
Section 9: Some properties of ‘Special Functions’

The ‘special functions’ of mathematical physics are usually introduced as the solutions of
certain frequently occurring second order differential equations. This is the way we encoun-
tered the Legendre polynomials and Bessel functions last section when we computed series
expansions. Actually these functions have many representations:

1. Specified solutions of differential equations

2. Series

3. “Rodrigues’ formula” (see below)

4. Integral representations

5. Generating functions

6. Recurrence relations

and we can use any one as a starting point for the study of the functions. In this section
we shall give a flavour of how the different interrelations work for Legendre polynomials and
Bessel functions. In particular we stress the utility of a generating function.

9. 1. Legendre polynomials

Recall Legendre’s equation

(1− x2)y′′(x)− 2xy′(x) + n(n + 1)y(x) = 0 . (1)

A solution for n integer can be found as in section 7 which we can write in a uniform way as

Pn(x) =

[n/2]∑
r=0

(−1)r(2n− 2r)!

2nr!(n− r)!(n− 2r)!
xn−2r (2)

Here n is a +ve integer (n -ve integer doesn’t give any new polynomials). [n/2] indicates the
integer part of n/2.

First we note that (2) can be developed as follows

Pn(x) =

[n/2]∑
r=0

(−1)r

2nr!(n− r)!

dn

dxn
x2n−2r

=
1

2nn!

dn

dxn

n∑
r=0

n!

r! (n− r)!
(−1)r(x2)n−r

=
1

2nn!

dn

dxn
(x2 − 1)n (3)

(Why can we extend the limit of the sum in the second line?) The last equality gives
Rodrigues’ formula. You should write out the first few Legendre polynomials using this.

33



Recall from section 2 that Cauchy’s integral formula gives the identity

dnf(z)

dxn
=

n!

2πi

∮
f(t)

(t− z)n+1
dt

valid for f regular within the closed contour which encircles z. Thus we deduce from Ro-
drigues’ formula that

Pn(x) =
1

2n

1

2πi

∮
(t2 − 1)n

(t− x)n+1
dt (4)

which is Schläfli’s integral representation that you met in tutorial 3 and from it one can
conveniently extract the large n behaviour of Pn.

Now we introduce a generating function. This object is extremely useful for solving recur-
rence relations and other difference equations. Let

F (h, x) =
∞∑

n=0

hnPn(x)

Here we already know Pn and we can calculate the generating function using the integral
representation

F (h, x) =
1

2πi

∮
1

t− x

∞∑
n=0

(
h(t2 − 1)

2(t− x)

)n

dt

=
1

2πi

∮
1

t− x

[
1− h(t2 − 1)

2(t− x)

]−1

dt

=
1

2πi

∮
2

[−ht2 + 2t + h− 2x]
dt

=
−1

πih

∮
dt

(t− t+)(t− t−)

where t± satisfy t2 − 2t/h + 2x/h− 1 = 0 ⇒ t± =
1

h

[
1±

√
1− 2xh + h2

]
Now as h → 0 we see t+ ' 2/h →∞, t− → x thus only t− is within the contour (small circle
encircling x) and by the residue theorem

F (h, x) = −2

h

1

t− − t+
=

1√
1− 2xh + h2

(5)

Let us now derive a recurrence relation from the generating function. We differentiate

∂F

∂h
=

x− h

1− 2hx + h2
F ⇒ (1− 2hx + h2)

∂F

∂h
= (x− h)F

Equating coefficients of hn on both sides and noting that

∂F

∂h
=

∑
n=0

nhn−1Pn =
∑
n=0

(n + 1)hnPn+1

gives
(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0 (6)
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Other recurrence relations can be derived, but (6) is sufficient to determine all Legendre
polynomials from P0.

A familiar use of the generating function is to identify the expansion useful in electrostatics

1

|r1 − r2|
= (r2

1 − 2r1 · r2 + r2
2)
−1/2 =

1

r1

[
1− 2

r2

r1

cos θ +

(
r2

r1

)2
]−1/2

for r1 > r2

=
1

r1

∞∑
n=0

Pn(cos θ)

(
r2

r1

)n

Numbered equations above furnish six different, but as mentioned in the preamble equivalent,
representations of the Legendre Polynomials.

