
Section 7: Ordinary Differential Equations

7. 1. Ways of writing of ODEs

An nth order ordinary differential equation (o.d.e.) is a relation

y(n)(x) = F (x, y(x), y′(x) . . . y(n−1)(x)) . (1)

The equation is linear if F is a linear function of y and its derivatives (but the x dependence
can be non-linear).

In general the solution of (1) depends on n independent parameters sometimes called the n
constants of integration. If the equation is non-linear then there may be special additional
solutions.

A general nth order o.d.e. may also be written as a system of n first order equations i.e Let

yk =
dky

dxk
k = 0 . . . n− 1 then

d yk

dx
= yk+1(x) k = 0 . . . n− 2

d yn−1

dx
= F (x, {yk(x)})

Sometimes first order ODEs are written

A(x, y)dy + B(x, y)dx = 0 .

A linear o.d.e. may formally be written as

Ly(x) = f(x) (2)

where L = p0(x) + p1(x)
d

dx
+ · · ·+ pn−1(x)

dn−1

dxn−1
+

dn

dxn
(3)

L is a linear differential operator, simply meaning that we can add two such operators to
get another. The coefficent of the highest order derivative is conventionally taken to be one.

If f(x) = 0 the o.d.e. is homogeneous.

7. 2. Theory of linear homogeneous ordinary differential equations

The general solution of

y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y(1) + p0(x)y = 0 (4)

is y(x) =
n∑

j=1

Cjyj(x) where Cj are constants of integration and yj(x) are the set of n linear

independent functions satisfying the o.d.e.

Recall the definition of linear dependent functions:

if we can find αj s.t.
n∑

j=1

αjyj(x) = 0 ∀x the n functions are linearly dependent. Note that
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this must hold with the same αj for all x in the interval. If the only solution is αj = 0 ∀ j
the functions are independent.

To test for lin.dep of functions take the definition of linear dependence and differentiate n−1
times. This implies n conditions that must be satisfied:

n∑
j=1

αjyj(x) = 0

n∑
j=1

αjy
′
j(x) = 0

...
n∑

j=1

αjy
(n−1)
j (x) = 0

Thus we have n linear equations in n unknowns αj and to have a nontrivial solution we
require that the Wronskian defined as

W (x) = W [y1(x), y2(x) . . . yn(x)]

≡ det

∣∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn

y′1 y′2 · · · y′n
...

...
...

y
(n−1)
1 y

(n−1)
2 · · · y(n−1)

n

∣∣∣∣∣∣∣∣∣∣
(5)

vanish at all points x in the interval. Thus the vanishing of W (x) implies linear dependence
of yj N.B. W (x) should vanish identically, not just at specific points.

Now the Wronskian of W (x) of any n solutions of (4) satisfies

W ′(x) = −pn−1(x)W (x)

(the derivation of this is left to a tutorial problem). The solution (defined up to a multi-
plicative constant) is

W (x) = exp
[
−
∫ x

pn−1(t)dt
]

Abel’s formula (6)

(Of course W = 0 is a solution but that just corresponds to lin. dep. yj .)

7. 3. Second order linear homogeneous differential equations

The Wronskian is particularly useful for second order ODEs where we have two independent
solutions y1,y2. Consider

d

dx

(
y2

y1

)
=

y1y
′
2 − y′1y2

y2
1

=
W (x)

y2
1(x)

thus y2(x) = y1(x)
∫ x

x0

W (t)

y2
1(t)

dt (7)
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where x0 is a constant. Thus if we know one solution of the o.d.e. we can use the Wronskian
to compute another linearly independent solution.

Example: Laguerre’s equation xy′′ + (1− x)y′ + ny = 0

For n = 0 one simple solution is y1 = 1.

W = exp
[
−
∫ x (1− t

t

)
dt
]

= A exp [− ln x + x]

Thus y2 = A
∫ x ex′

x′
dx′. Note that y2(x) has a logarithmic singularity at x = 0.

7. 4. Second order linear inhomogeneous differential equations— Green functions

Let us write our second order ODE in ‘Sturm-Liouville’ form

L(x)y(x) = f(x) (8)

where

L(x) =
d

dx

[
p(x)

d

dx

]
+ q(x)

Actually all second order equations can be written in this way i.e.

y′′(x) + p1(x)y′(x) + p0(x)y(x) = g(x) .

can be rewritten using
dW (x)

dx
= −p1(x)W (x) as

W (x)

[
d

dx

(
1

W (x)

d

dx

)
+

p0(x)

W (x)

]
y(x) = g(x)

which is in the form (8) when we identify

p(x) =
1

W (x)
q(x) =

p0(x)

W (x)
f(x) =

g(x)

W (x)
.

Generally (8) is defined in a range a ≤ x ≤ b and boundary conditions are typically of form

αy(a) + βy′(a) = 0 γy(b) + δy′(b) = 0

which are homogeneous (i.e. the right hand sides of the equations are zero) and unmixed
(each equation involves just one boundary).

