METHODS OF MATHEMATICAL PHYSICS

Laplace Transforms

Tutorial Sheet 7
\mathbf{K} : key question - explores core material
R: review question - an invitation to consolidate
C: challenge question - going beyond the basic framework of the course
S: standard question - general fitness training!

7.1 Properties of Laplace transforms [k]

(a) Given that $F(s)$ is the Laplace transform of $f(t)$, such that

$$
F(s)=\mathcal{L}[f(t)]=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

verify the following basic Laplace transform properties:-
(i) $\mathcal{L}\left[e^{\alpha t} f(t)\right]=F(s-\alpha)$;
(ii) $\quad \mathcal{L}[f(t-\alpha) \theta(t-\alpha)]=e^{-\alpha s} F(s)$;
(iii) $\mathcal{L}[f(a t)]=\frac{1}{a} F\left(\frac{s}{a}\right)$;
(iv) $\quad \mathcal{L}\left[t^{n} f(t)\right]=\left(-\frac{d}{d s}\right)^{n} F(s)$.
(b) Given that the Laplace transform of $\cos t$ is $s /\left(s^{2}+1\right)$, find using the above results the Laplace transforms of
(i) $\quad \cos \omega\left(t-t_{0}\right) \theta\left(t-t_{0}\right)$;
(ii) $e^{-\kappa t} \cos \omega t$;
(iii) $t \cos \omega t$.

7.2 Inverse Laplace transforms [k]

(i) Given that $\mathcal{L}[\sin \omega t]=\omega /\left(s^{2}+\omega^{2}\right)$, use the convolution theorem to find $\mathcal{L}^{-1}\left[\left(s^{2}+\omega^{2}\right)^{-2}\right]$.
(ii) Given that $\mathcal{L}\left[(\pi t)^{-1 / 2}\right]=s^{-1 / 2}$, use the convolution theorem to show that

$$
\mathcal{L}^{-1}[1 / s \sqrt{s+1}]=\operatorname{erf}(\sqrt{t})
$$

where $\operatorname{erf}(x) \equiv \frac{2}{\sqrt{\pi}} \int_{0}^{x} d u e^{-u^{2}}$.

7.3 The Browmich inversion formula [s]

Use the Bromwich inversion formula and the residue theorem to obtain the inverse Laplace transforms of the following functions:
(i) $\quad s\left(s^{2}+a^{2}\right)^{-1}\left(s^{2}+b^{2}\right)^{-1}$,
(ii) $\quad\left(s^{2}+\omega^{2}\right)^{-2}$,
(iii) $\quad e^{-b s} /(s-a)^{n}$,
(iv)* $s^{-1 / 2}$.

7.4 Solving ODEs with Laplace transforms

Use the Laplace transform to solve the following initial value problems:
(i) $\quad \ddot{x}-x=t, \quad x(0)=\dot{x}(0)=0$,
(ii)* $\quad \ddot{x}+\omega^{2} x+\alpha^{2}(x-y)=0$,

$$
\ddot{y}+\omega^{2} y+\alpha^{2}(y-x)=0
$$

$$
x(0)=y(0)=\dot{y}(0)=0, \quad \dot{x}(0)=u
$$

(iii)

$$
\begin{aligned}
& x^{\prime \prime \prime}+x^{\prime \prime}+x^{\prime}+x+1=0 \\
& x(0)=x^{\prime}(0)=x^{\prime \prime}(0)=0
\end{aligned}
$$

Use Laplace transforms to solve the integral equation

$$
f(y)=1+\int_{0}^{y} x e^{-x} f(y-x) d x
$$

7.6 Laguerre Polynomials [s]

(i) The Laguerre polynomials may be defined as

$$
L_{n}(t)=e^{t} \frac{d^{n}}{d t^{n}}\left(t^{n} e^{-t}\right)
$$

Show that $\mathcal{L}\left[L_{n}(t)\right]=n!(s-1)^{n} / s^{n+1}$. Now consider the Laplace transform of f_{n} satisfying the equation

$$
t \ddot{f}_{n}+(1-t) \dot{f}_{n}+n f_{n}=0
$$

Deduce that $f_{n}=L_{n}$ is a solution to this equation.
(ii) By taking its Laplace transform show that $F(x, t)=e^{-x t /(1-x)} /(1-x)$ is a generating function for the Laguerre polynomials, ie that

$$
F(x, t)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} L_{n}(t)
$$

7.7 Riemann Zeta function [s]

The zeta function is defined for $\Re z>1$ by $\zeta(z)=\sum_{1}^{\infty} s^{-z}$. By considering $\int_{0}^{\infty} e^{-s t} t^{z-1} d t$ show that

$$
\zeta(z)=\frac{1}{\Gamma(z)} \int_{0}^{\infty} \frac{t^{z-1}}{e^{t}-1} d t
$$

Deduce from this the Hankel representation

$$
\zeta(z)=\frac{\Gamma(1-z)}{2 \pi i} \int_{C} \frac{t^{z-1}}{e^{-t}-1} d t
$$

where C is the anticlockwise 'loop' contour around the branch cut from $-\infty$ to 0 (see lecture 3).
[You will need to recall Euler's reflection formula]

7.8 Heaviside expansion theorem [s]

If the Laplace transform $F(s)$ may be written as a ratio

$$
F(s)=\frac{g(s)}{h(s)}
$$

where $g(s)$ and $h(s)$ are analytic functions, $h(s)$ having simple isolated zeros at $s=s_{i}$ show that

$$
f(t)=L^{-1}\left[\frac{g(s)}{h(s)}\right]=\sum_{i} \frac{g\left(s_{i}\right)}{h^{\prime}\left(s_{i}\right)} e^{s_{i} t}
$$

