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We investigate the self-assembly of colloidal spheres on periodically patterned templates. The surface
potentials and the surface phases are induced entropically by the presence of dissolved, nonadsorbing
polymers. A rich variety of two-dimensional fluidlike and solidlike phases was observed to form on
template potentials with both one- and two-dimensional symmetry. The same methodology was then
used to nucleate an oriented single fcc crystal more than 30 layers thick. The general approach provides
a new route for directed self-assembly of novel mesoscopic structures.

PACS numbers: 82.70.Dd, 05.20.–y, 61.25.Hq
Colloids self-assemble into a wide range of highly or-
dered phases. Colloidal crystals form spontaneously in
thermal equilibrium [1–3] or can be induced by gravi-
tational [4], convective [5], and electrohydrodynamic [6]
forces. These phenomena provide a fascinating test bed
for the investigation of many-body statistical physics, and
they provide an important paradigm for the creation of
three-dimensional photonic structures [7]. In this Let-
ter we demonstrate a novel colloidal system for studies
of two-dimensional phase transitions that also provides a
qualitatively new approach for colloidal epitaxy based on
equilibrium thermodynamics and geometry.

We combine entropic depletion and patterned surfaces
with spatially periodic 1D- and 2D-height profiles as tem-
plates to influence growth of two- and three-dimensional
structures. Depletion effects in suspensions of large and
small particles or macromolecules produce forces that push
large spheres together [3,8], towards flat walls [9], and to-
wards inner corners on surfaces [10]. We use these forces
to attract and repel colloidal spheres from specific posi-
tions on a corrugated template.

We observed the formation of 1D, 2D, and 3D commen-
surate structures as a function of sphere size and grating
periodicity. Our experiments complement recent work on
charged 2D colloidal phase transitions in a perturbing 1D
optical potential [11,12]. Our particle interactions by con-
trast are short range and are much weaker than the exter-
nal template potentials, and our surface particle density is
set by equilibration at constant chemical potential with the
bulk (3D) colloidal liquid. The 1D surface potential in-
duced 2D structures, all of which exhibit diffuse scattering
peaks characteristic of 2D bond-angle ordered phases in
an aligning field rather than power-law peaks characteris-
tic of 2D crystal order. They thus correspond to the liquid
phases of Ref. [12]. In addition, the 2D surface potential
induced both liquidlike and solidlike structures and pro-
vided the optimum template for growth of a large, defect-
free fcc crystal in 3D.

Figure 1 illustrates the depletion force. The Helmholtz
free energy of a colloid�polymer mixture decreases by
770 0031-9007�00�85(8)�1770(4)$15.00
PDV as spheres approach each other. Here P is the
polymer osmotic pressure, and DV is the overlap volume,
shown in black in Fig. 1A. The free energy reduction at
contact at temperature T is F0 � 22paR2

gnpkBT , where
a is sphere radius, np and Rg are, respectively, the number
density and the radius o gyration of the dilute polymer
coils [13], and kB is Boltzmann’s constant. Spheres in
contact with walls of a grating groove (Fig. 1A) experience
an attractive force roughly 4 times the two-sphere value
and are forced to the grating “valleys” [10]. Thus the
template creates a new class of periodic surface potential
for colloidal self-assembly.

Imprint or stamping techniques provide a simple way
to make replicas of surface structures [14]. We have
employed the imprint technique with an optical diffraction
grating to create a geometrical template. We first spincoat
a 400 nm thick layer of polymethylmethacrylate (PMMA)
on a glass substrate. Pressing a diffraction grating onto
the PMMA film (heated above its glass temperature of
�120 ±C) creates a replica of the grating in the film
(Fig. 1B). By rotating the substrate 90± and imprinting a
second time, we create two-dimensional periodic struc-
tures, resembling an array of square pyramids (Fig. 1C).
The templates form one wall of the sealed sample

FIG. 1. (A) illustrates the depletion effect. The centers of
nonadsorbing polymer coils (small spheres) are excluded from
a depletion zone (hashed regions) outside the large spheres and
corrugated walls. When these depletion zones overlap (dark
shading), the volume accessible to the polymer is increased,
increasing polymer-coil entropy and inducing an attractive force
between the surfaces. Similarly, spheres are preferentially drawn
to interior corners. Atomic force microscope images of (B) the
replica optical grating in PMMA and (C) the crossed grating.
© 2000 The American Physical Society
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chambers which are 30 40 mm thick and contain a few
ml of sample.

The colloid samples consisted of 0.7 to 1.2 mm diame-
ter PMMA spheres stabilized by a grafted layer of poly-
12-hydroxystearic acid [15,16]. In a mixture of decalin
and cyclohexyl bromide, these spheres are nearly density
matched and have a refractive index mismatch of ,0.01
with respect to the solvent. Such small index mismatches
reduce light scattering, facilitating optical microscopy deep
into the suspension. Depletion attractions were induced
by adding polystyrene with Rg � 15 nm (Mw � 320 000,
Mw�Mn � 1.04, Polymer Laboratories). We adjusted
polymer concentration to keep F0 fairly constant as we
varied the spatial period p of the template and the sphere
size. 2D surface structures formed approximately in one
hour and evolved very slowly thereafter. They exhibited
local density inhomogeneities and defects whose positions
were quenched over the lifetime of the experiments.

