique has been used to advance
the understanding of the dynamics of bulk, glassy systems and
confirmed key theories [21] and predictions from computer
simulations [22] relating to the glass transition. In this paper,
we extend our previous work, which has demonstrated a
significant slowing down of the dynamics of hard-sphere
colloidal suspensions in confinement [23], to probe the
relationship between the growth of dynamical heterogeneities
and the confinement length scale. Our findings reported in
this paper show that the growing length scales of dynamical
heterogeneities are, on average, smaller than the confinement
length scale, despite both strongly depending on volume
fraction.

Our model hard-sphere system consists of poly(methyl
methacrylate) (PMMA) suspensions (diameter, d = 1.288 μm,
polydispersity <5%), sterically stabilized and impregnated
with rhodamine 6G for direct visualization via confocal
microscopy [24]. The particles are suspended in dioctyl
phthalate which matches the index of refraction of the particles
(n = 1.494). Sedimentation is not observed for undisturbed
samples over a period �1 year. Volume fractions ranging from
φ = 0.40 to 0.57 with an uncertainty of ±0.03 are prepared
and subsequently verified using Voronoi tessellation [20]. We
observe no deviations from the bulk volume fraction for the
range of film thicknesses probed in our experiments [25]. A
homebuilt micron-gap compression apparatus as previously
described in Ref. [23] is mounted on the stage of a confocal
microscope (Zeiss LSM 5 Pascal, 100× objective, numerical
aperture (NA) = 1.4) where thicknesses, H, are explored over
a range of H/d from ≈78 down to ≈11. Boundary induced
crystallization, which would be otherwise induced between
smooth walls, is prevented by coating ∼1 to 2 disordered
layers of sterically stabilized PMMA particles (polydispersity
∼18%) [26] on each confining quartz surface and subsequently
sintered at T = 110 ◦C for 40 min. A 10 × 10 mm2 sample well
is attached to the confining surfaces using UV-curing optical
adhesive (Norland 80) and injected with ∼200 μL of PMMA
suspensions. A waiting period of at least 5 h is required for
density profiles to homogenize before experiments commence,

030502-11539-3755/2011/83(3)/030502(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.030502


RAPID COMMUNICATIONS

SARANGAPANI, SCHOFIELD, AND ZHU PHYSICAL REVIEW E 83, 030502(R) (2011)

which is a necessary step to minimize any change in the
overall volume fraction during compression, otherwise leading
to the formation of “depletion layers” [23]. We systematically
reduce the gap spacing between two solid surfaces using a high
precision micrometer (Newport) at a rate of 2 μm/min with
an interval of 10–15 min between two successive compression
steps to allow the dissipation of any transient flow. At each
desired film thickness, we wait a minimum of 4 h before image
acquisition. Film thickness is determined solely from z-stacks
with an accuracy of ±0.2 μm. A 30 × 30 × 12 μm3 volume
containing ∼3000 particles is scanned every 14 s for ∼16 h.
Three-dimensional particle centroiding algorithms [27] are
subsequently employed to determine particle centers with an
accuracy of 0.05 μm in the x-y plane and 0.2 μm in the
z direction.

We start by examining the nature of single particle dis-
placements in confined colloidal liquids. In both bulk and
confined domains, the dynamics of colloidal liquids close to
the glass transition become increasingly intermittent and the
rearrangements of particles are cooperative. Previous work
on bulk molecular and colloidal liquids in proximity to the
glass transition has shown that the distribution of particle
displacements deviates from a Gaussian on the time scales of
cage rearrangements, which is related to the late β relaxation
regime [20,21]. Deviations from a Gaussian are quantified
in terms of the non-Gaussian parameter, α2, which, for a
one-dimensional distribution of displacements, is defined as

α2 = 〈x4〉/3(〈x2〉)2 − 1. (1)

This measure is most sensitive to a subensemble of particles
contributing to irreversible rearrangements in liquids [20].
For a Gaussian distribution of particle displacements α2 ≈ 0,
while α2 > 0 for the case where a significant fraction of
particles undergo larger-than-average displacements. We have
examined α2 in the x, y, and z directions for confined PMMA
colloidal suspensions; however, we only show the results for
particle motions parallel to the walls in Fig. 1, owing to
poor resolution in the z direction that is inherent in confocal
microscopy of dense colloidal systems. It is evident that the
dynamics become more heterogeneous as thickness is reduced.
At any time only a small number of rare “mobile” particles
contribute to the growth of the non-Gaussian parameter. It is
conceivable that as the film thickness is reduced, more mobile

FIG. 1. (Color online) Non-Gaussian parameter α2 measured in
the x direction for φ = (a) 0.40 and (b) 0.43 at film thicknesses
H/d = 32 (squares), 24 (circles), 15 (triangles), and 11 (inverted
triangles). The horizontal dashed lines indicate the regime where
deviations from bulk behavior begin to occur.

particles contribute to the tails of the probability distribution
of displacements.

