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Significant progress has been made in the last decade in understanding mixtures of
hard-sphere colloids and (smaller) non-adsorbing, ideal, linear polymers. We intro-
duce extra complexity into this simple model system by replacing the linear polymers
with star-branched polymers with increasing functionality but constant radius of
gyration. The observed phase diagrams, interpreted in light of what is known about
hard-sphere colloid plus linear polymer and binary-hard-sphere mixtures, suggest
that 32-arm stars are close to behaving hard-sphere-like in colloid–star mixtures at
this size ratio.
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1. Introduction

Colloids, polymers and surfactants almost always occur in the form of mixtures,
whether in nature or as industrial products. One of the main tasks of soft con-
densed matter physics is to give generic (i.e. chemical-details-independent) insight
into the structure, dynamics, phase behaviour and non-equilibrium properties of such
mixtures. In practice, this entails identifying and studying in detail model systems
stripped of as many extraneous features as possible.
Phase transitions in ‘soft mixtures’ can be driven mainly by enthalpy or entropy.

Demixing in mixtures of polymers is the outstanding example of enthalpy-driven
phenomena. In other cases, entropy dominates. Over the last decade, a system that
has emerged as a model for such entropy-driven phase transitions is a mixture of
hard-sphere colloids and (smaller) random-coil polymers in a near-theta solvent for
the latter. In this system, the only interaction is that of excluded volume between
the colloids and between the colloids and polymers; the polymer coils can be treated,
to a first approximation, as ideal, and therefore interpenetrate each other freely.
Detailed studies by experiment, theory and simulation have led to substantial

progress in understanding phase transitions and metastability in this idealized model.
The essential physics is captured by the ‘depletion’ picture first proposed by Asakura
& Oosawa (1958) and later independently by Vrij (1976). The centres of mass of poly-
mer molecules are excluded from the vicinity of each particle, creating a ‘depletion
zone’. Overlap of the depletion zones from neighbouring particles creates extra vol-
ume for the polymers, thus increasing their entropy and lowering the free energy
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of the system. It turns out that the topology of the equilibrium phase diagram
depends on the relative sizes of the polymer and colloid. In addition, a rich ‘zoo’ of
non-equilibrium behaviour has been identified and rationalized within an emerging
general framework.
In this paper, we report experiments that go systematically beyond the ideal-

ized model: the nearly ideal linear polymer is replaced by star-branched polymers
of increasing functionality (number of arms). To simplify the terminology, we will
refer to the model system and the more complex systems just introduced as the
colloid–polymer mixture and the colloid–star mixture, respectively. Moreover, when
‘polymer’ is used without qualification, it refers to a linear coil. Our generic aim is
to see how far the emerging comprehensive understanding of colloid–polymer mix-
tures can aid the interpretation of phenomena in more complex systems. The specific
motivation for choosing to study colloid–star mixtures is to observe the way star poly-
mers of increasing functionality become progressively less like interpenetrable coils
and more like mutually excluding hard particles (Seghrouchni et al . 1998). Thus,
studying colloid–star mixtures with different functionalities can tell us how phase
behaviour evolves between the extremes of a colloid–polymer mixture on the one
hand, and a binary hard-sphere colloid on the other.
Below, we first review the phase behaviour and non-equilibrium properties of

colloid–polymer mixtures in § 2. In § 3 we report the phase diagrams of colloid–
star mixtures with stars of functionalities 2, 6, 16 and 32 but the same radii of
gyration (thus maintaining a constant star-to-colloid size ratio). The data are then
discussed in § 4 in terms of existing knowledge of colloid–polymer and binary hard-
sphere mixtures. We conclude in § 5 with some speculations on colloid–star mixtures
with stars of higher functionality, and suggestions of other areas of exploration that
go systematically beyond simple depletion.

2. Colloid–polymer mixtures: a brief review

The theoretical prediction for the phase behaviour of a colloid–polymer mixture is
by now well known (Gast et al . 1983; Lekkerkerker et al . 1992). The key parameter
controlling the topology of the phase diagram is the ratio of the size of the polymer,
e.g. as measured by its radius of gyration (rg), to the radius of the colloid (R), ξ =
rg/R. When ξ is less than a certain critical value, ξc, the addition of polymer merely
expands the fluid–crystal coexistence region of pure hard spheres, which occurs at
0.494 < φc < 0.545 (where φc is the colloid volume fraction). At ξ > ξc, a colloidal
liquid phase becomes possible, and the phase diagram displays a colloidal gas–liquid
critical point and a region of three-phase coexistence of colloidal gas, liquid and
crystal. Mean-field theories predict ξc ≈ 0.33. Computer simulations confirmed this
picture (Meijer & Frenkel 1994; Dijkstra et al . 1999). The phase diagrams for ξ = 0.1
and 0.5 calculated according to Lekkerkerker et al . (1992) are shown in figure 1.
Experimentally, the most well-studied realization of this simple model system is a

