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Inter-particle correlations in a hard-sphere
colloidal suspension with polymer additives
investigated by Spin Echo Small Angle Neutron
Scattering (SESANS)

A. L. Washington,*a X. Li,ab A. B. Schofield,c K. Hong,d M. R. Fitzsimmons,e R. Dalglieshf

and R. Pynnab

Using a neutron scattering technique that measures a statistically-averaged density correlation function in

real space rather than the conventional reciprocal-space structure factor, we have measured correlations

between poly(methyl-methacrylate) (PMMA) colloidal particles of several sizes suspended in decalin. The

new method, called Spin Echo Small Angle Neutron Scattering (SESANS) provides accurate information

about particle composition, including the degree of solvent penetration into the polymer brush grafted

on to the PMMA spheres to prevent aggregation. It confirms for particles, between 85 nm and 150 nm in

radius that inter-particle correlations closely follow the Percus–Yevick hard-sphere model when the

colloidal volume-fraction is between 30% and 50% provided the volume-fraction is used as a fitted

parameter. No particle aggregation occurs in these systems. When small amounts of polystyrene are

added as a depletant to a concentrated suspension of PMMA particles, short-range clustering of the

particles occurs and there is an increase in the frequency of near-neighbor contacts. Within a small

range of depletant concentration, near-neighbor correlations saturate and large aggregates with power

law density correlations are formed. SESANS clearly separates the short- and long-range correlations

and shows that, in this case, the power-law correlations are visible for inter-particle distances larger than

roughly two particle diameters. In some cases, aggregate sizes are within our measurement window,

which can extend out to 16 microns in favorable cases. We discuss the advantages of SESANS for

measurements of the structure of concentrated colloidal systems and conclude that the method offers

several important advantages.
Introduction

The hard-sphere system provides a simple and convenient
framework for describing correlations between colloidal parti-
cles. In this model, spherical particles do not interact when
their separation is larger than the particle diameter and they
experience innite repulsion when they are in contact. The
structure, dynamics and phase behavior of the hard-sphere
system have been thoroughly investigated using various
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approaches, including liquid theories, computer simulations,
and experimental studies.1–3 Results from these approaches
have shown considerable agreement and have led to the hard-
sphere system becoming a popular reference model.

One way in which the effective interaction between hard
spheres can be modied in a controlled way makes use of
depletion forces that arise when smaller particles are added to a
colloidal suspension of large particles. The smaller particle may
be compact colloidal particles or extended polymer chains.
Maximization of the entropy of the smaller particles leads to an
attractive effective potential between the larger particles,4 the
depth and range of which can be tuned by varying the size and
concentration of the smaller particles. Colloid–polymer binary
mixtures display a rich phase behavior that includes crystal
nucleation, a glass transition and gelation and have attracted
attention from researchers for several decades.5–7 Nevertheless,
the kinetic evolution of the structure close to the phase transi-
tion point, in terms of short- and long-range spatial correla-
tions, is still not clear, nor is its relationship to the strength of
the depletion force.
This journal is © The Royal Society of Chemistry 2014
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A number of recent studies have challenged several funda-
mental aspects of the description of hard-sphere systems and
colloid–polymer mixtures. Sterically stabilized poly(methyl
methacrylate) (PMMA) particles have shown hard-sphere-like
behaviors in concentrated colloidal suspension,8 and are
commonly selected as the hard colloids for comparison with
theories and simulations. Bryant et al. used a surface force
apparatus to demonstrate that PMMA colloids stabilized by a
brush of short poly(hydroxystearic acid) (PHSA) molecules have
very hard interaction potentials when decalin is used as a
suspension medium, except perhaps in the case of very small
particles.9 Even so, Royall et al. concluded that, especially in the
case of larger particles of this type used for confocal microscopy
studies, caution was needed in mapping behavior of the
colloids to a hard-sphere model. In particular, they argued, the
effective volume fraction of colloidal particles is difficult to
determine accurately.10 This may lead to a shi in the phase
transition lines not only in the phase diagram of the hard-
sphere system, but also for colloid–polymer mixtures. In
colloid–polymer mixtures, the depletion force, which has been
characterized as a mean eld potential using Monte Carlo
simulation and self-consistent eld theory, is strongly depen-
dent on the size ratio of the depletant and the colloid as well as
the volume fraction of the colloids.11,12 The accuracy of the
determination of the volume fraction and, furthermore, the
determination of the strength and range of the depletion
attractive potential, is critical to understanding the behavior of
colloid–polymer mixtures.

A number of recent papers have used confocal microscopy to
track the positions of colloidal particles in a suspension and to
infer the radial distribution function. At low densities, this
method provides an accurate way to determine inter-particle
interactions. Even at high concentrations, where many body
effects are important, obtaining the interaction potential from a
real-space correlation function may be a less poorly conditioned
problem than the inversion of the structure factor, S(q),
measured in traditional radiation scattering experiments. As
Royall et al. point out,10 residual attraction or soness of the
inter-particle potential shows up much more clearly in the real-
space, radial distribution function than in the structure factor.

Spin-echo small-angle neutron scattering (SESANS), is a
novel scattering technique which measures a projection of the
real-space Debye correlation function, instead of the Fourier
transform of this quantity that is generally obtained from
conventional small-angle neutron scattering (SANS).13 SESANS
has a number of advantages for the study of dense colloids. It
overcomes the issue of multiple scattering in dense colloidal
suspensions which hinders the application of dynamic light
scattering, microscopy and SANS in surveying concentrated
dispersions close to their phase transition points.14 Even in the
presence of strong multiple scattering, SESANS gives a two-
particle correlation function without the need for any correc-
tions. The technique can also measure correlations over a wider
range of length scales than SANS making it suitable for
measuring length scales from a few tens of nm to a fewmicrons.
Perhaps most important for the study presented here, SESANS
yields a correlation function in real space, intrinsically
This journal is © The Royal Society of Chemistry 2014
separating long- and short-range correlations that are mixed
with each other in the usual scattering function measured by
SANS. The method provides a statistical average over the whole
sample and can easily access a range of different particle sizes,
including particles that are signicantly smaller than those
used for microscopy. These advantages of SESANS make it a
promising tool to explore inter-particle correlations in hard-
sphere systems with and without added depletants.

