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We use dynamic light scattering and computer simulations to study equilibrium dynamics and dynamic

heterogeneity in concentrated suspensions of colloidal hard spheres. Our study covers an unprecedented

density range and spans seven decades in structural relaxation time, ��, including equilibrium measure-

ments above ’c, the location of the glass transition deduced from fitting our data to mode-coupling theory.

Instead of falling out of equilibrium, the system remains ergodic above ’c and enters a new dynamical

regime where �� increases with a functional form that was not anticipated by previous experiments, while

the amplitude of dynamic heterogeneity grows slower than a power law with ��, as found in molecular

glass formers close to the glass transition.
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Hard-sphere assemblies often constitute the simplest
model to tackle a variety of fundamental questions in
science, from phase transitions in condensed matter phys-
ics to the mathematics of packing or optimization problems
in computer science. Experimentally, hard-sphere systems
are obtained using colloidal particles [1], emulsions, or
granular materials [2]. When crystallization is avoided,
e.g., by introducing size polydispersity, hard spheres at
thermal equilibrium become very viscous and eventually
form an amorphous solid [3] at large volume fraction, ’, in
analogy to the glass transition of molecular liquids [4] and
the jamming transition of grains [2]. However, the nature
of the colloidal glass transition, its precise location, the
functional form of the structural relaxation time diver-
gence, and the connection between slow dynamics and
kinetic heterogeneities remain largely open issues [5,6].

For hard spheres at thermal equilibrium, several distinct
glass transition scenarios have been described. In the first,
the viscosity or, equivalently, the time scale for structural
relaxation, ��ð’Þ, diverges algebraically:

��ð’Þ � ð’c � ’Þ��: (1)

This is predicted [7] by mode-coupling theory (MCT), and
supported by the largest set of light scattering data to date
[5]. Packing fractions ’c � 0:57–0:59 are the most often
quoted values for the location of the ‘‘colloidal glass
transition.’’ It is widely believed that a truly nonergodic
state is obtained at larger ’ [1,3,5]. Within MCT, the
amplitude of dynamic heterogeneity quantified by multi-
point correlation functions also diverges algebraically. In
particular, the four-point dynamic susceptibility should

diverge as [8] �4 � ð’c � ’Þ�2 � �2=�� , a prediction that
has not been tested experimentally.
Several alternative scenarios [9–11] suggest a stronger

divergence:

��ð’Þ ¼ �1 exp

�
A

ð’0 � ’Þ�
�
: (2)

Equation (2) with � ¼ 1 is frequently used to account for
viscosity data [6] because it resembles the Vogel-Fulcher-
Tammann (VFT) form used to fit the viscosity of molecular
glass formers [4], with temperature replaced by ’.
Moreover, it is theoretically expected on the basis of free
volume arguments [9], which lead to the identification
’0 � ’rcp, the random close packing fraction where os-

motic pressure diverges. Kinetic arrest must occur at ’rcp

(possibly with � ¼ 2 [10]), because all particles block each
other at that density [10,12,13]. Entropy-based theories and
replica calculations [11] predict instead a divergence of ��
at an ideal glass transition at ’0 <’rcp, where the config-

urational entropy vanishes but the pressure is still finite.
Here, the connection to dynamical properties is made
through nucleation arguments [14] yielding Eq. (2), with
� not necessarily equal to unity [15]. In this context, the
amplitude of dynamic heterogeneity should increase only
moderately, typically logarithmically slowly in �� [16].
In molecular glass formers where dynamical slowing

down can be followed over as many as 15 decades, the
transition from an MCT regime, Eq. (1), to an activated
one, Eq. (2), has been experimentally demonstrated [4].
For colloidal hard spheres, the situation remains contro-
versial, because dynamic data are available over a much
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smaller range [1,5,6,17], typically five decades or less.
Crucially, equilibrium measurements were reported only
for ’<’c, leaving unknown the precise nature and loca-
tion of the divergence. Theoretical claims exist that the
cutoff mechanism suppressing the MCT divergence in
molecular systems is inefficient in colloids due to the
Brownian nature of the microscopic dynamics, suggesting
that MCT could be virtually exact [18]. This viewpoint is
challenged by more recent MCT calculations [19], and by
computer studies of simple model systems where MCT
transitions are avoided both for stochastic and Newtonian
dynamics [20,21].