mixture of sterically stabilized PMMA spheres and linear polystyrene (PS) dispersed
in cis-decahydronaphthalene (cis-decalin) (Ilett et al . 1995). These PMMA particles
behave as nearly perfect hard spheres (Underwood et al . 1994), while cis-decalin is
a theta-solvent for PS at 13 ◦C (Berry 1966). The qualitative picture outlined above
was confirmed, although there were quantitative differences between experiment and
theory. Experimentally, ξc ≈ 0.25, and theory predicts concentrations of polymer in
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Figure 1. Theoretical phase diagrams of a mixture of non-adsorbing, ideal linear polymers (radius
of gyration rg) with hard spheres (radius R). The phase diagram topology depends on the
size ratio ξ = rg/R: (a) ξ = 0.1 and (b) ξ = 0.5. The horizontal and vertical axes are the
colloid volume fraction, φ, and the polymer volume fraction, η (calculated using rg), respectively.
G denotes gas, L denotes liquid, F denotes fluid and C denotes crystal.

the dense colloidal phases that are too high by up to two orders of magnitude. The
structure of the liquid phase in systems with ξ � ξc has been measured (Moussäıd et
al . 1999) and calculated (Louis et al . 1999; Dijkstra et al . 1999; Fuchs & Schweizer
2000).
The non-equilibrium behaviour of colloid–polymer mixtures has also been studied

in detail. For all values of ξ studied, samples with the highest concentrations of
polymer failed to phase separate according to the predictions of equilibrium theory,
but produced ‘transient gels’: space-filling ramified networks of particles that collapse
after finite time to give denser, amorphous sediments. The most well-studied transient
gels (Poon et al . 1995; Evans & Poon 1997; Evans et al . 1997) are those formed in
mixtures with small polymers, ξ ∼ 0.1 or less. The formation and initial structure of
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such gels have been discussed in terms of diffusion-limited cluster aggregation with
finite bond energies (Haw et al . 1994, 1995a, b, 1997). The position of the gel line
can be predicted with reasonable accuracy within the framework of mode-coupling
theories of ergodicity breaking (Bergenholtz & Fuchs 1999). However, the long-time
evolution and eventual collapse of these transient gels is still not fully understood
(Poon et al . 1999a). Finally, the kinetic pathways followed by systems with ξ > ξc
phase separating into coexisting colloidal gas, liquid and crystal phases have also
been identified and rationalized in terms of the ‘free energy landscape’ of the system
(Poon et al . 1999b, 2000).
The literature of colloid–polymer mixtures is often cited in discussions of binary

hard spheres with small ξ (say, 0.2 or less), now defined as the ratio of the radii
of the two species of hard spheres ξ = R1/R2 (with R1 < R2). (We will use ξ
to denote all size ratios in this paper; the meaning in each case should be clear
from the context.) Published experimental phase diagrams at ξ ∼ 0.1 disagree (see,
for example, van Duijneveldt et al . 1993; Imhof & Dhont 1995; Dinsmore et al .
1995). Recent theoretical work (Louis et al . 2000a) suggests that this may reflect the
extreme sensitivity of the phase behaviour to the form of the interaction between the
two species, and therefore to the exact nature of the colloids used experimentally to
model hard spheres. Small deviations from perfect hardness in the mutual interaction
can be modelled as ‘non-additivity’. The distance of closest approach of the centres
of the two sphere species is given by

σ12 = (R1 + R2)(1 + ∆), (2.1)

where ∆ is the non-additivity parameter. The ideal binary hard-sphere mixture cor-
responds to ∆ = 0, while the most extreme asymmetric non-additivity is that of the
colloid–polymer mixture, where R1 = R is the radius of the colloid, R2 = 0 for inter-
penetrable coils, and ∆ = rg/R ≡ ξ. Louis et al . (2000a) found that small deviations
of ∆ from zero cause large shifts in phase boundaries. Within this framework but at
the other extreme, Warren et al . (1995) have shown, using perturbative theory, that
a small degree of non-ideality in the polymer does not affect the phase behaviour
qualitatively (except possibly very near to ξ = ξc).