In this paper, we use SESANS to study the development of the
inter-particle correlations in sterically stabilized PMMA
suspensions with depletion forces induced by polystyrene (PS)
polymers of two different molecular weights. We nd that the
short- and long-range correlations behave quite differently
when the concentrated dispersion approaches the phase tran-
sition line. Furthermore, SESANS permits us to measure the
total scattering of the system, which cannot be accessed reliably
using conventional SANS. This quantity provides accurate
information about the geometry of individual PMMA particles
as well as the degree of solvent penetration into the polymer
brush that is graed to the particle surface to prevent
aggregation.

Materials and methods

The experiments reported here were done with three different
colloidal samples of PMMA. In each case, the nominally spherical
PMMA particle cores were prepared according to a published
procedure15 and coated with a PHSA polymer brush to prevent
aggregation. This involved utilizing a single-stage process to
produce the particles which were coated with a prefabricated,
sterically stabilizing, polymer brush of poly-12-hydroxystearic
acid. Aer manufacture the particles were cleaned of any excess
monomer and stabilizer by centrifugation and redispersion in
clean solvent; a routine that also allowed the solvent to be
changed if required. This process was repeated ten times to make
sure that all the unreactedmaterial and any unwanted solvent had
been removed from the system. For most of the neutron experi-
ments, we used decalin as a solvent because it has an optical
refractive index that is close to that of PMMA, thereby minimizing
the van der Waals (vdW) interactions between spheres. Indeed,
Ohtsuka et al.16 estimated using Monte Carlo techniques that
residual vdW attraction in this case was about (0.75 � 0.25) kT.
Our solvent usually consisted of a mixture of protonated and
deuterated decalin (usually in a 60 : 40 ratio), chosen to optimize
the neutron scattering contrast between PMMA and the solvent.
In this solvent the gravitational height (i.e. the height over which
the gravitational potential of a particle in the solvent equals its
thermal energy) for PMMA particles is of order 1 mm. Since the
height of our neutron beam is �4 mm, we do not expect signi-
cant sedimentation during the course of a roughly 1 hour
measurement. Furthermore, gravity will have no effect on the
inter-particles correlations since these involve a length scale many
orders ofmagnitude smaller. The short PHSA brush on the PMMA
surface is intended to prevent the PMMA particles approaching
one another too closely and experiencing residual vdW attraction.
The overlap of extended brushes on neighboring particles costs
signicant energy so that the hard-sphere radius of the particles
Soft Matter, 2014, 10, 3016–3026 | 3017
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should be close to the radius of the PMMA core plus the length of
the PHSA chains. The three PMMA samples that we have used all
made use of the same stock of PHSA, so wemight expect the brush
thickness to be the similar for each sample. In practice, variations
of the graing density of the PHSA may have some effect on the
actual thickness of the layer. Nominally, the radii of our particles
were 100 nm, 130 nm and 150 nm as determined by DLS experi-
ments with dilute samples of PMMA spheres suspended in
protonated decalin. In each case, samples for neutron scattering
were prepared by adding freeze-dried, PHSA-coated PMMA parti-
cles to a mixed protonated and deuterated decalin solvent. The
mass of solid material added to achieve a given volume fraction of
PMMA was calculated using the bulk PMMA density and
assuming each particle consisted only of PMMA. Since the PHSA
is less than 5% of the total dry weight of the particles, the
discrepancy is small. Because of extension of the PHSA chains in
the solvent, however, the actual volume fraction may differ from
the nominal value calculated from material densities, as we
discuss later in the paper.

The neutron scattering length density (SLD) of the decalin
solvent and the PMMA are calculated using known values for
the material density and the neutron scattering lengths of the
constituent nuclei. We expect the solvent to penetrate into the
PHSA brush to some extent so there may be a radial variation of
the SLD in this region if the extent of penetration depends on
the distance from the surface of the PMMA core. However, to
model the neutron scattering we have assumed that the SLD is
an unknown constant throughout the brush region, but that the
degree of solvent penetration may vary from sample to sample.
Since the SLD of PHSA is close to zero while that of the solvent is
quite large (2.88 � 10�4 nm�2 for a 60 : 40 mixture of proton-
ated and deuterated decalin) our experiments are quite sensi-
tive to the degree of solvent penetration into the brush.

We used polystyrene (PS) with two different molecular weights
(110 kDa and 900 kDa) or small PMMA particles as depletants in
our experiments. Our principal solvent, decalin, is approximately
a theta solvent for PS,23 so we expect radii of gyration of approx-
imately 9.3 nm for 110 kDa polystyrene and approximately
26.5 nm for 900 kDa PS.17 The small spheres had a nominal total
radius of 30 nm and were also coated with the same PHSA brush
as the large spheres. Some experiments were performed using
dodecane as a solvent. Dodecane is a poor solvent for PS so the
radii of gyration of the PS molecules are much less than in the
case of the decalin solvent. At the concentrations we used (<1.0%
PS by weight), polystyrene depletants caused no observable
change in correlations between PMMA particles when dodecane
was used a solvent because PS was in a collapsed state.
Spin Echo Small Angle Neutron
Scattering (SESANS)

SESANS is a technique that uses Larmor precession of neutron
spins to encode the scattering angle of each neutron that is
deected by a sample. The technique has been described in
detail in several papers.13,14,18 In this section, we summarize
some of the key results needed to analyze our data, using a
3018 | Soft Matter, 2014, 10, 3016–3026
notation familiar to practitioners of traditional Small Angle
Neutron Scattering (SANS). Some of the equations we present
are identical to those given by Andersson et al.18 in their
discussion of the analysis of SESANS. We establish a connection
between these results and those used in the analysis of tradi-
tional SANS data. There are some subtleties because symbols
used (and carefully dened) by Andersson et al. do not always
have the meaning expected by SANS practitioners.

