METHODS OF MATHEMATICAL PHYSICS

Dirac Delta; Green functions for ODE

Tutorial Sheet 4

K: key question – explores core material

 \mathbf{R} : review question – an invitation to consolidate

C: challenge question – going beyond the basic framework of the course

S: standard question – general fitness training!

4.1 Dirac delta function [k]

- (i) Show that $\delta(ax) = \frac{1}{|a|}\delta(x)$
- (ii) Show that $\delta(x^2 a^2) = \frac{1}{2|a|} [\delta(x+a) + \delta(x-a)]$
- (iii) What is $x\delta(x)$? What is $x\delta'(x)$?
- (iv) Evaluate $\int_{-\infty}^{\infty} dx \, \delta'(x^2 a^2) e^{iwx}$
- (v) For a point $\vec{r_0}$ on the unit sphere show that

$$\delta(\underline{\hat{r}} - \underline{r}_0) = \frac{1}{\sin\theta} \delta(\theta - \theta_0) \delta(\phi - \phi_0)$$

where $\hat{\underline{r}}$ is a unit vector and θ , ϕ are spherical polar coordinates

4.2 Integral representation of step function [r]

Show that an integral representation of the Heaviside step function is given by

$$\theta(x) = \frac{1}{2\pi i} \int_{-\infty - i\gamma}^{\infty - i\gamma} \frac{e^{ixk}}{k} dk$$

where $\gamma > 0$

4.3 Wronskian [k]

(i) Show in the case of a second order ODE

$$y'' + p_1(x)y' + p_0(x)y = 0$$

that the Wronskian of two solutions $Y_1(x), Y_2(x)$

$$W(x) \equiv \left| \begin{array}{cc} Y_1 & Y_2 \\ Y_1' & Y_2' \end{array} \right|$$

obeys

$$W'(x) = -p_1(x)W(x) .$$

(ii)* Show that the Wronskian of
$$n$$
 solutions of an n^{th} order ODE obeys

$$W'(x) = -p_{n-1}(x)W(x) .$$

4.4 Green Function [r]

Consider the equation for driven simple harmonic motion

$$y''(t) + w^2 y(t) = f(t)$$

- (i) Calculate the Wronskian using Abel's formula. Given that one solution of the homogeneous equation is $Y_1(t) = \sin wt$, find a second linearly independent solution.
- (ii) Using the Green Function method find a particular solution for the inhomogeneous equation with boundary conditions $y(0) = y(\pi/2w) = 0$.
- (iii) Calculate the solution explicitly for $f(t) = k \sin \alpha t$.

4.5 Green function [k]

Construct the Green function for the problem

$$y''(x) = f(x)$$
 for $0 < x < L$; $y(0) = 0$; $\frac{dy}{dx}\Big|_{x=L} = 0$

Write down the solution of the differential equation in terms of integrals over f(x), and verify that your solution satisfies the differential equation and the boundary conditions.

4.6 Another Green function [s]

Construct the Green function for the problem

$$\frac{d}{dx}\left\{x\frac{dy}{dx}\right\} - \frac{n^2}{x}y(x) = f(x) \quad \text{for} \quad 0 < x < 1 ; \qquad y(0) \quad \text{bounded} ; \quad y(1) = 0$$

Treat the cases n = 0 and $n \neq 0$ separately. [For $n \neq 0$, the equation is solved by $x^{\pm n}$.]

4.7 Initial value problem [s]

Solve the initial value problem

$$\frac{d^2}{dt^2}y(t) + \alpha \frac{dy(t)}{dt} = f(t) \qquad \text{for} \quad y(0) = A \quad \left. \frac{dy(t)}{dt} \right|_{t=0} = B$$

by constructing the solution in the form

$$y(t) = \int_0^t G(t, t') f(t') dt' + \tilde{y}(t)$$

where the first term satisfies homogeneous initial conditions.

M.R. Evans : October 30, 2005