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Abstract – We study the mobilities of point-like and extended objects (rods) on a spherical
membrane to show how these quantities are modified in a striking manner by the curvature
and topology of the membrane. We also present theoretical calculations and experimental
measurements of the membrane fluid velocity field around a moving rod bound to the crowded
interface of a water-in-oil droplet. By using different droplet sizes, membrane viscosities, and rod
lengths, we show that the viscosity mismatch between the interior and exterior fluids leads to
a suppression of the fluid flow on small droplets that cannot be captured by the flat-membrane
predictions.

Copyright c© EPLA, 2008

Introduction. – The dynamics of membrane-bound
inclusions is important in many biological and soft matter
systems. Mobile inclusions in lipid membranes, such as
proteins [1] or lipid “rafts” [2], are fundamental to a variety
of biological processes, including signal transduction [3]
and the endocytosis of bacterial toxins [4]. Also, the mobil-
ities and hydrodynamic interactions of colloidal particles
on crowded fluid-fluid interfaces have ramifications on the
design and formation of colloidosomes [5].
Both lipid membrane inclusions and colloidal particles

are generically large enough that their motion through
the membrane can be treated using continuum hydro-
dynamics. One can consider the membrane to be a viscous
two-dimensional fluid separating two (perhaps dissimilar)
solvents and neglect any internal degrees of freedom in
the membrane. This description takes into account the
distinct nature of the incompressible two-dimensional fluid
separating the surrounding solvents. The flows in this fluid
can support stresses and thus lead to a discontinuity in the
bulk fluid stress across the membrane; furthermore, flows
which transport fluid from the membrane to the bulk are
not allowed, since the membrane fluid is confined to the
surface. This is in marked contrast to an interface between
two immiscible fluids, such as oil and water, where the bulk

fluid stress is continuous across the interface and there is
no distinct fluid confined there.
The low-Reynolds-number hydrodynamics of viscous

membranes differs substantially from the better-known
problem of 3D hydrodynamics. The hydrodynamics of an
isolated 2D fluid suffers from the same problem as 2D
elasticity theory: namely, the response to a point force is
log divergent at long length scales [6]. Membrane hydro-
dynamics, however, is not a purely two-dimensional
theory, since flows in the membrane are viscously coupled
to flows in the surrounding three-dimensional fluids. This
coupling has two principal effects: 1) in-plane momentum
in the membrane is not locally conserved, since membrane
flows generate bulk fluid flows that transfer momen-
tum out of the membrane; and 2) non-local interactions
between points in the membrane, mediated by the flows in
the solvents, are generated. The coupling of the membrane
to the solvents introduces a new, inherent length scale
into membrane hydrodynamics that is unrelated to inertia
(i.e. Reynolds number). This “Saffman-Delbrück” (SD)
length, which is given by the ratio of the (2D) membrane
viscosity ηm to the (3D) fluid viscosity η, �0 ∼ ηm/η [7],
cuts off the logarithmic divergence mentioned above. For
cellular plasma membranes �0 � 1µm [8]. The existence of
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an inherent length scale in membrane hydrodynamics has
complex and rather subtle effects on a variety of problems,
including protein diffusion in cell membranes [7,9], the
flow of monolayers through channels [10], the dynam-
ics of monolayer domains [11], the membrane micro-
rheology [12], and the mobilities of both rigid and flexible
extended objects in membranes [13].
In this letter, we examine the effects of membrane

geometry and topology on membrane hydrodynamics [14].
Specifically, we present both experimental and theoretical
results that elucidate these effects on particulate transport
in spherical membranes. Our theoretical results show that
there are two main effects: first, the spherical topology
of the membrane fundamentally alters the membrane
velocity field. On a sphere, any non-vanishing vector field
must include at least two singularities [15], which can
be vortices, sources, or sinks. However, only vortices are
allowed for flows on an incompressible membrane, since
sources and sinks require compression of the membrane.
No such singularities appear on a flat membrane. The
compact topology of a spherical membrane also gives
rise to an asymmetry between the surrounding 3D
fluids that is absent for a flat membrane. Second, the
curvature of the membrane introduces a new length scale
—the radius of curvature, R— that competes with �0 in
determining the hydrodynamics of particles embedded in
the membrane. This length scale acts as a long-distance
cutoff in the system, though its unique geometric nature
distinguishes it from other long-distance cutoffs in
membrane hydrodynamics [7,16,17]. These two effects
can exert opposing influences on the transport properties
of the membrane. Indeed, their competition results in a
particulate mobility that exhibits a surprisingly complex
and non-monotonic dependence on the membrane
radius.
To experimentally test our theoretical results, we create