The interplay between bulk particle volume fraction,
F, bulk polymer concentration, CP , and mean nearest-
neighbor spacing, d, on the surface is most clearly exhibi-
ted by the 1D colloidal liquids that form in the grooves of
the 1D grating template. The simplest case arises when
the spheres are large enough to fill the groove, but not
large enough to interact with spheres in adjacent grooves.
Our observations for self-assembly on the line gratings are
displayed along with the corresponding structure function,
S�k�, in Fig. 2. The 1D liquid phase (i.e., stripe phase) is
shown in Fig. 2A, and its pair correlation function along
the groove, g�r�, is plotted in Fig. 3A for three different
combinations of F and CP . We derived an approximate
bulk phase diagram for this system based on [16] (see the
inset in Fig. 3). At low volume fraction F, the measured
pair correlation function g�r� exhibited peaks whose posi-
tions were identical to and whose asymmetric shapes were
similar to those of a classical hard-core gas [17]; its mag-
nitude, however, decayed more rapidly toward 1 at large r
than a hard core gas. At higher concentrations the mean
nearest-neighbor spacing, d, derived from the first peak
in g�r�, shifted to smaller values, but the typical spac-
ing was larger than the depletion interaction range, about
1.1 diameter. These observations suggest that the surface
density of spheres is determined by the competition of the
depletion attractions driving the spheres to the surface and
the osmotic pressure of the spheres already there.

When the sphere diameter increases relative to the grat-
ing period p, the 1D colloidal liquids in adjacent rows
interact more strongly. The most important parameter
characterizing the 2D phase behavior is the commensu-
rability ratio, x � d�p, where d is derived from the pair
correlation function along the groove. For the phases in
Fig. 2, F � 0.25 is high enough to serve as a reservoir for
surface adsorption. CP was set near the bulk fluid-crystal
phase transition region (point “X” in Fig. 3 [16]). This
choice ensured that bulk crystallization did not occur in our
thin sample chambers and that the spheres densely cover
FIG. 2. Phase-contrast micrographs of four representative
2D structures with the schematic reconstruction in the bottom
left corner. The S�k� computed from these images is shown
in the top right corner. (A) Stripe phase. (B) Triangular
phase. (C),(D) Scissor (centered-rectangular) phases with
different scissor angles as defined in the structure function
image of (C). In (C) we circle the mirror line of a twinning
defect. (E) Diagram indicating the observed phases as a
function of x.

the template surface. On flat substrates, the colloid formed
isotropic liquid structures at these same concentrations.
The line grating breaks symmetry in one direction, and the
assembled structures exhibit a range of two-dimensional
patterns. Generally, the 2D colloidal structures on the
line-grating surfaces do not exhibit very long-range trans-
lational order along the groove direction. Point defects and
dislocations are common, as are twinning planes perpen-
dicular to the groove direction (see Fig. 2C).

Hexagonal symmetry emerges in 2D through the in-
terlacing of spheres in different grooves for 1 , x ,

2�
p

3 � 1.15 (see Fig. 2B). As x increases towards 1.15,
this structure becomes more ordered, and for 1.15 , x ,

2
p

3 � 3.46, the ordered structure is maintained while
hexagonal symmetry gives way to crystals with centered
rectangular unit cells (see Figs. 2C and 2D). 2D phases
with centered rectangular symmetry have not been previ-
ously observed [11]. We define the scissor angle, u, as the
angle between the grating groove direction and the crys-
tal lattice vector (see Fig. 2C) and refer to the centered
rectangular phase as the scissor phase. Using the geo-
metric relation tanu � 2p�d, we again find that the mean
nearest-neighbor spacing is �10% bigger than the sphere
diameter.
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FIG. 3. (A) 1D pair correlation function along the groove di-
rection for colloidal spheres in the stripe phase (2a � 0.86 mm,
p � 1.21 mm; see Fig. 2A). For curve X, the first peak of g�r�
occurs at r � 0.93 mm. The inset is the approximate bulk
phase diagram scaled from [16] for this system as a function
of F and CP . (B) S�k� for the centered rectangular phase
shown in Fig. 2C. The peak positions are indicated in the in-
set. The 3’s indicate delta-function Bragg peaks and circles
indicate Lorentzian-like peaks. The grooves are aligned parallel
to the Y axis and plot S�k� vs kx , at four different values of ky .
The topmost row shows the Bragg peaks (i.e., at ky � 0) scaled
503 smaller. For nonzero ky , the curves are well modeled by
Eq. (1) (solid curves).