Let us assume that the particular solution corresponding to these boundary conditions may
be written in the form

yp(x) =
∫ b

a
dx′G(x, x′)f(x′) (9)
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where G(x, x′) is known as the Green Function. Inserting this in (8) noting that L(x) acts
on the variable x whereas x′ is merely a dummy variable yields∫ b

a
dx′ [L(x)G(x, x′)] f(x′) = f(x)

From this equation we recognise that the term in the square bracket must be a delta function

L(x)G(x, x′) = δ(x− x′) (10)

To determine G(x, x′) we first integrate wrt x over the delta function (with x′ as a fixed
parameter).

∫ x′+ε

x′−ε

{
d

dx

[
p(x)

dG(x, x′)

dx

]
+ q(x)G(x, x′)

}
dx = 1

⇒
[
p(x)

dG(x, x′)

dx

]x′+ε

x′−ε

+ 2ε [q(x)G(x, x′)]

∣∣∣∣∣∣
|x−x′|<ε

= 1

We now choose G(x, x′) to be continuous at x = x′ (and assume p(x), q(x) also continuous)
then as ε → 0 the second term on the lhs vanishes and the first term yields

p(x′)

[
dG(x′ + 0, x′)

dx
− dG(x′ − 0, x′)

dx

]
= 1

where e.g.
dG(x′ + 0, x′)

dx
indicates lim

ε→0

dG(x, x′)

dx

∣∣∣∣∣
x=x′+ε

Now consider the solution away from x = x′. For x 6= x′, G satisfies the homogeneous
equation and the general solution is Aỹ1 +Bỹ2 where ỹ1, ỹ2 are a pair of lin. indep. solutions
of the homogeneous equation. We choose

for x < x′ G as function of x is C1y1(x),

where y1(x) is the solution of homogeneous equation that satisfies b.c.s at a

for x > x′ G as function of x is C2y2(x),

where y2(x) is the solution of homogeneous equation that satisfies b.c.s at b

Then C1(x
′) and C2(x

′) are fixed by the condition that G is continuous at x = x′ and G′ is
discontinuous at x = x′

N.B. It is important that the two functions y1(x), y2(x) are linearly independent otherwise
the method will fail.
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Section 7 cont: Green Functions for ODEs

Summary of Method of Constructing a Green Function

1. L(x)G(x, x′) = δ(x− x′). Find general solution of homgeneous equation (x 6= x′)

2. Choose G(x, x′) as function of x to satisfy boundary conditions of y(x) at a and b

3. Match the two solutions at x = x′ by the continuity of G and discontinuity of 1/p(x)

in
dG

dx
(where p(x) is the coefficient of d2

dx2 in the L)

Example 1 : Forced Harmonic Oscillator

y′′(x) + y(x) = f(x) with b.c. y(0) = y(π/2) = 0

1. The Green function satisfies

d2G(x, x′)

dx2
+ G(x, x′) = δ(x− x′) ,

The solution to the homogeneous equation is A sin x + B cos x.

2. To satisfy boundary condition y(0) = 0

y1(x) = A sin x thus G(x, x′) = C1(x
′) sin x for x < x′

To satisfy boundary condition y(π/2) = 0

y2(x) = B cos x thus G(x, x′) = C2(x
′) cos x for x > x′

3. The continuity of G and discontinuity of G′ (1/p(x) = 1 in this example) at x = x′

give

C2(x
′) cos x′ − C1(x

′) sin x′ = 0

−C2(x
′) sin x′ − C1(x

′) cos x′ = 1

⇒ C1 = − cos x′ C2 = − sin x′

Therefore
G(x, x′) = − cos x′ sin x θ(x′ − x)− sin x′ cos x θ(x− x′)

and the particular solution for the given boundary conditions, but for arbitrary f(x) is

yp(x) =
∫ ∞

−∞
G(x, x′)f(x′)dx′ = − sin x

∫ π/2

x
cos x′f(x′)dx′ − cos x

∫ x

0
sin x′f(x′)dx′

If we were interested in the general solution (without specifying boundary conditions) we
could generalise to y = yp + Ay1 + By2

N.B. It is important to note that different boundary conditions imply different particular
solutions yp(x) therefore different G(x, x′).
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Thus specification of the Green function requires both the linear differential operator and
suitable boundary conditions. To illustrate the importance of boundary conditions let us
again consider the forced harmonic oscillator but this time as an initial value problem. To
emphasize the dynamical nature of the problem let us call the independent variable t.

Example 2:
y′′(t) + y(t) = f(t) y(0) = 0 y′(0) = 0

The forcing begins at t = 0 thus f(t) = 0 for t < 0.