a two-dimensional colloidal liquid at the spherical interface
of a water-in-oil droplet and measure the membrane
flow fields created by the motion of a colloidal rod
on the membrane. These flow fields show unambiguous
deviations from the flat-membrane theory [13] that are
consistent with our theoretical predictions for a spherical
membrane.

Theoretical model. – Consider a spherical membrane
of radius R consisting of a distinct, incompressible fluid of
viscosity ηm. We ignore inertial effects and impose force
balance at the membrane. We apply a tangential point
force F= F ŷ to a rigid disk of radius a at the north pole
of the membrane, as illustrated in fig. 1(a). We assume
that a is the smallest length scale in the problem, so that
we can treat the force on the particle as a point force
(we account for the finite particle size via a short-distance
cutoff; see below). This force gives rise to an applied force
density fapp = Fδ(θ)ŷ/(2πR2) on the membrane. Because
of the curvature of the membrane, the in-plane force
balance equation must be written in a manifestly covariant

(b)
(a)

Fig. 1: (Color online) (a) Schematic illustration and calculated
membrane velocity field of a point particle of radius a (green
disk) at the north pole subject to a force F, with a pinning
force F0 at the south pole. Here the interior and exterior fluids
are identical: η+ = η−, R/�0 = 0.1 and R/a= 100. (b) Image
of a connected rod of paramagnetic spheres at the interface of
a water-in-hexadecane droplet decorated with microparticles.
The dotted line indicates the line along which the membrane
velocity shown in figs. 3 and 4 is measured; the arrow indicates
the velocity direction.

form [18]:

fappα =−ηm
[
DβDβvα+Kvα

]
+σ−αr −σ+αr, (1)

where Dα is the covariant derivative and K = 1/R
2 is

the Gaussian curvature of the sphere; the Greek indices
run over the polar and azimuthal angles θ, φ, respec-
tively. Here, we have assumed that the membrane is
incompressible, Dαvα = 0. The term in brackets in eq. (1)
is the viscous force density resulting from gradients in
the membrane velocity field vα; the last two terms are
the viscous stresses due to the solvents inside (σ−)
and outside (σ+) the spherical surface, σ±ij = η±[Div

±
j +

Djv
±
i ]−P±δij , where P±, η±, and v± are the dynamic

pressures, viscosities, and velocities, respectively, of the
solvents inside (−) and outside (+) the sphere. We can
see from eq. (1) that geometry can have a dramatic effect
on membrane hydrodynamics. In particular, the term
−ηmKvα in eq. (1) shows that position-independent flows
generate stress in membranes with non-zero Gaussian
curvature, such as spheres, but not on membranes with
no Gaussian curvature, such as planes and cylinders.
The bulk fluid velocities and pressures satisfy the incom-

pressible Stokes equation: ∇2v± =∇P±, ∇ ·v± = 0,
with boundary conditions limr→∞v+ = limr→0v− = 0.
These boundary conditions in effect provide arbitrary
constraint forces that prevent the rigid translation of
the membrane and interior fluid. We also impose “stick”
boundary conditions at the membrane: v±|r=R = v.
It is convenient to decompose this dynamical system

into normal modes consisting of the combined flows of the
membrane and the external solvents. The deformations
of a 2D membrane can be decomposed into bending,
compression, and shear modes. The incompressibility of
the membrane suppresses the compression modes. Thus,
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the bending modes are prevented by the incompressibility
of the interior fluid, since any bending deformation in
the membrane would increase the interior volume of the
sphere. The remaining shear modes, which automatically
satisfy the membrane incompressibility constraint, can be
written as vα = εαβD

