METHODS OF MATHEMATICAL PHYSICS

Dirac Delta; Green functions for ODE

\mathbf{K} : key question - explores core material
R: review question - an invitation to consolidate
C: challenge question - going beyond the basic framework of the course
S: standard question - general fitness training!

4.1 Dirac delta function [k]

(i) Show that $\delta(a x)=\frac{1}{|a|} \delta(x)$
(ii) Show that $\delta\left(x^{2}-a^{2}\right)=\frac{1}{2|a|}[\delta(x+a)+\delta(x-a)]$
(iii) What is $x \delta(x)$? What is $x \delta^{\prime}(x)$?
(iv) Evaluate $\int_{-\infty}^{\infty} d x \delta^{\prime}\left(x^{2}-a^{2}\right) e^{i w x}$
(v) For a point $\overrightarrow{r_{0}}$ on the unit sphere show that

$$
\delta\left(\underline{\hat{r}}-\underline{r}_{0}\right)=\frac{1}{\sin \theta} \delta\left(\theta-\theta_{0}\right) \delta\left(\phi-\phi_{0}\right)
$$

where $\underline{\hat{r}}$ is a unit vector and θ, ϕ are speherical polar coordinates

4.2 Integral representation of step function [r]

Show that an integral representation of the Heaviside step function is given by

$$
\theta(x)=\frac{1}{2 \pi i} \int_{-\infty-i \gamma}^{\infty-i \gamma} \frac{e^{i x k}}{k} d k
$$

where $\gamma>0$

4.3 Wronskian [k]

(i) Show in the case of a second order ODE

$$
y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{0}(x) y=0
$$

that the Wronskian of two solutions $Y_{1}(x), Y_{2}(x)$

$$
W(x) \equiv\left|\begin{array}{cc}
Y_{1} & Y_{2} \\
Y_{1}^{\prime} & Y_{2}^{\prime}
\end{array}\right|
$$

obeys

$$
W^{\prime}(x)=-p_{1}(x) W(x) .
$$

(ii)* Show that the Wronskian of n solutions of an $n^{\text {th }}$ order ODE obeys

$$
W^{\prime}(x)=-p_{n-1}(x) W(x) .
$$

4.4 Green Function [r]

Consider the equation for driven simple harmonic motion

$$
y^{\prime \prime}(t)+w^{2} y(t)=f(t)
$$

(i) Calculate the Wronskian using Abel's formula. Given that one solution of the homogeneous equation is $Y_{1}(t)=\sin w t$, find a second linearly independent solution.
(ii) Using the Green Function method find a particular solution for the inhomogeneous equation with boundary conditions $y(0)=y(\pi / 2 w)=0$.
(iii) Calculate the solution explicitly for $f(t)=k \sin \alpha t$.

4.5 Green function [k]

Construct the Green function for the problem

$$
y^{\prime \prime}(x)=f(x) \quad \text { for } \quad 0<x<L ; \quad y(0)=0 ;\left.\quad \frac{d y}{d x}\right|_{x=L}=0
$$

Write down the solution of the differential equation in terms of integrals over $f(x)$, and verify that your solution satisfies the differential equation and the boundary conditions.

4.6 Another Green function [s]

Construct the Green function for the problem

$$
\frac{d}{d x}\left\{x \frac{d y}{d x}\right\}-\frac{n^{2}}{x} y(x)=f(x) \quad \text { for } \quad 0<x<1 ; \quad y(0) \quad \text { bounded } ; \quad y(1)=0
$$

Treat the cases $n=0$ and $n \neq 0$ separately. [For $n \neq 0$, the equation is solved by $x^{ \pm n}$.]

4.7 Initial value problem [s]

Solve the initial value problem

$$
\frac{d^{2}}{d t^{2}} y(t)+\alpha \frac{d y(t)}{d t}=f(t) \quad \text { for } \quad y(0)=\left.A \quad \frac{d y(t)}{d t}\right|_{t=0}=B
$$

by constructing the solution in the form

$$
y(t)=\int_{0}^{t} G\left(t, t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}+\tilde{y}(t)
$$

where the first term satisfies homogeneous initial conditions.