To further explore whether the dynamics of mobile particles
is indeed facilitated, we examine the angles formed between
the displacement vectors of all neighboring particles defined as
θ = cos−1(��ri · ��rj /|��ri ||��rj |) at time scales correspond-
ing to the peak in α2 at varied H/d and φ. In Figs. 2(a)–2(c)
we plot P(θ ) for φ = 0.40–0.46. As H/d is decreased, the
propensity for coherent motion of particles is greater, where
at the narrowest gap, H/d = 11, P(θ ) is strongly peaked at
θ ≈ 0, indicating that large groups of particles move in a
similar direction, as schematically illustrated in Figs. 2(d)
and 2(e) for φ = 0.40 and 0.43 at H/d = 11, respectively. It is
apparent that confinement enhances the tendency of particles
to move in parallel directions; such a behavior likely originates
from the slow dynamics of particles immediately adjacent
to the surfaces [12,28], as they are essentially caged and
the slow dynamics subsequently propagate to the interior of
confined colloidal film. The influence of the walls clearly
becomes much stronger at narrow gaps, thereby resulting
in particles exhibiting cooperative “stringlike” dynamics.
This picture is qualitatively consistent with the simulation
results of supercooled liquids confined in pores of controlled
roughness, where the slow dynamics induced by rough walls
may propagate to adjacent layers of the confined liquid [12]
and increase the tendency of facilitated motion at narrow gaps,
resulting in the enhancement of dynamic heterogeneity.

While α2 and P(θ ) show strong evidence of dynamical
heterogeneity, these measures do not provide a way to measure
the growing dynamic length scales in confinement. To find
the length scales of dynamic heterogeneity associated with
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FIG. 2. (Color online) (a) Probability distribution P(θ ) of angles
formed between the displacement vectors of nearest neighbors at the
peak time in α2 for φ = (a) 0.40, (b) 0.43, and (c) 0.46 at H/d =
52 (diamonds), 40 (stars), 32 (squares), 24 (circles), 15 (triangles),
and 11 (inverted triangles). In all the cases, the string-like motion,
indicated by the peak of P(θ ) near 0, becomes prominent as the
gap is reduced, which is schematically illustrated in panels (d) and
(e) for φ = 0.40 and 0.43, both at H/d = 11, respectively, by cutting
through a three-dimensional sample 3.5 μm thick at the peak time
in α2. Arrows indicate the direction of motion for particles with the
displacement �r > 0.25 μm and have the same length in all three
directions, while “dots” indicate the motion in- or out-of-plane.
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FIG. 3. (Color online) Four-point correlation function for φ = 0.40 and H/d = (a) 23 and τ = 13 s (squares), 130 s (circles), and 1340 s
(inverted triangles); (b) 15 and τ = 13 s (squares), 130 s (circles), 4784 s (triangles), 7150 s (inverted triangles), and 13 560 s (left triangles);
(c) 11 and τ = 13 s (squares), 130 s (circles), 1340 s (inverted triangles), 4784 s (triangles), 7150 s (diamonds), and 13 560 s (left triangles);
and φ = 0.43 and H/d = (d) 23 and τ = 13 s (squares), 2600 s (circles), and 7150 s (inverted triangles); (e) 15 and (f) 11 at the same times as
the ones in panels (b) and (c). (g) The length scale, ξ4, extracted from g4(r,τ ) close to the peak in the four-point correlation function using
Eq. (3) over the range of 2 μm � r � 9 μm for φ = 0.40 (squares), 0.43 (circles), 0.46 (triangles), and 0.57 (inverted triangles) is normalized
by the particle diameter, d, and plotted against H/d.

confined colloidal thin films, it is necessary to determine the
correlations in the dynamics at two different points in time and
space by using the four-point correlation function, g4(r,τ ) [29]
defined as

g4(r,τ ) = 1

Nρ

〈 ∑
ijkl

δ[r + ri(0) + rk(0)]w(ri(0) − rj (τ ))

×w(rk(0) − rl(τ ))

〉
−

〈
Q(τ )

N

〉2

, (2)

where the first term is a pair-correlation function for
overlapping particles, gol