βΨ, where εαβ is the alternating
tensor. The combined membrane and solvent system is
diagonalizable in a basis of spherical harmonics [18,19].
By applying the force balance condition eq. (1), we

determine the amplitude of each normal mode of the
combined membrane/solvent system generated by the
applied force. Then the membrane velocity is given by [18]

v · θ̂=−V sinφ
lmax∑
l=1

1

sl
csc θP 1l (cos θ), (2)

v · φ̂=−V cosφ
lmax∑
l=1

1

sl

[
cot θP 1l (cos θ)+P

2
l (cos θ)

]
, (3)

where V = F/(4πηm), lmax is defined below, P
m
l (x) is the

l-th associated Legendre function, and

sl =
l(l+1)

2 l+1

[
l(l+1)− 2+ R

�−
(l− 1)+ R

�+
(l+2)

]
. (4)

In eq. (4) we have defined two lengths in analogy
to the SD length: �± = ηm/η±. In contrast, only one
length scale, the SD length �0 ≡ ηm/(η−+ η+), controls the
membrane hydrodynamics of a flat membrane. In other
words, the viscosities of the two solvents surrounding a
flat membrane enter symmetrically, as they must. For a
spherical membrane, the asymmetry between the exterior
and interior solvents causes these two length scales to enter
independently. The most striking manifestation of this
asymmetry occurs in the limit of a large interior viscosity,
η−� η+. In that limit eq. (4) shows that the l= 1 term
dominates the sums in eqs. (2) and (3), corresponding to
a rigid rotation of the membrane and interior fluid. The
opposite limit η+� η− will not have an analogous effect.
In addition to introducing this asymmetry between the
external fluids, we can see from eq. (4) that the geometry
of the membrane has another effect: it introduces a new
length scale —the membrane radius R— that effectively
rescales the SD lengths �±. Indeed, for a small enough
sphere, R� �+, the same rigid body rotation seen in the
limit η−� η+ is observed. Thus, geometry alone can have
a dramatic effect on membrane hydrodynamics.
In order to investigate the transport properties of

the membrane, we need to isolate the motion of the
particle within the membrane from the overall motion
—specifically, the rigid rotation discussed above— of the
entire membrane. To do so, we apply a constraint force
F0 at the south pole that forces the membrane velocity
to vanish there, see fig. 1(a). This force also mimics the
adsorption of the membrane onto the substrate in the
experiments, see below. Because of the linearity of
the Stokes equation, the total response of the fluids is
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Fig. 2: (Color online) Dimensionless mobility ηmµ for a disk-
like particle at the north pole of a pinned spherical membrane
as a function of the membrane radius R, for �+ = 10µm,
a= 0.01µm, and η− = 10η+ (green/gray curve), η− = η+ (black
curve), or η− = 0.1η+ (dotted curve), where η+ and η− are
the viscosities of the fluids outside and inside the sphere,
respectively. The dashed and dot-dashed lines indicate the
theoretical asymptotic results (see text).

simply the sum of the individual responses to each force.
A typical solution for the membrane velocity field on
the sphere is shown in fig. 1(a). The appearance of a
vortex in the upper hemisphere is required by topological
constraints; there is a similar one placed symmetrically
on the back side of the sphere (not shown).
The particle’s mobility µ, defined by v|θ=0 = µF, is

µ=
1

4πηm
S+

[
1−
(
S−
S+

)2]
, (5)

where

S± ≡
lmax∑
l=1

(±1)l+1 l(l+1)
2sl

. (6)

The first term in eq. (5) is generated by the force exerted
on the particle itself (see eqs. (2) and (3)), while the second
term is generated by the pinning force [18]. The finite
particle radius a acts as a cutoff, setting the upper limit
lmax on the sums in eqs. (2), (3), and (5). In particular, we
set the exact value of lmax by requiring that the R→∞
limit of eq. (5) agrees with the mobility of a disk of radius
a� �0 in a flat membrane [7,9,12]:

µflat =
1

4πηm
ln

[
1+
2�0
a
e−γ
]
, (7)

where γ is Euler’s constant. It is straightforward to show
that eq. (5) has the correct limiting behavior if we set lmax
equal to the largest integer less than 2e−γR/a.
Figure 2 shows the dimensionless mobility ηmµ of a

particle at the north pole of a pinned spherical membrane
as a function of R for a variety of interior viscosities η−. As
expected, the flat-membrane SD result eq. (7) (horizontal
dashed lines) is recovered in the limit R→∞ in all cases.
The approach to this limit, however, is dependent on the
viscosity ratio η+/η−. For η+/η− < 1 (green/gray curve),
the mobility in a spherical membrane is larger than in
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a flat membrane because here the more viscous fluid is
bounded, causing it to dissipate less energy. Conversely,
when η+/η− > 1 (dotted curve), the mobility in a spherical
membrane is suppressed relative to the flat case.
In the limit of high membrane curvature, R/�+� 1,