Here, we settle several of the above issues by studying
the equilibrium dynamics of colloidal hard spheres using
dynamic light scattering and computer simulations. By
extending previous data by at least 2 orders of magnitude
in ��, we establish that the volume fraction dependence of
both �� and �4 follows MCT predictions only in a re-
stricted density range below our fitted ’c � 0:59. Unlike
previous studies, we provide equilibrium measurements
above ’c, thereby proving unambiguously that in our
sample the algebraic divergence at ’c is absent. Instead,
a new regime is entered at larger ’, where the dynamics is
well described by Eq. (2) with � � 2 and ’0 much larger
than ’c. The amplitude of kinetic heterogeneities then
grows slower than a power law with ��, as in molecular
glasses close to the glass transition.

Dynamic light scattering (DLS) experiments are per-
formed in the range 0:01<’< 0:5981. We use poly-
(methyl methacrylate) (PMMA) particles of average di-
ameter � ¼ 260 nm, stabilized by a thin layer of grafted
poly-(12-hydroxy stearic acid) (PHSA). The size polydis-
persity, about 10%, is large enough to prevent crystalliza-
tion on a time scale of at least several months. The particles
are suspended in a mixture of cis-decalin and tetralin that
almost perfectly matches their average refractive index,
allowing the dynamics to be probed by DLS.
Additionally, a careful analysis of the combined effects
of optical and size polydispersity shows that we probe
essentially the self-part of the intermediate scattering func-
tion [22]:

Fsðq; tÞ ¼
�
1

N

XN
j¼1

eiq�½rjðtÞ�rjð0Þ�
�
: (3)

Here, rjðtÞ is the position of particle j at time t, q is the

scattering vector (q� ¼ 6:5, close to the first peak of the
static structure factor) and brackets indicate an ensemble
average. A combination of traditional [23] and multi-
speckle [24] DLS is used to measure the full decay of
Fsðq; tÞ. We carefully check equilibration by following
the evolution of the dynamics after initialization, until Fs

stops changing over a time window of at least 10��.
Samples are prepared by dilution, starting from a very
concentrated batch obtained by centrifugation. All volume
fractions relative to that of the initial batch are obtained
with a relative accuracy of 10�4, using an analytical bal-

ance and literature values for particle and solvent densities
[17]. Relative volume fractions are converted to absolute
ones by comparing the experimental ’ dependence of the
short-time self-diffusion coefficient measured by DLS to
two sets of theoretical calculations [25] at low density,’ �
0:2. For less polydisperse samples, this calibration method
yields ’ values compatible with those obtained by map-
ping the experimental freezing fraction to ’f ¼ 0:494

[26]. The remaining uncertainty on the absolute ’ is about
5%, because [25] contains two slightly different predic-
tions. To ease the comparison with the simulations, we set
the absolute ’, within this uncertainty range, so that our
experimental and numerical �� closely overlap for ’>
0:55.
We use a standard Monte Carlo algorithm [21] to study

numerically a 50:50 binary mixture of hard spheres of
diameter � and 1:4�, known to efficiently prevent crystal-
lization. We work in a three dimensional space with peri-
odic boundary conditions, and mainly use N ¼ 103

particles. No noticeable finite size effects were found in
runs with N ¼ 8� 103 particles performed for selected
state points. In an elementary move, a particle is chosen at
random and assigned a random displacement drawn within
a cubic box of linear size 0:1� centered around the origin.
The move is accepted if the hard-sphere constraint remains
satisfied. One Monte Carlo step corresponds to N such
attempts. The dynamics is characterized by the self-
intermediate scattering function, Eq. (3), measured for
q� ¼ 6:1, close to the first diffraction peak.
Representative Fsðq; tÞ obtained by DLS are plotted in