The quantity measured in a SESANS experiment is the
average polarization of a neutron beam that has passed through
the sample to be studied. For non-magnetic samples, the
unscattered part of the beam retains the polarization, P0, of the
incident neutrons, while the part of the beam that is scattered
by the sample is depolarized somewhat. The extent to which the
scattered beam is depolarized depends on the neutron scat-
tering cross section of the sample and on the magnitude of a
parameter called the spin echo length, z, which is essentially the
correlation distance probed in the sample. In practice, z is
controlled by the neutron wavelength and by various distances
and magnetic elds that dene the SESANS instrument.14 The
average polarization, P(z), of the neutron beam that has passed
through the sample is given by:

PðzÞ
P0ðzÞ ¼ exp

�
St

�
GðzÞ � 1

��
(1)

where St is the fraction of the neutron beam that is scattered at
least once by a sample of thickness t. The correlation function
G(z) is related to a Debye-type autocorrelation function, g(r),
dened as:

gðrÞ ¼
ð
V

Dr
�
~r0
�
Dr ~r0 þ~r

� Þd~r0ð
V

Dr ~r0
� �

Dr ~r0
� �

d~r0
(2)

here Dr(~r) is the difference between the neutron scattering-
length density (SLD) averaged over the whole sample and the
scattering-length density at position~r. The integrals in eqn (2)
are taken over the volume, V, of the sample. The vector sign on
the le side of eqn (2) is omitted because we assume that the
sample is isotropic on average. In terms of g(r), the correlation
function G(z) which appears in eqn (1) may be expressed as18

GðzÞ ¼ 2

x

ðN
z

gðrÞr
ðr2 � z2Þ12

dr (3)

Thus, G(z) is a projection of the autocorrelation function,
g(r), onto the z axis in exactly the same way that a conventional
radiograph is a projection of the density of an object on to a
plane. The transform dened in eqn (3) is called an Abel
transform. The normalization constant x in eqn (3) denes the
correlation length for the scattering sample and is dened by:18

x ¼ 2

ðN
0

gðrÞdr (4)

One may think of x, roughly, as a measure of the average size
of a region of correlated scattering-length density in the sample.
This journal is © The Royal Society of Chemistry 2014
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As we will see below, it is also intimately related to the total
neutron scattering cross section of the sample.

For a system composed of hard, uniform spheres suspended
in a uniform carrier medium, both g(r) and G(z) are indepen-
dent of the actual SLDs of the particles and carrier because of
the normalization in eqn (2): the dependence on the SLDs of
both the numerator and the denominator in eqn (2) are the
same. For a more complex system, such as the core–shell
particles we investigate, this is not true. In that case, both g(r)
and G(z) depend to some extent on the ratios between the SLDs
of all of the components of the scattering system.

To understand this point, it is useful to relate G(z) to the
neutron scattering cross section per unit volume of sample, ds/
dU that is measured in a conventional Small Angle Neutron
Scattering (SANS) experiment. The relationship, for a sample
that scatters isotropically is:18

GðzÞ ¼ l2t

2pSt

ðN
0

J0ðqzÞ ds
dU

ðqÞqdq (5)

where l is the neutron wavelength and J0(x) the zeroth order
cylindrical Bessel function. For homogeneous particles of SLD r

suspended in a uid of SLD r0, the scattering cross section is
usually written as the product of a structure factor, S(q), and the
square of a normalized form factor, F(q), i.e.

ds

dU
ðqÞ ¼ N

V
ðr� r0Þ2SðqÞjFðqÞj2 (6)

where N is the total number of particles present in the system.
When each particle consists of a core whose SLD is rc sur-
rounded by a shell with an SLD of rs, the expression becomes a
little more complex:

ds

dU
ðqÞ ¼ N

V

"
ðrc�r0Þ

�
Rc

R

	3

þðrs�r0Þ
(
1�

�
Rc

R

	3
)#2

SðqÞjFðqÞj2

(7)

where Rc is the radius of the particle core and R is the total
particle radius. For both homogenous and core–shell particles,
the structure factor, S(q), describes correlations between parti-
cles. For hard spheres, the Percus–Yevick approximation allows
S(q) to be written in terms of simple analytic functions that
involve only the particle radius and the volume fraction, f, of
particles in the system.19 This theory applies both to homoge-
neous and core–shell particles because the only length scale in
the theory is the overall particle radius. For any particle –

homogeneous or core–shell – the normalized form factor, F(q),
is given by:

FðqÞ ¼ Vp

�ð
particle

e�i~q$~rDr0 ~rð Þ dr~
	
�ð

particle

Dr0 ~rð Þdr~
	

(8)

where Dr0(~r) is the difference between the SLD at position ~r
within the particle and the SLD of the suspending uid. Notice
that the normalized form factor tends to a value equal to the
volume of the particle, Vp, as q/ 0 but that only in the case of a
homogeneous particle is the shape of the form factor
completely independent of scattering contrast because Dr0(~r) is
constant inside the particle in this case, leading to cancellation
This journal is © The Royal Society of Chemistry 2014
of the SLD contrast between the numerator and denominator of
eqn (8). Eqn (8) implies that the form factors in eqn (6) and (7)
have different shapes because the distribution Dr0(~r) is
different in the two cases.