To understand better the nature of these phases, we ex-
amined the shape of the peaks in the structure function,
S�k�. It exhibits resolution-limited Bragg peaks, aris-
ing from the periodic template, at ky � 0 and kx � nGx ,
where Gx � 2p�p and n is an integer, and diffuse peaks
along the lines ky � mGy with m an integer, where Gy �
2p�d, reflecting correlations within and between grooves.
The intensities as a function of kx at ky � mGy are well
described for all m fi 0 and x by

Sm�kx� �
Ame2k2

x Wm

1 1 Cm cos�kxp�
1 Bm , (1)

which exhibits Lorentzian peaks of width squared
2�1 2 jCmj��p2jCmj at kx equal to odd multiples of
Gx�2 for Cm . 0 and to even multiples of Gx�2 for
Cm , 0. This is the scattering function for a model
system in which a 1D liquid in each groove interacts
weakly with the liquids in its nearest-neighbor grooves.
Within this model, Wm is a Debye-Waller factor arising
from uncorrelated motion of spheres perpendicular to
the grooves, Cm is proportional to the product of the
interparticle potential at wave number ky � mGy and
1772
the structure factor S1D�mGy� of the spheres along
an isolated groove, Am is an amplitude proportional
to S1D�mGy�, and Bm is a background. In the stripe
phase, there is short-range simple rectangular order
(see Fig. 2A), and Sm�kx� exhibits diffuse peaks at
kx � nGx for m � 1 and m � 2 described by Eq. (1)
with Cm , 0, corresponding to attractive interactions
between spheres in neighboring grooves. The ratio C1�C2
is equal within experimental error to S1D�Gy��S1D�2Gy�
determined by direct measurement of the 1D structure
function of a line, in agreement with the model of weakly
interacting 1D liquids. As the density is increased,
centered-rectangular (or hexagonal) correlations become
more pronounced, and the structure function peaks be-
come those of a centered rectangular reciprocal lattice
at kx � �n 1

1
2 �Gx for m odd and kx � nGx for m

even. We observe this effect in the scissor and hexagonal
phases, whose structure functions are well described
by Eq. (1) (even though the intergroove coupling is no
longer weak) with Cm . 0 for m odd and Cm , 0 for m
even. A similar structure function results when unbound
or quenched dislocations convert the power-law Bragg
peaks of the “locked floating solid” phase of Ref. [12] to
Lorentzian peaks in the liquid phase. In our experiments,
Wn was approximately constant, and jCmj decreased with
increasing m in all phases. The decay of jCmj was slower
in the scissor phase than in the hexagonal phase.

The crossed gratings impose a 2D external potential.
Since the crossed grating has two-dimensional square sym-
metry, we expect the assembled structures to have this
symmetry. All the ordered patterns have square symme-
try, but with different lattice constants and orientation (see
Fig. 4). Here d � 1�

p
s, where s is the particle surface

density. When x � 1�
p

2 � 0.71, a commensurate over-
lay fcc(100) 1�

p
2 3 1�

p
2 45± formed. When x � 1,

commensurate structures with fcc(100) 1 3 1 pattern were
formed, and finally for x �

p
2 � 1.41, a commensurate,

rotated square structure formed, i.e., fcc(100)
p

2 3
p

2
45±. In the latter case large domains did not arise because
two possible nucleation sites exist on the template and pro-
duce different lattices, corresponding to lattices built on
either the black or the white squares of a checkerboard.
When d was commensurate with the pitch at the ratios
0.71, 1, and 1.41, larger crystal domains with fewer de-
fects formed.

The structure functions for crossed-grating phases had
both solidlike and liquidlike features. Each phase ex-
hibited Bragg-like peaks on the reciprocal lattice of the
template potential along with a ringlike background and
diffuse peaks characteristic of a liquid or residual sample
disorder. Generally the diffuse peaks were narrower than
the corresponding peaks in the 1D potential. When x de-
viates from the commensurate values, the liquidlike ring
becomes more pronounced.

Finally, a crossed grating commensurate with the
fcc(100) plane (x � 1) was used to grow an fcc crystal
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FIG. 4. (A), (B), and (C) illustrate 2D colloidal assembly com-
mensurate with the crossed-grating template. Notice that the
crystal orientation rotates by 45 degrees for x � 0.71, 1.41,
and that different crystal domains are clearly seen in (C). The
domain size in (B) is greater than the microscope field of view
which is 60 mm 3 80 mm. (D) 3D confocal image showing 20
layers within the interior of a . 30 layer fcc crystal grown with
no density match on the template as in (B).

without stacking defects (Fig. 4D). With some density
mismatching (e.g., 0.3 g�cm3 difference), the growth
process was enhanced by a gravity-induced increase in
sphere concentration near the surface; then the spheres
crystallized faster and grew more than 30 layers. In
contrast to previous sedimentation-based assembly [4],
control experiments without polymer did not produce
large ordered colloidal crystals probably because the
energy difference between the top and the bottom of the
groove is only 0.2kBT (33 less than [4] and 203 less
than with the depletion effect). Nevertheless, after .24 h,
a few layers of crystal nucleated.

To conclude, we have reported on a rich variety of
2D self-assembly phenomena using mixtures of colloids,
polymers, and entropic surface potentials. Moreover, the
combination of depletion attraction and a simple, robust
surface templating scheme provides a qualitatively new
route for controlled colloidal self-assembly in 3D. Since
the entropic techniques used here are not restricted to mi-
cron size particles, the underlying principles should be ap-
plicable on smaller, macromolecular length scales.
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