METHODS OF MATHEMATICAL PHYSICS

Series expansions of ODE; generating functions

K: key question - explores core material
R: review question - an invitation to consolidate
\mathbf{C} : challenge question - going beyond the basic framework of the course
S: standard question - general fitness training!

5.1 Second order ODEs of physics [k]

Find the positions and nature of the singularities of the following differential equations

$$
\begin{aligned}
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left(x^{2}-n^{2}\right) y(x) & =0, & & \text { (Bessel's equation) } \\
y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 \lambda y(x) & =0, & & \text { (Hermite's equation) } \\
x y^{\prime \prime}(x)+(1-x) y^{\prime}(x)+\lambda y(x) & =0, & & \text { (Laguerre's equation) } \\
\left(1-x^{2}\right) y^{\prime \prime}(x)-x y^{\prime}(x)+\lambda y(x) & =0, & & \text { (Chebyshev's equation) } \\
\left(1-x^{2}\right)^{2} y^{\prime \prime}(x)-2 x\left(1-x^{2}\right) y^{\prime}(x)+\left\{\lambda\left(1-x^{2}\right)-\mu\right\} y(x) & =0, & & \text { (Associated Legendre equation) }
\end{aligned}
$$

5.2 Euler's Equation [s] Find two real, linearly-independent solutions to Euler's equation

$$
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+y(x)=0
$$

by making a series expansion about $x=0$. Verify that the Wronskian of your solution is a constant times x^{-1}
5.3 Legendre Polynomials [s] Write down Legendre's equation

$$
\left(1-x^{2}\right) y^{\prime \prime}(x)-2 x y^{\prime}(x)+\lambda y(x)=0
$$

in terms of the variable $z=1-x$ and obtain a solution in terms of a power series in z.
Show that the series diverges as $z \rightarrow 2$ but that if $\lambda=n(n+1)$ where $n=0,1,2 \ldots$, the solution is a polynomial in z.
Obtain these polynomials for $n=0,1$ and 2 and derive a linearly-independent solution in the $n=0$ case.

5.4 Solving recurrence relations using a generating function [s]

Consider functions $f_{n}(x)$, where n is an integer, defined by the recurrence relations

$$
\begin{aligned}
(n+1) f_{n+1}(x) & =x f_{n}(x)-f_{n+2}(x) \\
f_{n}^{\prime}(x) & =f_{n-1}(x)
\end{aligned}
$$

Calculate the generating function $G(x, t)=\sum_{n=-\infty}^{\infty} f_{n}(x) t^{n}$ and show that

$$
f_{0}(x)=\text { Constant } \times \sum_{n=0}^{\infty} \frac{x^{n}}{(n!)^{2}}
$$

5.5 Hermite polynomials [s]

The Hermite polynomials $H_{n}(x)$ where $n=0,1,2 \ldots$ have the following generating function

$$
G(x, h) \equiv \sum_{n=0}^{\infty} H_{n}(x) \frac{h^{n}}{n!}=e^{2 h x-h^{2}}
$$

(i) By taking derivatives wrt h and x respectively, find the recurrence relation relating H_{n-1}, H_{n}, H_{n+1} and the recurrence relation relating H_{n}^{\prime} and H_{n-1}
(ii) Use Cauchy's integral formula and the generating function to obtain an integral representation of $H_{n}(x)$
(iii)* Use the integral representation to evaluate

$$
\int_{-\infty}^{\infty} e^{-x^{2} / 2} H_{n}(x) d x
$$

Ans: $\quad 0$ for n odd $\sqrt{2 \pi} \frac{n!}{(n / 2)!}$ for n even

5.6 Asymptotic expansion around $x=\infty[\mathbf{r}]$

If $y(x)$ satisfies Bessel's equation

$$
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left[x^{2}-n^{2}\right] y(x)=0 \quad 0<x<\infty
$$

show that $u(x)=x^{1 / 2} y(x)$ satisfies

$$
u^{\prime \prime}+\left[1-b / x^{2}\right] u(x)=0 \quad \text { where } \quad b=\left(n^{2}-1 / 4\right) .
$$

Develop an asymptotic (large x) expansion of $u(x)$ of the form

$$
u=\mathrm{e}^{ \pm i x} \sum_{m=0}^{\infty} a_{m} x^{-m}
$$

and show that

$$
a_{m+1}= \pm \frac{m(m+1)-b}{2 i(m+1)} a_{m}
$$

5.7 Behaviour near singularities [k]

If $y(x)$ satisfies the equation

$$
x^{2} y^{\prime \prime}(x)+2 x y^{\prime}(x)+\left[\lambda x-l(l+1)-\frac{x^{2}}{4}\right] y(x)=0 \quad 0<x<\infty
$$

find a function $v(x)$ such that $u(x)=y(x) / v(x)$ satisfies an equation of the form

$$
u^{\prime \prime}+Q(x) u(x)=0 .
$$

Hence investigate the behaviour of $y(x)$ in the neighbourhood of the singularites in the original equation (i.e. determine leading behaviours of $u(x)$ near $x=0$ and $x=\infty$).