We have deliberately written the equations above in terms of
the structure factor and normalized form factor generally used
to interpret experiments using Small Angle Neutron Scattering
or SANS. These expressions differ somewhat from those pre-
sented by Andersson et al.18 in their description of analysis
methods for SESANS. A correspondence between the two nota-
tions is easy to establish by noting that the quantity, I(q), used
by Andersson et al. is related to the scattering cross section per
unit volume by the equation:

ds

dU
ðqÞ ¼ �

Dr2
�
IðqÞ (9)

here, hDr2i is the average of the squared scattering contrast,
dened by Feigin and Svergun20 for a system with either two or
three scattering components as:�

Dr2
� ¼ X

isj

fifj

�
ri � rj

�2
(10)

where fi and ri are respectively the volume fraction and SLD of
the i'th component (i.e. the core, shell or carrier uid in our
case). Combining eqn (6), (9) and (10) for a system of homo-
geneous particles in a carrier uid yields:

IðQÞ ¼ 1

ð1� fÞVp

SðqÞ
FðqÞ2 (11)

where f¼ NVp/V is the volume fraction of the particles. Because
the symbol I(q) tends to be used by practitioners of SANS to
represent the total cross section rather than the quantity
dened carefully by Andersson et al., it is easy to confuse these
functions and, for example, to omit the term (1� f) in eqn (11).
Obviously this leads to incorrect answers. An analogous but
more complex expression for I(q) for core–shell particles follows
from eqn (7), (9) and (10).

Finally, the total (single) scattering probability, St, which will
turn out to be an important quantity in our data analysis, takes
the form:18

St ¼ l2t

2p

ðN
0

ds

dU
ðqÞqdq ¼ l2t

2p

�
Dr2

� ðN
0

IðqÞqdq ¼ l2t
�
Dr2

�
x (12)

Evidently, the total scattering probability is proportional to
the correlation length, x, in the sample. The above equations
demonstrate that SESANS is sensitive both to correlations of
scattering length density within the sample (through the func-
tion G(z)) and to the total neutron scattering (through the
parameter St).
Measurement of PMMA suspensions

We have carried out a number of SESANS experiments on
PMMA samples using instruments located at the Los Alamos
Neutron Science Center (LANSCE), at the ISIS facility in the UK
and at Technical University of Del in the Netherlands. Very
Soft Matter, 2014, 10, 3016–3026 | 3019
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Fig. 1 The normalized SESANS signal plotted as a function of spin
echo length for three colloidal suspensions of PMMA particles all with
nominal volume fractions of 40%. In each case the solvent was a
60 : 40 mixture of protonated and deuterated decalin. Closed circles:
100 nm nominal-radius particles measured on OFFSPEC at ISIS; open
squares: 130 nm nominal-radius particles measured on Asterix at
LANSCE; closed triangles: 150 nm nominal-radius particles measured
on OFFSPEC. Lines are fits to the Percus–Yevick model described in
the text.

Table 1 Colloidal parameters deduced from the fits shown in Fig. 1

Nominal total
radius (nm)

Fitted total
radius (nm)

Fitted brush
length (nm)

Fraction of brush
occupied by solvent

100 89 � 2 13 � 2 0.95 � 0.05
130 132 � 3 19 � 2 0.89 � 0.05
150 150 � 4 19 � 3 0.88 � 0.05
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similar results are obtained at each facility in spite of the fact
that each of them uses a different experimental method to
implement SESANS: magnetic Wollaston prisms20,21 on the
Asterix beam line at LANSCE, adiabatic rf ippers on the OFF-
SPEC instrument at ISIS and inclined, magnetized-foil spin-
ippers at Del. SESANS is a relatively new technique so the fact
that results from different facilities overlap for a given sample is
an important verication that the technique works as intended.

According to eqn (12), the total coherent neutron scattering
from a suspension of particles scales as the neutron wavelength
squared and the sample thickness. Thus, according to eqn (1), a

plot of
1

ðl2tÞ ln
�
PðzÞ
P0ðzÞ

�
should reach a constant value at large z

because G(z) tends to zero at large z as correlations on longer

length scales vanish. The quantity
1

ðl2tÞ ln
�
PðzÞ
P0ðzÞ

�
is one that we

will plot frequently. Unfortunately, SESANS is such a young
technique that the quantity does not yet have a name. We
propose calling it “the wavelength and sample-thickness
normalized SESANS signal” or simply “the normalized SESANS
signal” for short and will use this name in the remainder of this
paper.

From eqn (1), it follows that G(z) and St can be determined
independently from measurements of P(z) and P0(z) by writing

GðzÞ ¼ 1�
ln

�
PðzÞ
P0ðzÞ

�

ln

�
PðNÞ
P0ðNÞ

� (13)

and

ln

�
PðNÞ
P0ðNÞ

�
¼ �St (14)

For homogeneous particles, G(z) does not depend on the SLD
of either particle or the solvent because the same multiplicative
factors involving the SLDs appear in the numerator and
denominator of eqn (2). Thus, for homogeneous particles, the
correlation function and the total scattering cross section can
be analyzed separately. In that case, G(z) provides information
only about inter-particle correlations while the total scattering,
St, is related only to the SLD contrast and the average correla-
tion distance in the sample. For homogeneous particles, the
analysis of G(z) and the total scattering can thus be separated.
However, for more complex scattering systems, such as the
core–shell particles we examine here, the separation is not
possible and one has to t the full z-dependent, normalized,

SESANS signal,
1

ðl2tÞ ln
�
PðzÞ
P0ðzÞ

�
: As shown in Fig. 1, the corre-

lation function calculated using eqn (5) and (6) and the Percus–
Yevick form for S(q) for hard spheres does a very good job of
describing our data for PMMA spheres of different radii when
the nominal volume fraction of particles is 40%. The ts also
provide information about the core and total particle radii and
the SLD of the PHSA brush.