Fig. 1, showing that the relaxation is fast and monoexpo-
nential at low ’, while a two-step decay is observed when
increasing ’, reflecting the increasingly caged motion of
particles in dense suspensions [3]. We measure the struc-
tural relaxation time by fitting the final decay of Fs to a
stretched exponential, Fsðq; tÞ ¼ B exp½�ðt=��Þ��.
Figure 2(a) shows ��ð’Þ for both experiments and simu-

lations. Time units are adjusted to maximize the overlap

FIG. 1 (color online). Time dependence of the self-
intermediate scattering function Fsðq; tÞ in DLS experiments at
q� ¼ 6:5 for representative volume fractions. Lines are
stretched exponential fits to the final decay, yielding relaxation
times spanning about 7 decades. Ergodicity is preserved above
the (avoided) MCT glass transition at ’c � 0:59.
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( � 5:5 decades) of both data sets at high ’. Our experi-
mental data are well fitted by Eq. (1) in the range 0:49<
’ � 0:585, with ’c ¼ 0:590	 0:005 and � ¼ 2:5	 0:1.
For the slightly less polydisperse sample of Ref. [5], a
similar power law behavior with � � 2:7 and ’c ¼
0:571–0:595 was reported, the two quoted values of ’c

stemming from experimental uncertainty in the volume
fraction determination. However, our measurements for
the largest densities strongly deviate from the MCT fit.
Attempts to include points at’> 0:59 in the MCT fit yield
unphysically large values of �. Similar deviations are
found in our simulations, showing that hydrodynamic in-
teractions play little role in experiments performed at
large ’, although they probably explain the discrepancy
with simulations at low volume fraction; see Fig. 2(a).
Therefore, our results unambiguously demonstrate that
the mode-coupling singularity is absent in our hard-sphere
colloidal system, as is also found in molecular glass for-
mers [4].

What is the fate of the fluid phase above’c? Figures 2(a)
and 2(c) show that the increase of �� at high’ is extremely
well described by an exponential divergence, Eq. (2). We
find that the data can be fitted well using the conventional
form with � ¼ 1, yielding ’0ð� ¼ 1Þ � 0:614	 0:002.

This is consistent with previous analysis of viscosity data
[6]. However, the quality of the fit improves when the
exponent � is allowed to depart from unity. The optimal
value, robust for both experimental and numerical data, is
� ¼ 2:0	 0:2, which yields our best estimate for the
location of the dynamic glass transition: ’0 � 0:637	
0:002 (experiments) and ’0 � 0:641	 0:002 (simula-
tions). Figure 2(c) shows the linear dependence of log��
on ð’0 � ’Þ�2, demonstrating the exponential nature of
the dynamic singularity.
The behavior of dynamical heterogeneity provides addi-

tional evidence of a crossover from a restricted MCT
regime to an ‘‘activated’’ type of dynamics. Using methods
detailed in [27,28], we study the evolution of the three-
point dynamic susceptibility defined by: �’ðq; tÞ �
@Fsðq; tÞ=@’. This linear response function is directly
connected to a four-point dynamic susceptibility:
�4ðq; tÞ ¼ Nh�Fsðq; tÞ2i, where �Fsðq; tÞ denotes the fluc-
tuating part of the self-intermediate function; �4 is a
powerful tool to quantify dynamic heterogeneity in glass
formers [16], because it represents the average number of
molecules whose dynamics are correlated. In hard spheres,
the following relation holds [27]:

�4ðq; tÞ ¼ �4ðq; tÞj’ þ �kBT	T½’�’ðq; tÞ�2; (4)

where � is the number density, 	T the isothermal com-
pressibility (measured in simulations, taken from the
Carnahan-Starling equation of state in experiments), and
�4ðq; tÞj’ denotes the value taken by �4ðq; tÞ in a system

where density is strictly fixed. Only the second contribu-
tion to �4ðq; tÞ in (4) can be accessed experimentally, but
both terms can be determined in simulations. We obtain
�’ðq; tÞ by applying the chain rule to the fitted Fs (B, ��,