ηmµ→ ln(R/a)/2π (dot-dashed line). The appearance of
R as the long-distance cutoff in the logarithm is generally
expected [7,16,17], but the prefactor is determined by
the spherical geometry. Hence, particle mobilities in high-
curvature membranes, R/�+� 1, are depressed relative to
the SD result.
For intermediate curvatures, the mobility exhibits an

interesting non-monotonic behavior on the particle radius.
In particular, there is a clear maximum in the mobility
for moderately small values of R/�+, independent of the
viscosity ratio η+/η−. In contrast, the corresponding
mobilities on a cylindrical membrane exhibit no such
peaks [18]. Therefore, this maximum is a striking illus-
tration of the effects of the geometry of the sphere on
the transport properties of the membrane. In particular,
the presence of the Gaussian curvature term in the force
balance equation (1) alters the mobility for membranes
with non-zero Gaussian curvature. The different roles of
topology and geometry in membrane hydrodynamics will
be investigated further in a future publication [18].
We now turn to the problem of the mobility of, and

fluid flows around, extended objects embedded in the
membrane. Specifically, we consider a rod of length L
embedded in the membrane. Using the Kirkwood approx-
imation [20], we model the rod as a linear array of N +1
disks of radius a separated by a distance b, where L=
Nb+2a. We also apply a pinning force at the south pole.
Using the superposition principle, the total membrane

velocity is vtotα (θ, φ) =
∑N+1
i=0 F

(i)
β χα,β(θ, φ; θi, φi). Here,

F(i) is the force applied to the disk at the point (θi, φi);
i= 0 corresponds to the south pole, and i= 1, . . . , N +1
labels the disks in the rod. We choose our coordinate
system so that the rod lies along the great circle φ= π/2
of the sphere with its center at the north pole, so that
θi =

b
R
|N2 +1− i| for i 	= 0. We consider only forces paral-

lel to the rod axis. The response function χα,β(x;y) gives
vα(x) due to a unit force in the β-direction applied at y.
To determine the forces F(i), we require the total fluid

velocity to vanish at the south pole and each disk in
the rod to move with unit velocity. These constraints
provide a set of N +2 linear equations that determine
F(i). Summing the N +1 forces acting on the rod moving
at unit velocity gives the inverse mobility of the rod. Using
these forces, we can determine the entire velocity field in
response to the rod’s motion, both on the sphere and in
the surrounding fluids.
In fig. 3, we plot the membrane velocity field v⊥ =

v⊥(θ)ŷ along the line that perpendicularly bisects the
rod (i.e. the line φ= 0, π, 0< θ < π —see fig. 1(b)), as
a function of the polar angle θ, for various values of the
membrane radius R (black, green, and dashed curves). For
comparison, we also plot a projection of the flat-membrane
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Fig. 3: (Color online) membrane velocity v⊥ surrounding a
membrane-bound rod of length L= 2µm, measured along the
axis indicated by the dotted line in the schematic illustration
(inset), as a function of the polar angle θ for various values of
the membrane radius R. For all curves, a= 0.1µm, �+ = �− =
20µm, b= 2a, and N = 9; the membrane radii are R= 2µm
(black curve), R= 10µm (green/gray curve), and R= 50µm
(dashed curve). We also show the flat-membrane result (dotted
curve), which has been mapped onto the largest sphere using
the arc-length Rθ as the flat-space distance.