Using the core and total radii of the particles obtained from
the ts, we can calculate the average mass density of the
3020 | Soft Matter, 2014, 10, 3016–3026
particles and hence a better estimate of their volume fraction.
The volume fraction calculated in this way turns out to be
between 45% and 49% for our samples instead of the nominal
value of 40%. Fitting the data to the PY theory using this volume
fraction does not signicantly alter the values displayed in
Table 1 (i.e. the new values are within the errors quoted in the
table) but it does result in ts with slightly higher values for chi-
squared (for example, 2 rather than 0.7 for the 150 nm particles)
that differ from the data in a systematic way. These systematic
differences are similar, though less pronounced than those
shown in Fig. 3 and may be a sign of slight soness of the inter-
particle potential or of residual attraction.

Our results indicate that the solvent occupies more than 85%
of the volume of the PHSA brush in our particles (cf. Table 1).
This is consistent with the fact that PHSA made up 5% of the
total weight of the particulate material (PMMA + PHSA) during
synthesis. If none of the PHSA was removed by washing aer
particle synthesis, the volume occupied by PHSA can be
obtained using the bulk density of PHSA and the tted
dimensions of the composite PMMA/PHSA particles. This
calculation indicates that only about 15% of the corona would
be expected to be PHSA with the bulk of this region taken up by
the decalin solvent, consistent with the results we obtain. We
nd that the PHSA layer is thinnest for the smallest of our
particles. When the particles are synthesized, the mass ratio of
This journal is © The Royal Society of Chemistry 2014
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PHSA to PMMA is the same for each sample so the graing
density could be higher for larger particles, making an extended
brush more likely. The overall particles sizes from our ts are
similar to those obtained from DLS. The largest difference
occurs for the smallest particles where our results give a total
radius of 89 nm compared to 100 nm reported by DLS. We
regard this agreement as reasonable given that DLS measures a
hydrodynamic radius and SESANS measures the hard-core
radius that enters the PY theory. The thickness of the PHSA
layer is within the range of values (10–20 nm) anticipated from
chemical knowledge of the sample preparation procedures.

The ts to the PMMA data illustrate a difference between
SESANS and SANS that may be important in other investiga-
tions. With SANS it is oen necessary to make measurements
on dilute samples to determine the form factor F(q) and hence
the particle geometry. More concentrated samples are then
measured to study inter-particle correlations. With SESANS,
both particle geometry and inter-particle correlations can be
oen obtained directly from data on a single, concentrated
sample. This could be important if, for example, the particles
were to have different degrees of deformability in dilute and
concentrated suspensions. Another difference between SESANS
and SANS for these investigations is illustrated by comparing
our results to those obtained many years ago by the Ottewill
group.8 In order to examine concentrated dispersions with
SANS, this group was obliged to use a low scattering contrast
between particles and solvent to avoid problems with multiple
neutron scattering. This led to SLDs of the PHSA and the solvent
being almost equal and obscured the fact that solvent pene-
trates signicantly into the PHSA brush. SESANS is inherently
insensitive to multiple neutron scattering so strongly contrast-
ing components can be used.

In Fig. 2, we plot the normalized SESANS signal at large spin

echo lengths
�
i:e:

1
ðl2tÞ ln

�
PðzÞ
P0ðzÞ

�!
as a function of the tted

core radii of our PMMA particles and nd a straight-line
behavior with the best t line passing very close to the origin. To
understand this result, we note that ts to our data have found
that the SLD of the PHSA brush region is very close to that of the
solvent, so most of the scattering contrast is between the PMMA
core and the solvent. Thus, from the neutron perspective, our
system looks almost the same as a homogeneous PMMA
particle with a radius equal to the tted core radius in our
Fig. 2 Plot of the asymptotic SESANS signal versus the fitted core
radius of PMMA particles in three different suspensions.

This journal is © The Royal Society of Chemistry 2014
model. According to eqn (1), (10) and (12), the normalized SESANS
signal at large spin echo length should be proportional to hDr2ix,
provided the sample thickness is the same for each sample, which
it is in our case. Because of the high penetration of the solvent into
the PHSA brush, the hDr2i dened by eqn (10) is almost the same
for each of our samples, so the asymptotic SESANS signal only
varies because x varies between samples. At low volume fraction, x
/ 3R/2 for a homogeneous particle but as the volume fraction of
particles is increased, inter-particle correlations decrease the
value the correlation length. Within the PY approximation, the
factor by which x is decreased depends only on volume fraction for
homogeneous particles as shown by Andersson et al.18 Since all of
the samples reported in Fig. 2 had the same volume fraction of
colloids, the fact that the data in the gure fall on a straight line
through the origin is to be expected, provided that the solvent is
the major component in the brush region and the correlations
between the particles are governed by a formalism within which
correlations depend only on particle volume fraction. Fig. 2 thus
provides support for these two conclusions.
Inter-particle correlations in pure
PMMA suspensions

Several recent papers10,16 have noted the difficulty of obtaining
reliable information about inter-particle potentials from
measurements of S(q) because the problem of inverting S(q) to
nd the inter-particle potential is ill-conditioned. On the other
hand, the traditional pair correlation function, g(r), is quite
sensitive to changes in the interaction potential. At low particle
density, g(r) is proportional to the logarithm of the interaction
potential and somimics the potential directly. At higher particle
concentrations, no such straightforward relationship exists but
g(r) still depends sensitively on the inter-particle potential.
Recent light microscopy experiments with micron-sized parti-
cles have shown that the pair correlation function can be used
to investigate effective inter-particle potentials.16 Since SESANS
measures an average correlation function in real space, it is
natural to ask whether it can provide better information about
inter-particle interactions than conventional SANS.

