
Section 14: Solution of Partial Differential Equations; the Diffusion equation

14. 1. Wave equation continued

First we finish off our calculation of the Green function for the wave equation we have

G(x − x′, t − t′) =

{
0 t < t′

− c
4π|x−x′|

δ(|x − x′| − c|t − t′|) t > t′

Thus for the inhomogeneous wave equation

∇2u(x, t) − 1

c2

∂2u(x, t)

∂t2
= f(x, t)

a particular solution is

u(x, t) =

∫
d3x′ dt′ f(x′, t′)G(x − x′, t − t′)

= − 1

4π

∫
d3x′ f(x′, t − 1

c
|x − x′|)

|x − x′|

Note that t − 1
c
|x − x′| is the time required for a signal to propagate from x′ to x.

Now let us return to the point of how we bypass the poles on the ω integration contour.

In this example, by going above the poles we made sure our system was causal thus we
obtained the retarded Green function i.e. it is a response to a disturbance in the past.

If instead we went below the poles then they would only contribute for t < 0 thus we would
obtain the advanced Green function.

Aside: In some circumstances one goes below one pole (e.g. at ω = −|kc|) and above
the other, leading to the half advanced/half retarded Green function. This is relevant for
example in Quantum Electrodynamics where it descibes a positive energy electron going
forwards in time plus a negative energy electron going backwards in time, which is the same
as a positron going forwards in time.

14. 2. Diffusion/ heat conduction equation

This is our canonical example of a parabolic equation. These types of equation have one
real characteristic and we should specify Dirichlet or Neumann b.c. on an open surface.

In one space dimension the equation reads

∂2u(x, t)

∂x2
− 1

D

∂u(x, t)

∂t
= 0

where D is the diffusion constant.

As we shall see information propagates forward in time and an initial u(x, t) is smoothed
out as t increases. Conversely if we run time backwards singularities will appear from an
initially smooth function. Thus ‘the arrow of time’ is inherent within the diffusion equation.
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There are two types of ‘physical’ boundary conditions commonly encountered

a) We specify u(x, t0) (usually t0 = 0) for all −∞ < x < ∞
b) We specify u(x, t0) over some range beginning/ending at finite x e.g.: a < x < b. Then in
addition we specify u(a, t) (Dirichlet problem) or u′(a, t) (Neumann problem) on the finite
x boundary (or boundaries).

14. 3. Green function for infinite x domain

We first consider one space dimension. Since the x domain is infinite we Fourier transform

F (k, t) = F [u(x, t)] =

∫ ∞

−∞

u(x, t)e−ikx

yielding − k2F (k, t) =
1

D

∂F (k, t)

∂t
⇒ F (k, t) = A(k)e−k2Dt

If the boundary condition is u(x, 0) = f(x) then A(k) = F [f(x)] and

F [u(x, t)] = F [u(x, 0)]e−k2Dt

Now

F−1
[
e−k2Dt

]
=

∫ ∞

−∞

dk

2π
e−k2Dt+ikx =

∫ ∞

−∞

dk

2π
exp

{
−Dt

(
k − ix

2Dt

)2

− x2

4Dt

}
=

1√
4πDt

e−
x
2

4Dt

where in the big curly brackets we have completed the square and then use a Gaussian
integral identity (see tutorial 2.1). Thus invoking the convolution theorem

u(x, t) =

∫ ∞

−∞

dx′u(x′, 0)G(x, t; x′)

where G(x, t; x′) =
1√

4πDt
exp

{
−(x − x′)2

4Dt

}
θ(t)

G(x, t; x′) is the initial value Green function (i.e. response at x, t to initial condition at x′).

Note the ‘diffusive scaling’ i.e. after time t the inital condition at x′ affects points x which
are distance of order t1/2 away.

To see this explicitly consider u(x, 0) = u0 δ(x). Then

u(x, t) =
u0√
4πDt

exp

{
− x2

4Dt

}
θ(t) .

Consider u(x, t) as the density of some substance. At t = 0 the substance is concentrated
at the origin; as time proceeds the density profile smoothes out and is of width ∼ t1/2. You
should plot this.

Now we consider three space dimensions and define a Green function through

∇2G(x − x′, t − t′) − 1

D

∂G(x − x′, t − t′)

∂t
= δ(x − x′)δ(t − t′) (1)
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Wlog we set x′ = 0, t′ = 0. Again because we have an infinite x domain we Fourier transform,
with the convention

G̃(k, t) =

∫ ∞

−∞

d3x

∫ ∞

−∞

dt u(x, t)e−ik·x+iωt

Thus (1) yields

−k2G̃ +
iω

D
G̃ = 1 ⇒ G̃ =

D

i(ω + iDk2)

and G(x, t) = D

∫
d3k

(2π)3

∫
dω

2π

ei(k·x−ωt)

i(ω + iDk2)
.