�) [28], where the ’ dependence of B, ��, � is fitted by
smooth polynomials. Our results are independent of the
choice of fitting functions, and consistent with that ob-
tained from finite differences between data at nearby ’,
when available. Figure 3 shows the peak of dynamical
susceptibilities as a function of ’. First, we numerically
establish in Fig. 3(a) that the term comprising �’ is the

main contribution to �4 when ’> 0:52, implying that a
good estimate of �4 can be obtained using three-point
functions in hard spheres, as surmised in [27], and estab-
lished for molecular glass formers in [8]. For both simula-
tions and experiments, the MCT prediction for the
algebraic divergence of �4ðq; tÞ only holds over a limited
density range. Indeed, when plotted against ��, �4 even-
tually grows slower than a power law, as found for the size
of dynamically correlated regions in molecular glasses
close to the glass transition [28]—a hallmark of activated
dynamics [16].
Our results establish the existence of a nontrivial, ex-

ponential divergence of ��ð’Þ at a critical volume fraction
’0 � 0:637 much above the putative ‘‘colloidal glass tran-
sition’’ at ’c � 0:59. It is natural to ask whether ’0 and
’rcp coincide. This is a difficult question because ’rcp can

0.0 0.2 0.4 0.6
-4

-2

0

2

4

0.55 0.60

0

2

4

1 10 102 103
10-3
10-2
10-1

1
10

102

0 2 4 6
0

2

4

6

lo
g(

τ α/ τ
0 
)

ϕ

a)

lo
g(

τ α/τ
0)

ϕ

τ α
/ τ

0

(1-ϕ /ϕ
c
)-1

b) lo
g(

τ α/τ
∞

 )

Α /(ϕ
0
−ϕ)2

c)

FIG. 2 (color online). (a) Relaxation time scale �� for hard
spheres in experiments (black circles) and simulations (open
triangles), respectively, in units of �0 ¼ 1 sec and �0 ¼ 7� 104

MC steps. The red dashed line is a power law fit, Eq. (1), with
’c ¼ 0:590 (vertical dotted line) and � ¼ 2:5	 0:1. The con-
tinuous blue line is a fit to DLS data using Eq. (2), with ’0 ¼
0:637 and � ¼ 2. The zoom in the inset shows that the MCT
singularity is absent. (b) Same data plotted against 1=ð1�
’=’cÞ. A straight line with slope � is obtained in an MCT
regime covering almost 3 decades in ��. (c) Data for ’> 0:41
plotted using reduced variables with ’0 ¼ 0:637 and 0.641 for
experiments and simulations, respectively.
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always be shifted to a larger value by trading order and
packing [12]. For the binary mixture studied here, the on-
set of jamming has been located at ’J ¼ 0:648 [13].
Furthermore, for 10% polydispersity, the estimate ’rcp �
0:67 was obtained in numerical work [29], well above ’0.
Finally, we have employed Monte Carlo simulations to
produce disordered hard-sphere configurations with finite
pressure above ’0 by a very fast compression of fluid
configurations used to produce the equilibrium data in
Fig. 1 (open symbols). These results support the possibility
that ’0 <’rcp, implying a fundamental difference [30]

between the glass [11] and jamming [13] transitions in
hard spheres.

In conclusion, we report a set of dynamic data for a well-
known colloidal hard-sphere system covering an unprece-
dented dynamic range of equilibrium relaxation time scale.
While the onset of dynamical slowing can be described by
an MCT divergence at a critical volume fraction ’c, upon
further compression a crossover from an algebraic to an
exponential divergence at a much larger volume fraction
’0 is observed, accompanied by a similar crossover for the
growth of dynamical correlations. Our results show that the
apparent singularity at’c does not correspond to a genuine
‘‘colloidal glass transition’’, suggesting that the MCT tran-
sition is generally avoided in colloidal materials, just as in
molecular glass formers.
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FIG. 3 (color online). Peak of dynamic susceptibilites, Eq. (4),
measured in (a) simulations and (b) experiments. In (a) both
contributions to �4 are compared, validating �’ as a valuable

tool to quantify dynamic heterogeneity in hard spheres. The
predicted MCT algrebraic divergence (red dashed line) holds
over a small density range. The inset shows that the size of
dynamic heterogeneities grows slower than a power law at large
��, as found in molecular glass formers.
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