One way to attempt to answer this question is to calculate the
changes in G(z) that result from various modications of the
inter-particle potential. Li et al.22 have used integral equation
theory, where the structure factor S(Q) is obtained by solving the
Ornstein–Zernike equation and a closure equation, to show that
for concentrated dispersions, the correlation function, G(z), for
particles with short-range attractions has a shallower rst dip
than that of a hard sphere model. Their results for 40% volume
fraction and short-range potentials of depths of a few kT are
shown in Fig. 3. The PY hard-sphere model ts our data very well.
A change in the rst dip ofG(z) that resulted from an attraction of
2 kT would be outside the error bars of our data so we conclude
that, even at these high volume fractions, any residual, very-short-
range attractionmust be smaller than this. It is worth noting that
a similar form for G(z), with a shallow rst dip, was also found by
Kruglov et al.24 in their Monte Carlo calculations of charged
colloids with short-range attractions, so integral equation theory
Soft Matter, 2014, 10, 3016–3026 | 3021

http://dx.doi.org/10.1039/c3sm53027b


Fig. 3 The difference between the correlation functions, G(z), calculated for particles with a short-range attractive interaction and for hard
spheres. The attractive potential is a square well of depth u and width 3Rwhere R is the particle radius. The calculation is for a colloid with a 40%
volume fraction of homogeneous particles, and is taken from ref. 22.
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and Monte Carlo both predict similar qualitative effects on G(z)
when short-range inter-particle forces are present.

The overall model for the particles that emerges from our
data is of PMMA cores, coated by a polymer brush of PHSA into
which the decalin solvent penetrates strongly. Because of
entropic effects, the PHSA brush effectively prevents particles
penetrating one another, yielding correlations that closely
follow the Percus–Yevick solution for hard spheres, although
the volume fraction of colloid which gives the best t is smaller
than the volume fraction deduced from the particle size data.
Any residual short-range attraction between particles, even for
concentrated dispersions, is less than 2 kT. The constancy of the
normalized SESANS signal at large values of z, demonstrated for
each of our samples in Fig. 1 is clear evidence that correlations
have vanished at large particle separations and that there is no
aggregation of particles in our PMMA samples.
The effect of short-range inter-particle
correlations on G(z)

Before turning to results obtained when the effective inter-
particle interaction is tuned using depletion forces, it is useful
Fig. 4 The effect of short range correlations on G(z). (a) The change in th
the text; (b) the corresponding change in G(z) for homogeneous particles
diameter 1/10 of that of the full particle, is the only part of the particle t
diameter.

3022 | Soft Matter, 2014, 10, 3016–3026
to consider the effects that inter-particle correlations are
expected to have on G(z). One of the most intuitively obvious
ways to describe correlations in a uid is through the radial
distribution function g(r), which gives the probability, per unit
sample volume, of nding a particle with its center a distance r
away from another particle. The radial distribution function is
directly related to the structure factor S(q) introduced above
through the well-known equation:

SðqÞ ¼ 1þ 4p

q

ðN
0

�
gðrÞ �N=V

�
sinðqrÞrdr (15)

Combining eqn (5), (6), (8) and (15) allows us to calculate G(z)
from any given form of g(r). To develop a more intuitive feeling
for G(z), it is useful to calculate the change in G(z) for particular
changes in g(r). Because of the structure of the equations, the
resulting changes in G(z) will depend to some extent on the
form of g(r) before the perturbation is added, but it turns out
that this dependence is quite weak. The simplest calculation
starts with the form of g(r) appropriate at very low volume
fraction where g(r) vanishes for r less than the particle diameter
and is unity elsewhere. Suppose we add to this radial distribu-
tion function a narrow peak at a particle separation equal to the
e radial distribution function, g(r), used in the calculations described in
, and (c) the corresponding change in G(z) for a particle whose core, of
hat scatters neutrons. The abscissa is measured in units of the particle

This journal is © The Royal Society of Chemistry 2014
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particle diameter as shown in Fig. 4a. This added peak repre-
sents an increase in the probability that particles are in contact
i.e. an increase in the number of particles in the rst-neighbor
shell in an ergodic uid. If we assume that the particles are
homogeneous, the resulting change in G(z) takes the form
shown in Fig. 4b. The change is restricted to small values of z,
peaking at a value of z close to the particle diameter. The change
in G(z) is localized even though it extends over a larger range of
inter-particle distances than the change in g(r). This spread
turns out to be a result of the particle form factor, as we can
easily demonstrate by recalculating the change in G(z) for a
core–shell particle in which the core is one tenth of the total
particle diameter and in which the shell that has no scattering
contrast with the solvent. Using the same perturbation to g(r)
depicted in part (a) of Fig. 4, the change in G(z) now resembles
quite strongly the change in g(r) which caused it, as shown in
part (c) of the gure.

The calculation described above, in which a small pertur-
bation is added to g(r), can easily be repeated with an unper-
turbed radial distribution function that corresponds to the PY
solution for concentrated hard spheres. In this case, using a
40% volume fraction and a homogeneous particle, the change
in G(z) resulting from the perturbation to g(r) shown in Fig. 4a
peaks at a value of z close to 0.6 times the particle diameter i.e.
at a smaller value of z than for the case of a dilute colloid.
Indeed the change in G(z) in this case is very similar to the
curves shown in Fig. 3, except that there are no changes in G(z)
for z greater than about 1.5 particles diameters.