3. Experimental phase diagrams of colloid–star mixtures

Our specific motivation for studying star–colloid mixtures is to elucidate the role of
depletant non-ideality. Equivalently, we want to understand the evolution of phase
behaviour at constant size ratio as the non-additivity parameter evolves from ∆ = ξ
towards ∆ = 0. The polymer in a simple colloid–polymer mixture is close to ideal
(∆ = ξ). The most non-ideal possible second component is another hard sphere,
giving a binary hard-sphere (BHS) mixture (∆ = 0). Small degrees of non-ideality
in the polymer can be induced by increasing the solvent temperature away from the
theta point (Warren et al . 1995). To span the whole range from a colloid–polymer
to a BHS mixture (i.e. ∆ = ξ → 0), however, requires the use of star polymers
(Seghrouchni et al . 1998).
Here we report experiments on a series of colloid–star mixtures in which the ratio of

the radius of gyration of the stars, rg, to the colloid radius, R, is kept approximately
constant, ξ = 0.5± 0.01, while the functionality is stepped through f = 2, 6, 16 and
32. The f = 2 system approximates to a simple colloid–polymer mixture. The colloids
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are sterically stabilized PMMA spheres with radius R = 104± 3 nm (determined by
light scattering). The polymers have poly(butadiene) (PB) arms. These arms were
synthesized by polymerizing butadiene with secondary butyl-lithium as initiator. The
resulting polymer chains were coupled to chlorosilane linking agents having 6, 16 or
32 SiCl groups. The molecular weights of the PB arms were adjusted to give star
polymers with values of rg (determined by small-angle neutron scattering) as close to
50 nm as possible. The solvent is either cis-decalin or a mixture of this and tetralin
(tetrahydronaphthalene) for index matching with the particles. In either case we
have a good solvent for the stars (which is why the f = 2 system only approximates
to a simple colloid–polymer mixture, where the polymer is ideal).
Mixtures as prepared were homogenized by extensive tumbling, and equilibrated

and observed by eye at 25 ◦C. In all cases, the phase diagram has the same topology as
that predicted for a colloid–polymer mixture with ξ > ξc (cf. figure 1b). In particular,
for colloid volume fractions φc ∼ 0.1–0.4, we observe successively, upon addition
of stars, phase separation into coexisting colloid gas and liquid, triple coexistence
of gas, liquid and crystal phases, and gas–crystal coexistence. At the highest star
concentrations, transient gels were formed. The phase diagrams of the f = 6 and 32
mixtures are shown in figure 2, where the star concentration is given in terms of an
effective volume fraction:

φs = 4
3πr3

gns. (3.1)

Here ns is the number density of stars.
Given the similarity of the topology of the phase diagram for all four mixtures,

we will focus on the relative positions of the phase boundaries. We observe that
the positions of all the phase boundaries in the (φc, φs)-plane drop as f increases.
Figure 3a shows the three-phase (gas–liquid–crystal coexistence) regions for f = 2,
6, 16 and 32.
For comparison, we have also studied the phase behaviour of a BHS mixture at the

same size ratio. The theoretical phase diagram for ξ = 0.5 was obtained earlier from
extensive simulations (Eldridge et al . 1995). In our experiments, we used PMMA
colloids with R1 = 256 nm and R2 = 130 nm dispersed in cis-decalin. Two types of
superlattice structures, AB2 and AB13 (where B is the smaller species) were observed,
as well as crystals of the pure components (figure 4).

4. Discussion

A number of the significant features of the observed colloid–star phase diagrams can
be discussed under a single heading: does an f -arm star behave more ‘like’ a (linear)
polymer or a hard sphere when it is mixed with a hard-sphere colloid approximately
twice its size? It turns out that for the highest functionality studied here, f = 32,
this is a particularly intriguing question. The answer depends on exactly what kind
of ‘likeness’ we seek, which suggests strongly that f = 32 is close to some ‘cross-over
functionality’ as far as such mixtures are concerned.