4 (r,τ ), and the second term is the
squared mean overlaps, defined as Q(τ ) = w(ri(0) − rj (τ )),
where w is an overlapping function which is unity if
w(|ri(0) − rj (τ )|), w(|rk(0) − rl(τ )|) � a, and zero other-
wise, where a (≈0.63 μm) is chosen to be the radius of our
PMMA particles. We find that our choice of a provides the
best distinction between localized and delocalized particles
in our system and ensures the reproducibility of g4(r,τ )
obtained from independent data sets. In this study, we examine
g∗

4 (r,τ ) = gol
4 (r,τ )/〈Q(τ )/N〉2 − 1. We show g∗

4 (r,τ ) at varied
lag times and film thickness for a suspension with φ = 0.40
and 0.43 in Figs. 3(a)–3(f), it is clear that the four-point
correlation function captures the dynamic heterogeneity where
the range of dynamical correlations are maximal at some
intermediate time and also decrease on longer time scales,
which is consistent with prior studies of this measure [29].

We choose to use an “envelope fitting” method to extract
dynamic length scales, ξ4, directly from g∗

4 (r,τ ) on time
scales where ξ4 is maximal [30], using the relation g∗

4 (r,τ ) =
A exp(−r/ξ4) over a range of 2 μm � r � 9 μm, where A
is a freely floating constant. This fitting procedure has been
demonstrated to be successful in simulated supercooled liquids
[29,31]. As shown in Fig. 3(g), it is clear that ξ4 for φ = 0.40
and 0.43 grows precipitously as H/d is reduced. However,

as φ increases toward φ = 0.58 for the bulk colloidal glass
transition, the effect of confinement on dynamic length scales
appears much weaker. It should be noted that upon examining
all the data across varied φ, there is indeed an apparent drop
in dynamical heterogeneities when the bulk colloidal glass
transition at φ = 0.58 is approached, reflecting the competition
between increasingly constrained dynamics at high volume
fractions and dynamical fluctuations to relax the system over
large length scales[ [31,32].

The four-point correlation function reveals the length
scales associated with dynamical heterogeneities. However,
it is also of great interest to examine the φ dependence
on the critical dimension where spatial confinement has an
effect on dynamics, thereby yielding an additional length
scale for the glass transition, designated as the confinement
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FIG. 4. Confinement length scales extracted from mean square
displacement, non-Gaussian parameter as well as the four-point
susceptibility at varied φ. Error bars indicate dispersion in thick-
nesses where the confinement effect begins in several independent
experiments.
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length scale, ξconf . To extract ξconf , we examine the H/d
dependence on mean square displacements (see supplementary
material—Fig. 2), four-point susceptibility (see supplementary
material—Fig. 3), and α2 for varied φ and pool the results to
examine if there is a critical confinement length scale common
to all of our measures as well as independent data sets. We
define the confinement length scale as the critical thickness
where deviations from bulk behavior begin to occur in all
the measures examined in this study, represented as a dashed
line in Fig. 1 as well as supplementary material Figs. 2 and
3. Indeed, we do find the φ-dependent ξconf as shown in
Fig. 4. Simulations [17] have found that the length scales
for dynamical heterogeneities are significantly smaller than
the confinement length scale [19], which is also found to
be the case for all the samples we have investigated in
this work. Our results indicate that confinement results in a
decrease in φg , which is analogous to an increase in Tg in
the case of molecular liquids. To check our conjecture we
rescale the four-point susceptibilities and investigate whether
there is indeed a density-thickness superposition principle.
Indeed, upon rescaling the four-point susceptibilities of con-
fined PMMA of varied φ with respect to a bulk suspension of
φ = 0.40, we find that all the data at varied φ can be collapsed
into a single master curve (see supplemental material—Fig. 4);

as a result, a plot of the shift factors against relative thickness is
obtained to clearly indicate that φg decreases in confinement.

In summary, we have demonstrated that confinement has a
strong influence on dynamics: Confined colloidal hard-spheres
show a significant reduction in φg , which is accompanied by
a marked increase in cooperative dynamics in confinement
as the gap spacing becomes smaller than the confinement
length scale. However, the effect of confinement on dynamics
becomes weaker for higher φ as evidenced by the film thick-
ness dependence on the dynamic length scales for φ = 0.46
and 0.57 where an apparent drop in dynamic heterogeneity
is observed at φ = 0.57. Significantly, dynamic length scales
extracted from the four-point correlation functions are on
average smaller than the confinement length scale, despite both
strongly depending on volume fraction. It could be interesting
to further explore the relationship between structure and
dynamics for binary colloidal suspensions under confinement.
The shapes of rearranging regions observed in Ref. [33] for
binary hard-sphere suspensions may be a consequence of
changes in local structure as well.
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