A clear conclusion from these calculations is that the SESANS
correlation function really does give local information in real
space: if we see a change in G(z) that is restricted to a range of z
values less than about 1.5 times the particle diameter, we can be
sure that it is only nearest neighbor correlations that are
changing. Changes in G(z) such as those shown in Fig. 3 and 4,
cause changes in S(q) over a large range of q values. To calculate
Fig. 5 The effect on I(Q) of adding short-range correlations to G(z).
The solid curve is I(Q) for a homogeneous spherical particle of radius R
whose inter-particle correlations are calculated from the PY model
with a volume fraction of 40%. G(z) is calculated from this curve and
then a narrow Gaussian peak of unit height and standard deviation
0.2R centered at 1.5R is added. The inverse transform of G(z) modified
in this way yields the dashed curve in the figure.

This journal is © The Royal Society of Chemistry 2014
the changes, we carry out a calculation very similar to that
described above for the radial distribution function. We start
with G(z) for the PY model (using homogeneous spheres and a
40% volume fraction for convenience) and add a Gaussian
function as a perturbation that mimics the short-range peak in
Fig. 3. We then use the inverse of eqn (5) to calculate the total
q-dependent scattering that would be observed in a conven-
tional SANS experiment. Fig. 5 shows a comparison of the
scattering obtained with and without the short-range pertur-
bation to G(z). It is clear that the largest change in the scattering
occurs at small values of q. Oen changes in scattering at low q
are blamed on long-range effects such as aggregation, based on
the notion that changes at small q must reect changes in real
space at large inter-particle separations because of the Fourier
transform relationship between S(q) and g(r). No such confu-
sion is possible in SESANS measurements because the tech-
nique presents the correlations in real space and, as we have
pointed out above, the constancy of the normalized signal at
large z shown in Fig. 1 explicitly precludes the existence of
aggregation in our PMMA samples. Moreover, the simplied
calculation in Fig. 5 explicitly shows that it is not straightfor-
ward to identify the range of correlations responsible for
particular changes in S(q).
Mixtures of PMMA spheres plus
polystyrene depletants

We have carried out a number of SESANS experiments in which
depletants were added to concentrated PMMA dispersions (30%
to 50% nominal volume fractions). For most of these experi-
ments we used a 40% volume fraction of PMMA colloids in
decalin and the depletants were small quantities of polystyrene
of molecular weight 110 kDa or 900 kDa. The picture that
emerges from these experiments is that small amounts of
depletant (less than about 0.4% by weight) generally cause
changes only in the short-range correlations between particles.
These changes are restricted to the nearest and perhaps next-
nearest particle neighbors only, as demonstrated by parts (a),
(b), (c) and (f) of Fig. 6. The measured change in G(z) due to the
addition of small amounts of depletant appears to increase with
the amount of depletant. This change is of short-range and
vanishes, within error, for any value of z greater than about 1.5
particle diameters. The effect of the molecular weight of the
depletant molecules is in the direction we would expect: when a
similar weight percentage of lower molecular weight depletant
is added, the increase in the number of depletant molecules
increases the attractive potential induced between PMMA
particles (cf. Fig. 6b and c).

When 0.5% by weight of depletant is added, the picture
revealed by the SESANS measurements changes dramatically.
The magnitude of the peak in the normalized SESANS signal at
short-range increases somewhat and a long-range power-law tail
appears (cf. Fig. 6d). The range of the power-law correlations (i.e.
the value of z beyond which the normalized SESANS signal is
constant) varies from sample to sample indicating the devel-
opment of clusters or aggregates of different sizes. We have
Soft Matter, 2014, 10, 3016–3026 | 3023
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Fig. 6 The difference between SESANS signals with and without a
given mass fraction of polystyrene. The PMMA sample comprised 40%
(nominal) volume fraction of 100 nm nominal-radius PMMA particles in
decalin. The samples with depletants had: (a) 0.2% 900 kDa molecular
weight polystyrene; (b) 0.3% 900 kDa polystyrene; (c) 0.3% 110 kDa
polystyrene; (d) 0.5% 900 kDa polystyrene; (e) 0.2% 900 kDa poly-
styrene; (f) 0.3% 110 kDa polystyrene. Data displayed in panels (a)
through (d) were measured on OFFSPEC at ISIS while panels (e) and (f)
were measured using ASTERIX at LANSCE. Individual data sets have
been offset by 500 pm�3 for clarity.
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observed mean aggregate sizes ranging from �5 microns to
beyond 16 microns (the limit for the SESANS apparatus at Del;
data not shown). Sometimes, samples with less than 0.5%
polystyrene also show power law correlations aer they have
been le standing for some time, as shown in Fig. 6e, although
these correlations can be removed easily by sonication. Thus,
except perhaps for very small amounts of added depletant, the
structures we observe cannot be described by a model in which
particle separation is maintained by Brownian motion. At the
volume fraction we have probed (nominally 40%), moderate
amounts of depletant cause PMMA particles to jam together
and to form a gel with long-range power law correlations. Even
the short-range effects seen in panels (a)–(c) and (f) of Fig. 6 may
represent signicant local jamming of particles so that the
measured correlation functions cannot be used to extract inter-
particle potentials.