result [12] onto the largest sphere (dotted curve); that is,
we map the flat-plane distance d onto an angle θ using
the arc-length Rθ of the largest sphere. We can see that
when the sphere is large, the membrane velocity field near
the rod approaches the flat-membrane result. However, at
large angles the velocity field on the sphere is negative,
indicating the presence of a vortex (see fig. 1(a)). No such
vortex exists on the flat membrane, where the velocity
field decreases monotonically to zero. As the radius of the
sphere is decreased, a dramatic change in the membrane
velocity field occurs: the velocity field gradients decrease,
causing the vortex to migrate towards the equator. The
principal effect of curvature on the spatial structure of the
flow fields around a moving particle can be understood
in terms of the rescaling of the SD lengths �± by the
membrane radius R (see eq. (4)), as long as R/a� 1.
Therefore, we expect that a higher curvature generates
flow fields corresponding to a membrane with a larger
effective viscosity ηm, i.e. flow fields with smaller spatial
gradients, which is precisely the behavior shown in fig. 3.

Experiments. – To test our model, we performed
experiments to measure the flow fields on spherical
droplets caused by the motion of a rod-like object confined
to the droplet surface. Water droplets (η− = 10−3 N s/m2),
typically 30–100µm in diameter, suspended in hexade-
cane (η+ = 3.34× 10−3Ns/m2) provided the spherical
interface. The interface was coated with a monolayer of
small (370 nm diameter, measured by scanning electron
microscopy) poly(methyl methacrylate) (PMMA) spheres,
which were sterically stabilized by poly(hydroxystearic
acid) and labeled with NBD fluorescent dye (7-chloro-
4-nitrobenzofurazan) [21]. This monolayer is confined to
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Fig. 4: (Color online) Experimental data (points) and theoretical predictions (lines) for the membrane velocity v⊥ measured
along the axis indicated by the dotted line in the schematic illustration (upper right-hand corner of each panel). The open
squares (diamonds) correspond to data on the right (left) side of the rod, i.e. x> 0 (x< 0); the solid circles are the mean of
these two points. The solid lines show the predictions of the spherical membrane theory (SMT), while the dashed lines show those
of the flat-membrane theory (FMT) [13]. The theoretical curves were generated using the parameters: (a) �0 = 0.22µm (SMT),
�0 = 0.25µm (FMT), L= 6.4µm, R= 17.5µm, N = 30. This data corresponds to fig. 1(b); (b) �0 = 0.46µm (SMT), �0 = 0.48µm
(FMT), L= 31.6µm, R= 54µm, N = 35; (c) �0 = 7.32µm (SMT), �0 = 8.12µm (FMT), L= 7µm, R= 26µm, N = 10.

the interface [22], effectively creating a distinct membrane
fluid there. The PMMA particles served dual roles: to set
the membrane viscosity and to allow measurement of the
membrane flow field using video microscopy and particle-
tracking software. Spheres were imaged using bright-field
optical microscopy (not fluorescence) using a Zeiss
Axiovert 200 with a 100× objective and a numerical aper-
ture equal to 1.3. Images were captured at 30 frames/s and
analyzed with particle-tracking code written in IDL [23]. A
representative image is shown in fig. 1(b). Finally, the glass
coverslips were treated with dichlorodimethylsilane before
the experiments to prevent wetting of the water droplet
on the glass. During the measurements, the droplets lay
on the bottom of the viewing cell and the PMMA particles
at the bottom of the droplet adhered to the coverslip,
preventing the rotation of the droplet as a whole.
To create the rod, we added paramagnetic polystyrene

spheres that absorbed to the interface. These 0.95µm
diameter spheres were made of carboxylate-functionalized,
divinylbenzene- (DVB-) crosslinked polystyrene contain-
ing iron oxide (Bangs Laboratories item # MC04N, lot
3251). In the presence of a magnetic field, the spheres
aligned into a single rod-shaped aggregate, see fig. 1(b).
The rod was moved at speeds of approximately a few µm/s
along the surface by a permanent magnet brought close
to the sample. To measure the flow field, O(102) PMMA
particles were tracked during the rod’s motion. For each
droplet, the process was typically repeated twelve times,
and the mean and statistical uncertainty of the flow veloci-
ties were measured. Droplets of different radii, rod lengths,
and viscosities were used.
In fig. 4 we plot the measured membrane velocity (open

points) along the line that perpendicularly bisects the
rod —that is, the velocity v⊥ plotted in fig. 3— as a
function of the absolute distance |x|=R| sin θ| from the
north pole in the x̂-direction. By symmetry, we expect the
velocity field to be symmetric about the rod axis. However,
as shown in fig. 4, the data can exhibit asymmetries

