METHODS OF MATHEMATICAL PHYSICS

Gamma Function; Laplace's Method

Tutorial Sheet 2
\mathbf{K} : key question - explores core material
R: review question - an invitation to consolidate
C: challenge question - going beyond the basic framework of the course
S: standard question - general fitness training!
2.1 Generalising the gaussian integral formula [s] Given the formula

$$
\int_{-\infty}^{\infty} d x e^{-a x^{2} / 2}=\sqrt{\frac{2 \pi}{a}}
$$

show that:
(i)

$$
\int_{-\infty}^{\infty} d x e^{-i k x-a x^{2} / 2}=\sqrt{\frac{2 \pi}{a}} e^{-k^{2} / 2 a}
$$

(Hint: try completing the square, then close a contour in the complex plane)
(ii)

$$
\int_{-\infty}^{\infty} d x e^{i a x^{2} / 2}=\sqrt{\frac{2 \pi}{a}} e^{i \pi / 4}
$$

2.2 Use of Gamma function [s] Consider the integral

$$
\int \mathrm{d} \underline{x} e^{-r^{2}}
$$

over all n dimensional space where \underline{x} is the n-dimensional position vector and r is the radial distance from the origin. By evaluating the integral in two ways-i) as a product of n one-dimensional integrals over x_{i} ii) by using polar coordinates in n dimensions - express the surface area and volume of the n dimensional unit sphere in terms of Gamma functions.
(N.B. a circle is 2 d sphere, a usual sphere is 3 d sphere, and generally you should assume that the area of an n-dimensional sphere is given by $S_{n} r^{n-1}$)
2.3 Another use of Gamma function [s] Show that

$$
\int_{0}^{\infty} e^{-s^{p}} d s=\frac{\Gamma(1 / p)}{p}
$$

2.4 Generalising Laplace's Method [s] Generalise Laplace's method to calculate the leading approximation to the integrals along the real axis of the form

$$
I(x)=\int_{a}^{b} f(t) e^{x \phi(t)} d t \quad \text { for } \quad x \gg 0
$$

if the near to the stationary point the expansion of ϕ is

$$
\phi(t)=\phi(c)+\frac{1}{n!}(t-c)^{n} \phi^{(n)}(c)+\cdots
$$

where n is even and $\phi^{(n)}(c)<0$. You will need to use the result of Q2.3
2.5

Derivation of Euler's reflection formula [r] Review the derivation of

$$
\Gamma(z) \Gamma(1-z)=\Gamma(1) B(z, 1-z)=\int_{0}^{1} d t t^{z-1}(1-t)^{-z}=\int_{0}^{\infty} d x \frac{x^{z-1}}{1+x}
$$

where we changed variables $t=x /(1+x)$.
Evaluate the final integration by a contour integral to show

$$
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z}
$$

Hint: choose the contour to be the same as Hankel's contour.
Why is the resulting expression valid for whole complex plane?
Hypergeometric Function [c] Consider the hypergeometric function defined as

$$
{ }_{2} F_{1}(a, b, c ; x)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!}
$$

where $(a)_{n}=a(a+1)(a+2) \cdots(a+n-1)$.
Use the Beta function to verify the integral representation

$$
{ }_{2} F_{1}(a, b, c ; z)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} d t t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a}
$$

2.7 Stirling's Formula [r] Review the derivation of Stirling's formula by Laplace's method

$$
\begin{aligned}
\Gamma(x+1) & =x^{x+1} \int_{0}^{\infty} d s \exp (x[-s+\ln s]) \\
& \simeq x^{x+1} e^{-x} \int_{-\infty}^{\infty} d s \exp \left(-x u^{2} / 2\right) \\
& =x^{x+1 / 2} e^{-x} \sqrt{2 \pi}
\end{aligned}
$$

Now consider calculating the next term in the expansion. Derive the general formula

$$
\int_{-\infty}^{\infty} d u u^{n} e^{-a u^{2} / 2}=\left\{\begin{array}{llll}
0 & \text { if } & n & \text { odd } \tag{1}\\
\frac{\sqrt{2 \pi}}{a^{(n+1) / 2}}(n-1)(n-3)(n-5) \ldots .(3)(1) & \text { if } & n & \text { even }
\end{array}\right.
$$

Using this formula work out to which order you have to expand $-s+\ln s$ to calculate the first correction to Stirling's formula and identify the integrals that will contribute.

Two integrals related to the Γ function [s] Compute the two following integrals:

$$
\int_{0}^{1} x^{x} d x
$$

and

$$
\oint_{\gamma_{n}} \Gamma(z) d z
$$

where γ_{n} is a circle enclosing $z=-n(n \geq 0$ an integer) anticlockwise and not containing any other negative integers in its interior.
Hint: Attempt to write the first integrand as a series.