To understand better the implications of the difference plots
in Fig. 6, we consider a model in which the Debye correlation
function can be written as the sum of two parts which we refer
to as long-range (LR) and short-range (SR), although we admit
the possibility that the two functions may overlap in some
region of inter-particle distances. If the Debye correlation
function can be written as the sum of two functions so,
according to eqn (3), can G(z). Then, using eqn (1) and (12) we
may write:

�
1

l2t
lnðP=P0Þ

�
¼ hDri2fð1� fÞ�xSRGSRðzÞ

þ xLRGLRðzÞ � xSR � xLR
�

(16)

where GSR(z) and xSR are obtained from eqn (3) and (4) using the
short-range part of the Debye correlation function and the long-
range components are dened in a similar way. There are no
long-range correlations in the pure PMMA suspension (cf. Fig. 1)
so GLR(z)¼ 0 in this case and difference between the normalized
SESANS signals with and without added depletant takes the
form:

D

"
1

l2t
ln

�
P

P0

	#
¼ hDri2fð1� fÞ�xSRDGSRðzÞ

þ xLRDGLRðzÞ � xLR
�

(17)

In eqn (17), DGLR(z) represents long-range correlations that
may develop when depletant is added and DGSR(z) is the change
in the short-range correlations caused by those depletants. The
equation is written under the assumption that the short-range
correlation length does not change signicantly when deple-
tants are added, a condition that is easily veried using the
results plotted in Fig. 6. As Fig. 6 shows, when only small
amounts of depletant are added, no long range correlations
develop (i.e. GLR(z) ¼ 0), and DGSR(z) appears as a small peak
centered around a value of z close to the particle radius. We
know from Fig. 4 that such a peak in DGSR(z) implies an increase
in the number of nearest neighbor particles due to crowding of
the PMMA colloids by the polystyrene depletants. This short-
range peak is observed for all levels of added depletant shown in
Fig. 6. There is some weak evidence in the data of an increase in
This journal is © The Royal Society of Chemistry 2014
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the number of second neighbors but the statistics are not good
enough tomake strong assertions on this score. When sufficient
depletant is added (greater than about 0.5% according to Fig. 6),
the correlation function always develops a long-range, power-
law tail. However, there is no evidence that the power-law
correlations have any effect on the short-range correlations i.e.
the two functions do not seem to overlap. If the power-law
correlations extended down to z ¼ 0 when depletants were
added the overall shape of the difference curves in Fig. 6 would
change at small z when long-range power law correlations were
established: indeed the small-z peak would be expected to
change to a dip. Thus, the data tell us that the power-law
correlations extend down to distances on the order of two
particle diameters and then a separate functional form
describes short-range effects. Short-range correlations with and
without depletants are very similar although the frequency of
near neighbor contacts increases as depletants are added,
perhaps indicating the formation of more and more small
clusters of jammed particles. Eventually, these clusters
assemble into large aggregates. The transition from a uid of
small clusters to one with aggregates occurs over a small range
of depletant concentration and seems to be history dependent
(cf. parts (a) and (e) of Fig. 6). This picture is quite similar to the
one revealed by optical microscopy in dilute samples of PMMA
colloid when larger (2.25 micron diameter) beads are used.16

Conclusions

We have shown that SESANS provides an accurate measure of
the solvent penetration into the PHSA brush used to stabilize
suspensions of PMMA particles. In principle, this information
could also be determined using conventional SANS. However,
doing so requires measuring with condence the absolute value
of the scattering from a dilute sample at very small values of
momentum transfer Q. A simple calculation shows that there is
very little difference in the actual scattering obtained with
different amounts of solvent penetration for momentum
transfers Q greater than about 2p/d. For our particles, this
means that a conventional SANS experiment would have to be
able to make measurements with high absolute accuracy for Q
� 0.001 Å�1 and below. While certainly not impossible, such an
absolute measurement would require excellent calibration of
the SANS instrument as well as condence that no aggregation
of particles had occurred within the sample. On the other hand,
SESANS measures the total scattering accurately, without the
need for independent calibration. Furthermore, measurement
out to high spin echo lengths allows the experimenter to
determine unambiguously whether or not aggregation has
occurred. Finally, the SESANS experiment can be carried out
using the same concentrated dispersion that is used to measure
inter-particle correlations, obviating the need to assume that
particles have the same geometry in both dilute and concen-
trated dispersions.

Our results show that there is signicant solvent penetration
into the PHSA brush for all particle sizes but that the amount of
solvent penetration decreases as the particle size increases. This
makes sense given that the same ratios of PHSA to PMMA were
This journal is © The Royal Society of Chemistry 2014
used in each of the preparations, leading probably to a higher
graing density for larger particles. The higher graing density
also seems to result in a greater stretching of the PHSA brush for
larger particles and hence a slightly greater brush thickness.

Our SESANS experiments with concentrated dispersions of
PMMA show, as has been previously reported based on other
types of measurement, that the Percus–Yevick, hard-core
model describes accurately the correlations between PMMA
particles stabilized with a PHSA brush. The volume fraction of
the colloids used to t the PY theory to the data is, however,
lower than we would estimate based on the tted particle
dimensions and the weight of the particles used to make the
dispersions. An advantage of SESANS for this type of
measurement is that the technique can be used with concen-
trated, strongly scattering samples without fear that multiple
scattering of radiation (neutrons in our case) will affect the
results. Using the results of calculations based on integral
equation theory, we are able to assert that any attractive, short-
range potential between the PMMA spheres must have a
magnitude of less than 2 kT. An attractive potential larger than
this would lead to a correlation function that falls outside the
statistical error bars of our measurement. It would not be
difficult to reduce this limit by making a longer measurement
with higher statistical accuracy.

Sufficiently small amounts of polystyrene added as a deple-
tant to concentrated PMMA suspensions cause only an increase
in the frequency of nearest neighbors around each PMMA
particle. When the amount of depletant is increased beyond a
threshold, the increase in the frequency of nearest neighbors
saturates and long-range power law correlations appear. The
size of the aggregates formed varies from sample to sample.
Power law correlations extend down to particle separations
around two particle diameters. Given that we occasionally
observe long-range correlations to occur in samples with very
small amounts of added depletant, it seems plausible that the
increase in the frequency of near-neighbor contacts in this case
could be due, at least in part, to non-ergodic clustering of
particles.
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