METHODS OF MATHEMATICAL PHYSICS

Infinite series; Residues; Analytic Continuation
Tutorial Sheet 1
\mathbf{K} : key question - explores core material
R: review question - an invitation to consolidate
\mathbf{C} : challenge question - going beyond the basic framework of the course
S : standard question - general fitness training!
1.1 'Telescoping' an infinite series [S]

Consider $S=\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$
By writing $n=(n+1)-1$ in the numerator of the summand, show that a large cancellation occurs between the resulting two series. Hence evaluate S.

1.2 Comparison of a series with an integral [S]

By comparison with an integral, show that the series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{s}}
$$

converges for $s>1$.
What does the ratio test yield for this series?

1.3 Bernoulli Numbers [C]

Consider the infinite series

$$
\frac{x}{e^{x}-1}=B_{0}+B_{1} x+\frac{B_{2}}{2!} x^{2} \cdots+\frac{B_{n}}{n!} x^{n} \cdots
$$

By expanding the lhs and equating powers of x determine that

$$
\begin{array}{r}
1=B_{0} \\
0=\frac{B_{0}}{2!}+\frac{B_{1}}{1!} \\
0=\frac{B_{0}}{3!}+\frac{B_{1}}{2!1!}+\frac{B_{2}}{1!2!}
\end{array}
$$

Show that for $n>1$ one can write the relations as

$$
(B+1)^{n}-B^{n}=0 \quad \text { where } \quad B^{s} \rightarrow B_{s}
$$

1.4 Asymptotic expansion of error function [K]

The error function is defined as

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} d t e^{-t^{2}}
$$

Show by considering the complementary error function $\operatorname{erfc}(x)=1-\operatorname{erf}(x)$ and integrating by parts that

$$
\operatorname{erf}(x) \sim 1-\frac{1}{\sqrt{\pi}} \frac{e^{-x^{2}}}{x} \sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n-1)!!}{x^{2 n} 2^{n}}
$$

where $(2 n-1)!!=(2 n-1)(2 n-3) \cdots(3)(1)$
Explain why this is an asymptotic expansion of the error function.

1.5 Analytic Continuation [K]

Suppose we are given the power series expansion

$$
f(z)=-\sum_{n=1}^{\infty} \frac{z^{n}}{n}
$$

which converges for $|z|<1$.
Sum this series and derive a power series expansion for the resulting function about $z=$ $-1 / 2$. What is the radius of convergence of this series?
Repeat for expansions about $z=1 / 2$ and $z=3 / 4$.
Discuss the complication that arises when analytically continuing to the point $z=2$.

1.6 Integrating via the residue method [S]

Compute the following real or complex integrals by using the residue method:

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{e^{i a x}}{a^{2}+x^{2}} d x \tag{i}
\end{equation*}
$$

where a is a real number.
(ii)

$$
\oint_{\gamma} \frac{d z}{z^{n-m+1}}
$$

where n and m are integers, and γ is a circuit enclosing the origin once in an anti-clockwise direction.
(iii)

$$
\int_{0}^{2 \pi} \frac{d \theta}{5-4 \cos (\theta)}
$$

To solve this, you should use the fact that $\cos (\theta)=\frac{e^{i \theta}+e^{-i \theta}}{2}$.

1.7 Bernoulli numbers from a contour integration [C]

(i) Show that generalising x to complex variable z (analytic continuation) in question 1.3 implies that

$$
B_{n}=\frac{n!}{2 \pi i} \oint_{C} \frac{z}{e^{z}-1} \frac{d z}{z^{n+1}}
$$

where the contour C encircles the origin in an anticlockwise fashion with $|z|<2 \pi$ to avoid the poles at $\pm 2 \pi i$.
(ii) Locate and classify all the singularities of the integrand.
(iii) By the residue theorem $B_{n}=2 \pi i \times$ residue from origin. By deforming the contour show that
$B_{n}=-2 \pi i \times$ sum of all other residues
Hint: you will need to consider a large circle of radius $R \rightarrow \infty$ encircling the origin in a clockwise fashion
(iv) Hence show that

$$
\begin{aligned}
& B_{n}=0 \text { for } n \text { odd } \\
& B_{n}=-2 \frac{(-1)^{n / 2} n!}{(2 \pi)^{n}} \zeta(n) \text { for } n \text { even }
\end{aligned}
$$

where $\zeta(s)=\sum_{m=1}^{\infty} m^{-s}$. By calculating explicitly the Bernouilli numbers in 1.3, evaluate $\zeta(2)$ and $\zeta(4)$