1. The Green function satisfies

d2G(t, t′)

dt2
+ G(t, t′) = δ(t− t′) ,

The solution to the homogeneous equation is A sin t + B cos t.

2. To satisfy the boundary conditions G(0, t′) = d
dt

G(t, t′)
∣∣∣
t=0

= 0 we must take G(t, t′) =

0 for t < t′.

Now construct
G(t, t′) = C1(t

′) sin(t) + C2(t
′) cos(t) t > t′ .

Since this is an initial value problem there are no boundary conditions at ∞ instead
C1(t

′), C2(t
′) are fixed by . . .

3. . . . the continuity of G and discontinuity of G′ (1/p(t) = 1 in this example) at t = t′

giving

C1(t
′) sin t′ + C2(t

′) cos t = 0

C1(x
′) cos t′ − C2(t

′) sin t′ = 1

⇒ C1(t
′) = cos t′ C2 = − sin t′ .

Thus
G(t, t′) = sin(t− t′) for t > t′

and the particular solution for the given initial conditions, for arbitrary f(t) is

yp(t) =
∫ ∞

−∞
G(t, t′)f(t′)dt′ =

∫ t

0
G(t, t′)f(t′)dt′ =

∫ t

0
sin(t− t′)f(t′)dt′ (11)

In the initial value case G(t, t′) has a natural interpretation.

• We interpret (11) as

integral of the stimulus f at time t′ × the response G(t, t′) at time t.

• This results from the linearity of the system i.e. we can just integrate up or ‘superpose’
the responses to stimuli at different times t′ to get y(t).
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• In the example G(t, t′) = 0 for t < t′ i.e. there is no response in the past (t) to a
stimulus in the future (t′) — the system is causal

yp(t) =
∫ t

−∞
dt′G(t− t′)f(t′) =

∫ ∞

0
duG(u)f(t− u)

Similarly in the boundary value problem (example 1) we can interpret

yp(x) =
∫ b

a
dx′G(x, x′)f(x′) (12)

as the superposition of the responses G(x, x′)f(x′) at x to the stimulus at x′.

7. 5. Inhomogeneous boundary conditions

Finally let us consider the case of inhomogeneous boundary conditions.

αy(a) + βy′(a) = A γy(b) + δy′(b) = B

Let the solution be
y(x) = yp(x) + ỹ

where yp =
∫ b
a dx′G(x, x′)f(x′) satisfies the equation Lyp = f(x) with homogeneous boundary

conditions αyp(a) + βy′p(a) = 0 and γyp(b) + δy′p(b) = 0.

Then Ly = f(x) becomes

L(yp + ỹ) = f(x) + Lỹ = f(x)

⇒ Lỹ = 0

Similarly the boundary conditions become

αỹ(a) + βỹ′(a) = A γỹ(b) + δỹ′(b) = B .

Thus ỹ(t) is the solution of the homogeneous equation with inhomogeneous boundary con-
ditions.

In the initial value case the same idea works i.e. for inhomogeneous initial conditions

y(0) = A , y′(0) = B

the solution is y(t) = yp(t) + ỹ(t) where yp(t) is the solution of the inhomogeneous equation
with homogeneous boundary conditions and ỹ(t) is the solution of the homogeneous equation
with inhomogeneous boundary conditions.

Again this is simply a consequence of linearity: ỹ(t) is the solution if there were no forc-
ing term f(t); the solution when f(t) is present is the superposition of ỹ(t) and yp =∫ t
0 G(t, t′)f(t′)dt′, the sum of the reponses to f(t′) from all times t′ < t.
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Example 3
d2

dt2
y(t) + y(t) = f(t) y(0) = A y′(0) = B

The solution is, using the result of example 2,

y(t) =
∫ t

0
sin(t− t′)f(t′)dt′ + ỹ(t)

where
ỹ(t) = A cos t + B sin t .

7. 6. Change of dependent variable

A second order o.d.e. (4) can be thrown into other standard forms by substituting y(x) =
v(x)u(x) which leads (here for f = 0) to

u′′ +

(
2v′

v
+ p1

)
u′ +

(
v′′ + p1v

′ + p0v

v

)
u = 0

Choosing v(x) to be a known solution recovers (after integration) the result (7).

Another useful choice is

v(x) = exp
[
−1

2

∫ x

p1(x
′)dx′

]
= W 1/2(x)

which eliminates the u′ term and the equation reduces to

u′′(x) + Q(x)u(x) = 0 (13)

where

Q(x) = p0(x)− 1

2
p′1(x)− 1

4
p2

1(x) .

(13) is known as the normal form or sometimes ‘the Schrödinger form’.

Summary of second order linear ODEs:

For second order linear o.d.e.s we need to find one solution y1 of the homogeneous equation.

Then the second solution y2 can be find by integrating with the Wronksian (7)

Then a particular solution can be constructed from y1 and y2 for any given boundary using
the Green function method.
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