(a) Topology of the phase diagram

The phase behaviour of any of the colloid–star mixtures is qualitatively different
from that of the BHS mixture at the same size ratio. In all of the star–colloid mix-
tures, gas–liquid demixing is observed, while there is no such transition in the BHS
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Figure 2. Phase diagrams of colloid–star mixtures: (a) f = 6, (b) f = 32. The horizontal and
vertical axes are the colloid volume fraction, φc, and the star volume fraction, φs (calculated
using rg), respectively. The size ratio in both cases is ξ = 0.5; open circles denote single phase
fluid, open diamonds denote gas–liquid coexistence, crosses denote gas–liquid–crystal coexis-
tence, open squares denote fluid–crystal coexistence, and open triangles denote transient gel.

mixture. Thus, in this respect, stars with 6–32 arms behave as polymers and not as
colloids.
However, while gas–liquid demixing occurs in each of the colloid–star mixtures we

have studied, the area in the phase diagram occupied by the gas–liquid coexistence
region clearly diminishes with increasing functionality. Figure 2 demonstrates this
for the systems with f = 6 and 32. In the f = 32 mixture, gas–liquid demixing
occurs in an almost vanishingly small strip in the phase diagram, while such samples
are distributed over a finite area of the phase diagram in the f = 6 mixture. These
observations imply that the stability of the liquid phase decreases with increasing
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Figure 3. (a) Three phase-coexistence samples observed in colloid–star mixtures at ξ = 0.5 for
various star functionalities. Filled diamonds represent the case where f = 2, open circles for
f = 6, open squares for f = 16, and crosses for f = 32. Axes as in previous figure. (b) Scaled
three-phase coexistence regions. The star volume fraction has been multiplied by 0.6, 0.95, 1
and 2.15 for the f = 2, f = 6, f = 16 and f = 32 data, respectively. The line in each case is the
φtot = φc + φs = 0.5 contour.

depletant non-ideality, and suggest that colloid–star mixtures at ξ ∼ 0.5 with star
functionalities not much greater than 32 may show no gas–liquid demixing at all.
In principle, the discussion of gas–liquid coexistence and depletant non-ideality can

be rendered more quantitative by appealing to the concept of non-additivity. How-
ever, in order to calculate the non-additivity parameter, ∆, defined in equation (2.1),
we need to decide what values to use for the star–colloid interaction diameter and
the star–star interaction radius (σ12 and R2 in equation (2.1), respectively). It turns
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out that the actual calculated value of ∆ depends very sensitively on these param-
eters, slightly different choices may even switch its sign (A. Louis 2000, personal
communication). Careful modelling of star–sphere and star–star interactions should
be taken into account before such a discussion of star–colloid mixtures in terms of
non-additive hard spheres can be attempted.

(b) Crowding

Another interesting feature of our results is that the φs needed to cause phase
separation decreases significantly with increasing f , dropping by a factor of ca. 4 on
going from f = 2 to f = 32. This is clearly illustrated in figure 3a.† Calculations of

† Given the narrowness of the gas–liquid region in all the star–colloid phase diagrams, we may take
the position of the three-phase region to be a good indicator of the onset of phase separation in these
systems.
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the gas–liquid binodal based on a careful consideration of the pair potential between
a star polymer and a spherical particle have been able to reproduce this feature
(Dzubiella et al . 2001; see also Löwen et al ., this issue). Here we seek a qualitative
understanding. Both experiment and theory show (figure 4) that phase separation
of any kind is only observed in the BHS system if the overall volume fraction is
greater than ca. 0.5. This is a generic feature for BHS mixtures with 0.5 � ξ �
0.625 (Eldridge et al . 1995), and is intuitively plausible given that monodisperse
hard spheres crystallize at φc = 0.494. In other words, phase separation occurs
whenever the system as a whole is ‘crowded’ enough. In figure 3a, we have plotted
the φtot = φc + φs = 0.5 contour. It seems that 32-arm stars are better at causing
phase separation than hard spheres, while two-arm stars are worse at doing so. This
is perhaps surprising, if we accept the clue from BHS mixtures that phase separation
occurs whenever the whole system is crowded enough.
We are therefore prompted to revisit our definition of effective star volume fraction

(equation (3.1)). Since the softness of the star–star and star–colloid interaction is
expected to decrease with f (Löwen et al . 2000; Dzubiella et al . 2001), using rg
to calculate φs probably gives a poor measure of volume occupancy and therefore
of crowding across systems with different functionalities. In fact, if we multiply φs
by a factor of ca. 2.15 for the f = 32 mixture, then the onset of phase separation
occurs almost exactly on the φtot = 0.5 contour (figure 3b). Equivalently, as far as
estimating ‘crowding’ is concerned, the correct radius to use is not rg, but (2.15)1/3rg
for 32-arm stars. The factor of (2.15)1/3 is very close to the ratio of the geometric
radius to the radius of gyration for a homogeneous solid sphere (exact value

√
5/3).