There remains one very important property which is orthogonality. The Polynomials obey∫ +1

−1

Pm(x)Pn(x)dx =
2

2n + 1
δnm

thus they are orthogonal over the interval [−1, +1]. This is most easily proven using Ro-
drigues formula and integrating by parts (see e.g. RHB or Arfken) but we do not do so here
due to lack of time. We shall return to Orthogonality of solutions of 2nd order ODEs when
we consider the Sturm-Liouville problem.

9. 2. Bessel functions

We have met Bessel’s equation in section 7 x2y′′ + xy′ + (x2 − n2)y = 0

and we derived for n integer the Bessel functions (of the first kind)

Jn(x) =
∞∑

p=0

(−1)p

p! (p + n)!

(x

2

)n+2p

. (7)

With this definition J−n = (−1)nJn(x).

Recursion relations can be deduced directly from (7) by playing around with the factorials
(fiddly, so let’s not do it here). One can show

Jn−1(x) + Jn+1(x) =
2n

x
Jn(x) (8)

Jn−1(x) − Jn+1(x) = 2J ′n(x) (9)

Let us proceed to solve these equations as though we did not know formula (7). To do so
we define a generating function, this time as the sum over all n from −∞ to ∞

F (x, h) =
∞∑

n=−∞

hnJn(x) .

We multiply the recursion (8) by hn and sum over all n to find(
h +

1

h

)
F (x, h) =

2h

x

∂F (x, h)

∂h

35



This can be integrated wrt h to give

F = φ(x) exp

[
x

2

(
h− 1

h

)]
To fix φ(x) we use the second recursion (9) which implies(

h− 1

h

)
F (h, x) = 2

∂F (h, x)

∂x
⇒ φ(x) = constant

Taking the constant as one yields the usual normalisation of Jn. We are now left with the
problem of inverting F (x, h) to give Jn(x). This is generally the most difficult step in solving
a recurrence relation. One approach is just to expand the generating function in powers of h
using brute force. However a more elegant approach is to note that since F (h, x) is a series
in powers of h we may use the residue theorem to give

Jn(x) =
1

2πi

∮
F (t, x)

tn+1
dt =

1

2πi

∮
exp

[
x
2
(t− t−1)

]
tn+1

dt (10)

where the contour encircles the origin. This gives an integral representation of the Bessel
function. Another integral rep may be obtained by letting t = eiφ then dt = itdφ and

Jn(x) =
1

2π

∫ 2π

0

dφ exp
[x

2

(
eiφ − e−iφ

)
− inφ

]
=

1

2π

∫ 2π

0

exp (ix sin φ− inφ) dφ =
1

π

∫ π

0

cos(x sin φ− nφ)dφ

9. 3. Generalisation of Bessel functions to non integer order

If n = ν is not an integer we can continue the series representation (7) by using the Gamma
function:

Jν(x) =
∞∑

p=0

(−1)p

p! Γ(p + ν + 1)!

(x

2

)ν+2p

(11)

and J−ν and Jν are now independent functions

However to generalise the integral representation we have to be careful since tν+1 in (10)
implies a branch cut. We take the branch cut from 0 to −∞ along the negative real axis
then one can show that

Jν(x) =
1

2πi

∫
C

exp
[

x
2
(t− t−1)

]
tν+1

dt (12)

where the contour C begins just below the branch cut at −∞ − iε goes around the origin
then goes off to −∞ + iε (just above the branch cut). The idea of this ‘Hankel’ or ‘loop’
type contour is that the integrand vanishes at the end-points.

If one writes the contour as a sum of two pieces from −∞− iε to the origin then from the
origin to −∞+ iε one has

Jν(x) = H(2)
ν (x)/2 + H(1)

ν (x)/2

where H
(2)
ν (x),H

(1)
ν (x) are Hankel functions of the second and first kind which we met in

section 5 and which are also linearly independent solutions of Bessel’s equation.
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