due to random experimental error and asymmetries in
the colloidal suspension. Therefore, to compare with the
theoretical predictions we indicate the average velocity
value by the solid points.
To generate the theoretical velocity profiles for these

measurements, we need to determine the membrane
viscosity ηm, which in turns sets the value of �0. To do
so, the positions r of the PMMA spheres were measured
as they underwent thermal motion on the surface of the
droplet (i.e. in the absence of any applied forces). A
typical set of measurements tracked 40 particles over a
total period of 20–40 s. The mean-square displacements,
〈[r(t− t0)− r(t0)]2〉 ≡∆r2(t), were computed by averag-
ing over all PMMA spheres and all times t0. The slope
of ∆r2(t) in the linear (long-time) regime was measured,
and the diffusion constant D was obtained from the
relation ∆r2(t) = 4Dt. For the three samples shown in
fig. 4, we obtained the following diffusion constants D :
(a) 0.28µm2/s; (b) 0.21µm2/s; and (c) 0.037µm2/s.
Using these values for D, the Saffman-Delbrück length �0
for each sample was determined from the Stokes-Einstein
relation D= kBTµ and the mobility of a point-like
particle in a membrane. For a spherical membrane, this
mobility is given by eq. (5); for a flat membrane, it is
given by eq. (7).
In figs. 4(a)–(c), we show a sequence of droplets demon-

strating the increasing effect of curvature. We show the
predictions of the flat-membrane theory (FMT, dashed
lines) [13] and the spherical membrane theory (SMT,
solid lines); each curve is obtained by direct calculation
using no adjustable parameters. We account for the rod
thickness in the theory by setting v⊥ equal to the rod
velocity v0 everywhere within the rod. The substrate pins
the fluid velocity at the south pole (we do not account
for any additional hydrodynamic interactions between the
sphere and the substrate). In fig. 4(a), where R� �0, we
see that both the FMT and SMT are close to the data. In
fig. 4(b), where R� �0, but is now comparable to L, the
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effects of curvature begin to be seen. However, only when
�0 approaches R, as in fig. 4(c), does the effect of curva-
ture become dramatic. Here the velocity field decays more
rapidly away from the rod than the FMT predictions. In
this case the SMT prediction is a significant improvement
over that of the FMT. This is in marked contrast to the
behavior shown in fig. 3, where the velocity field exhibits
smaller gradients as the curvature is increased. However,
that behavior is seen in the limit R/�+� 1, whereas for
all the data in fig. 4 the droplet radii R are larger than
the SD lengths �±. We can understand the suppression of
the velocity fields in fig. 4 by first considering the case
in which the interior viscosity is much larger than the
exterior viscosity. In this case, large gradients in the veloc-
ity field of the interior fluid are suppressed. These nearly
spatially homogeneous flows generate large gradients in
the velocity field of the exterior fluid. This is seen most
clearly when the membrane and interior fluid rotate as
a rigid object, where all of the dissipative flows occur in
the exterior fluid. When the situation is reversed —that
is, when the interior fluid is less viscous— the flows of
the membrane and interior fluid become more localized
around the rod in order to minimize long-range flow in the
more viscous exterior fluid. Thus, the viscosity mismatch
between the less viscous interior fluid (water) and the more
viscous exterior fluid (oil) enhances the localization of the
membrane velocity field around the rod, as seen in fig. 4(c).

Conclusion. – This work demonstrates the consider-
able effect of membrane curvature and topology on the
transport of particles embedded in the membrane. The
compact topology of the sphere requires the formation
of vortices in steady-state, zero-Reynolds-number flow; it
also implies an asymmetry between the interior and exte-
rior solvents, which can enhance or suppress particulate
transport relative to that of a flat membrane. Further-
more, the diffusivity of particles bound to membranes of
high curvature is significantly reduced. The experimental
data, while somewhat noisy, do show a decay in the veloc-
ity field away from the rod that is faster than the FMT
predictions and consistent with the SMT. The conclu-
sions of this work should be relevant to understanding the
kinetics of particulate aggregates on the surface of droplets
and the transport of proteins on membranes separating the
viscous cytosol from extracellular fluids.
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