METHODS OF MATHEMATICAL PHYSICS

Saddle-point Method

Tutorial Sheet 3
\mathbf{K} : key question - explores core material
R: review question - an invitation to consolidate
C: challenge question - going beyond the basic framework of the course
S: standard question - general fitness training!

3.1 Asymptotic expansion of Hankel function [r]

Using the saddle-pont method evaluate the asymptotic expression of the Hankel function of the second kind given by

$$
H_{\nu}^{(2)}=\frac{1}{\pi i} \int_{-\infty-i \epsilon}^{0-i \epsilon} \exp \left[\frac{x}{2}\left(z-\frac{1}{z}\right)\right] \frac{d z}{z^{\nu+1}}
$$

where there is a branch cut along the negative real axis.

$$
\text { Ans: } H_{\nu}^{(2)} \sim \sqrt{\frac{2}{\pi x}} e^{-i(x-\nu \pi / 2-\pi / 4)}
$$

3.2 Changing variable to obtain form for saddle-point method [s]

Consider

$$
I(x)=\int_{-\infty+i \epsilon}^{\infty+i \epsilon} \frac{\exp \left(-t^{2}\right)}{t^{2 x}} d t
$$

where there is a branch cut along the positive real axis.
Change variable to $t=\sqrt{x} u$ then use the saddle-point method to calculate the leading behaviour of the integral for large x.
Hint: You should find two saddle points at $\pm i$ but only one will contribute.

$$
\text { Ans: } I(x) \sim \sqrt{\frac{\pi}{2 x}} x^{-x+1 / 2} e^{-i \pi x+x}
$$

3.3 Asymptotic expansion of Legendre Polynomial [s]

The Legendre polynomials $P_{n}(\cos \alpha)$ may be defined by Schläfli's integral

$$
P_{n}(\cos \alpha)=\frac{1}{2^{n+1} \pi i} \oint \frac{\left(t^{2}-1\right)^{n}}{(t-\cos \alpha)^{n+1}} d t
$$

where the contour encircles $t=\cos \alpha$ in an anticlockwise direction. Use the saddle point method to obtain the asymptotic behaviour for large n when $0<\alpha<\pi$:
(i) Define $f(t)=\ln \left(t^{2}-1\right)-\ln (t-\cos \alpha)$ and show that $f^{\prime}(t)=0$ at $t_{ \pm}=e^{ \pm i \alpha}$.
(ii) Show that $f^{\prime \prime}\left(t_{ \pm}\right)=\frac{\exp \mp i(\alpha+\pi / 2)}{\sin \alpha}$.

What is ϕ, the phase of the steepest descent contour through the two saddlepoints? Check that the contour goes through the saddle points in the correct sense.
(iii) Use the saddle point formula

$$
\int g(z) e^{N f(z)} d z \simeq g\left(z_{0}\right) e^{N f\left(z_{0}\right)} e^{i \phi}\left(\frac{2 \pi}{N\left|f^{\prime \prime}\left(z_{0}\right)\right|}\right)^{1 / 2}
$$

to compute the contributions from the two saddle points t_{+}, t_{-}as

$$
-\frac{e^{i n \alpha+3 i \pi / 4+i \alpha / 2}}{\sqrt{2 \pi \sin \alpha n}}, \frac{e^{-i n \alpha+i \pi / 4-i \alpha / 2}}{\sqrt{2 \pi \sin \alpha n}}
$$

respectively.
(iv) Hence show

$$
P_{n}(\cos \alpha) \sim \sqrt{\frac{2}{\pi \sin \alpha n}} \sin (n \alpha+\alpha / 2+\pi / 4)
$$