This suggests that as far as causing crowding in a mixture with hard-sphere colloids
at the size ratio we have studied is concerned, we can treat a 32-arm star as a hard
sphere with the same radius of gyration as the star.
Note that even our 32-arm star is very far from the ‘all-core’ limit. Based on a

blob picture, Daoud & Cotton (1982) divided a star polymer into core, unswollen
and swollen regions. The density is constant inside the core region. They showed that
a star of functionality f made up of branches each having N statistical segments will
be wholly core if f ∼ N2. We would certainly expect a star polymer at this limit to
behave like a hard sphere. However, our 32-arm polymer has N ∼ 103, and is thus
very far from being ‘all core’ in the Daoud & Cotton sense.
The corresponding scaling factor to bring the f = 2 data down to the φtot = 0.5

contour is (0.6)1/3 ≈ 0.85 (figure 3b). A clue to why this factor is less than unity
is found in the recent work of Louis et al . (2000b), who calculated the depletion
potential between a hard wall and a linear polymer in a good solvent (modelled as a
self-avoiding walk). The range of this depletion potential is significantly smaller than
that predicted by using a simple geometric (Asakura & Oosawa 1958) model in which
the polymers are ideal and excluded from the wall within a layer of thickness rg. The
corresponding calculation next to a curved interface has not yet been performed.
Nevertheless, the hard-wall result gives us reason to expect that in so far as causing
crowding is concerned, linear polymers in a good solvent behave as hard spheres with
a radius smaller than their rg.
For completeness, we note that previously published data for a colloid–polymer

mixture in a very nearly theta solvent at size ratio ξ = rg/R = 0.57 show phase
separation starting to occur at almost exactly φtot = 0.5 (see data in fig. 2(i) in
Illett et al . 1995). This means that the ‘crowding efficiency’ of nearly ideal linear
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polymers at this size ratio is well represented by the radius of gyration. That this
is a reasonable conclusion can be demonstrated by calculating the exact free energy
cost of immersing a hard sphere of radius R in a bath of ideal polymers of radius of
gyration rg. This is then equated to the free energy cost of immersing the same hard
sphere in a sea of mutually non-interacting points that are excluded from coming
closer than R to its surface. The limit of R → ∞ (i.e. a hard wall) is well known:
R = (2/

√
π)rg. The calculations for general R have also been performed (A. Louis

2000, personal communication; see also Eisenriegler et al . 1996): R/rg is a mono-
tonically decreasing function of size ratio ξ = rg/R, crossing unity at ξ = 0.62. This
latter result explains the experimental observation that the ‘crowding efficiency’ for
nearly ideal polymers with rg/R = 0.57 can be estimated by their volume fraction
calculated using the radius of gyration.

5. Conclusions

It is clear that star polymers with increasing functionality should behave less like
linear coils and more like hard spheres. In this work, we have investigated this phe-
nomenon in the context of star polymers causing phase separation when mixed with
hard-sphere colloids at a fixed size ratio ξ = rg/R = 0.5. In terms of the phase dia-
gram topology, a 32-arm star plus hard-sphere colloid mixture behaves qualitatively
like a simple colloid–polymer mixture. However, the gas–liquid coexistence region is
very narrow, suggesting that it may vanish altogether at slightly higher star func-
tionality. In terms of ‘crowding efficiency’, 32-arm stars behave like hard spheres with
the same radius of gyration as the stars. These two observations together strongly
suggest that colloid–star mixtures with ξ = rg/R = 0.5 and f > 32 stars may
show phase diagrams topologically equivalent to that of the BHS results reported
in figure 4, opening up the intriguing possibility of colloid–star superlattice crystal
structures. In this context, it may be significant that pure star polymers are predicted
to crystallize when f > 34 (Löwen et al . 2000).
We conclude by returning to the title of the paper, ‘Beyond simple depletion’,

and pointing out a number of other areas for exploration. It should be interesting to
replace simple linear polymers with ‘living polymers’, e.g. worm-like micelles formed
by surfactant self-assembly. Will these ‘fragile’ objects deplete hard spheres? Work
in this direction is under way in our laboratory. While substantial literature exists
for charged systems, comprehensive understanding is still lacking, partly because
much of this literature predates recent work on the simple colloid–polymer mixtures
reviewed in § 2. A systematic programme is called for using model components mov-
ing from charged particle–neutral polymer and neutral particle–charged polymer to
a system in which both components are charged.

S.U.E. and A.B.S. thank Unilever Research and NASA, respectively, for financial support. J.S.
is funded by the Deutsche Forschungsgemeinschaft. Discussions with Ard Louis and Hartmut
Löwen concerning aspects of depletion, non-additivity and star physics have been very helpful.
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