Note that in the ω integral there is only one pole at ω = −iDk2. Thus for t < 0, when the
contour is closed in the upper half plane, there is no singularity within the closed contour
and G = 0. For t > 0, when the contour is closed in the lower half plane, the pole is within
the integration contour and using the residue theorem (note clockwise contour)

G(x, t) = −D

∫ ∞

−∞

d3k

(2π)3
e−k2Dt+ik·x = −

∫ ∞

−∞

d3k

2π
exp

{
−Dt

(
k − ix

2Dt

)2

− r2

4Dt

}

= − D

(2π)3

[∫ ∞

∞

dke−Dtk2

]3

exp

{
− r2

4Dt

}
= − D

(2π)3

( π

Dt

)3/2

exp

{
− r2

4Dt

}
θ(t)

Note again the diffusive scaling where the region affected by the disturbance at x = 0 has
a radius of order r ∼ t1/2. In 2d the Green function is a ‘bell shaped’ curve—you should
sketch this.

14. 4. Finite x boundary condition

As an example we consider the semi-infinite rod. The boundary condition is u(x, 0) given
for x > 0 and u(0, t) = f(t) i.e. u is prescribed at the boundary x = 0.

There are two approaches to solving the problem

1. Use Fourier transform wrt x, but since range is 0 to ∞ we use sine/cosine transforms
defined by

g(k) = 2

∫ ∞

0

dx f(x)

{
sin(xk)

cos(xk)
f(x) =

1

π

∫ ∞

0

dk g(k)

{
sin(xk)

cos(xk)

This leads to

B(t) − k2g(k, t) =
1

D

∂g(k, t)

∂t

where the boundary term is B(t) = ku(0, t) for the sine transform and B(t) =
−∂u(0, t)/∂x for the cosine transform. We thus choose whichever transform suits
the given b.c. then integrate to find g(k, t) and invert; details are left to tutorial.

2. Use Laplace transform wrt t:

F (x, s) =

∫ ∞

0

dtu(x, t)e−st and recall

∫ ∞

0

dt

(
∂u(x, t)

∂t

)
e−st = u(x, 0)+sF (x, s)
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As an example of the Laplace transform approach consider the heat conduction problem on
the semi-infinite rod where the temperature T is initially 0 for x > 0 and the boundary
(x = 0) is kept at constant temperature T0 then

∂2T

∂x2
− 1

D

∂T

∂t
= 0 T (x, 0) = 0 T (0, t) = T0

Taking the Laplace transform yields

∂2F (x, s)

∂x2
− sF (x, s)

D
= 0 and F (0, s) =

T0

s

⇒ F (x, s) =
T0

s
exp

(
−

√
s/D x

)

where we have discarded the solution exp
(
+

√
s/D x

)
since it is not bounded as x → ∞.

The easiest way to invert the Laplace transform is to look up tables and note that

L

[
erfc

(
a

2
√

t

)]
=

exp(−a
√

s)

s
⇒ T (x, t) = T0 erfc

(
x

2
√

D t

)

where erfc(z) = 1 − erf(z) =
2√
π

∫ ∞

z

du exp(−u2)

for small z erfc(z) ∼ 1 − 2√
π

(
z − z3

3
+

z5

5
− · · ·

)

for large z erfc(z) ∼ e−z2

√
π

(
1

z
− 1

2z2
+ · · ·

)

You should make a sketch of erfc(z).

One can invert the LT by the inversion integral but it is a bit nasty to dig out the erfc (see
tutorial). However, as usual, the integration contour allows easy evaluation of the large t
behaviour as we now show.

We note that F (x, s) has a branch point at s = 0 and we take the branch cut along the
negative real axis. Then, when we close the contour to the left we introduce a ‘loop integral’
or ‘Hankel type contour’ C around the branch cut and our inversion is given (see section 12)
by

T (x, t) =
T0

2πi

∫

C

ds

s
exp

(
−

√
s/D x

)
est

The large t behaviour is given by the singularity furthest to the right (i.e. s = 0) so we
expand

T0

s
exp

(
−

√
s/D x

)
=

T0

s
− T0√

D

x

s1/2
+ · · ·

and recalling (see section 12)
1

2πi

∫

C

ds s−νest =
tν−1

Γ(ν)
and Γ(1/2) =

√
π we obtain

T (x, t) = T0

[
1 − x√

πD t1/2
+ · · ·

]
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