METHODS OF MATHEMATICAL PHYSICS

Fourier Transformations; Solution of ODEs

Tutorial Sheet 6
\mathbf{K} : key question - explores core material
R: review question - an invitation to consolidate
C: challenge question - going beyond the basic framework of the course
S: standard question - general fitness training!

6.1 Fourier Transforms [k]

What is the Fourier transform of

$$
\text { (i) } \quad \delta(x) \quad \text { (ii) } \quad \delta^{\prime}(x) \quad \text { (iii) } \quad \exp \left(-\frac{1}{2} \alpha x^{2}\right) ?
$$

6.2 Convolution Theorem [k]

Show that

$$
\mathcal{F}\left[f_{1}(x) f_{2}(x)\right]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g_{1}\left(k^{\prime}\right) g_{2}\left(k-k^{\prime}\right) d k^{\prime}
$$

where \mathcal{F} denotes Fourier transform and $g_{1}(k)=\mathcal{F}\left[f_{1}\right], g_{2}(k)=\mathcal{F}\left[f_{2}\right]$.

6.3 Parseval's Theorem [s]

Consider the Fourier series

$$
f(x)=\sum_{n=-\infty}^{\infty} C_{n} \exp \frac{i n \pi x}{L} .
$$

Show that

$$
C_{n}=\frac{1}{2 L} \int_{-L}^{L} d x f(x) \exp \frac{-i n \pi x}{L}
$$

Hint: Recall that

$$
\delta_{m n}=\frac{1}{2 L} \int_{-L}^{L} \exp \frac{i(m-n) \pi x}{L} d x .
$$

Now consider the related inverse Fourier transform

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k g(k) e^{i k x}
$$

Show that

$$
\frac{1}{2 L} \int_{-L}^{L} d x|f(x)|^{2}=\sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2} \quad \text { and } \quad \int_{-\infty}^{\infty} d x|f(x)|^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k g(k) g^{*}(k)
$$

6.4 Causal and non-causal systems [s]

Use the Fourier transforms to obtain solutions to the equations

$$
\begin{array}{ll}
\text { (i) } & f^{\prime \prime}(t)+2 f^{\prime}(t)+f(t)=g(t) \tag{i}\\
\text { (ii) } & f^{\prime \prime \prime}(t)-2 f^{\prime}(t)+4 f(t)=g(t)
\end{array}
$$

in the form of a convolution. Which of these equations describes a causal linear system?
Hint for (ii): one root of $i k^{3}+2 i k-4=0$ is $k=2 i$.
6.5 Fourier transform of uniform disk [c]

Consider the function $\operatorname{circ}(\mathbf{r})$, which is defined as follows,

$$
\begin{array}{lll}
\operatorname{circ}(\mathbf{r})=1 & \text { if } \quad|\mathbf{r}| \leq 1 \\
\operatorname{circ}(\mathbf{r})=0 & & \text { otherwise. }
\end{array}
$$

Show that the Fourier transform of $f(\mathbf{r})=\operatorname{circ}(\mathbf{r})$ in 2 dimensions is

$$
\tilde{f}(\mathbf{q})=2 \pi \frac{J_{1}(q)}{q}
$$

where $q=|\mathbf{q}|$, and J_{1} is the Bessel function of index 1 .
Hint: The following relation may be useful,

$$
\int d r r J_{0}(r)=r J_{1}(r)
$$

where J_{1} is the Bessel function of index 0 , which may be written for instance as

$$
J_{0}(r)=\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} \cos (r \cos (\theta))=\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} \exp [-i r \cos (\theta)]
$$

