METHODS OF MATHEMATICAL PHYSICS

Solution of Partial Differential Equations

\mathbf{K} : key question - explores core material
R: review question - an invitation to consolidate
C: challenge question - going beyond the basic framework of the course
S: standard question - general fitness training!

8.1 Green function for Helmholtz operator in 1d [s]

Show that the Green function for the modified Helmholtz operator in one dimension, $\mathcal{L}(x)=$ $\frac{d^{2}}{d x^{2}}-k^{2}$, subject to the boundary condition that it should vanish at $x \rightarrow \pm \infty$ is

$$
G\left(x, x^{\prime}\right)=-\frac{1}{2 k} e^{-k\left|x-x^{\prime}\right|}
$$

8.2 Inhomogeneous diffusion equation [s]

The density $\rho(x, t)$ of a radioactive gas diffusing into the atmosphere $(x>0)$ from the ground $(x<0)$ satisfies the equation

$$
\begin{equation*}
\frac{\partial^{2} \rho}{\partial x^{2}}=\frac{1}{\kappa} \frac{\partial \rho}{\partial t}+\gamma \rho \quad(\text { for } \quad x>0) \tag{1}
\end{equation*}
$$

Assuming that $\rho(x, 0)=0$ and $\rho_{x}=-\alpha$ at $x=0$ and that $\rho(x, t) \rightarrow 0$ as $x \rightarrow \infty$:
(i) Use a Fourier cosine transform to obtain the solution

$$
\rho(x, t)=\frac{2 \alpha}{\pi} \int_{0}^{\infty} \frac{1-\exp \left[-\kappa\left(\gamma+y^{2}\right) t\right]}{\gamma+y^{2}} \cos (x y) d y
$$

(ii) Use a Laplace transform with respect to t to obtain a solution to (1) in the form

$$
\rho(x, t)=\int_{0}^{t} g(x, \tau) d \tau
$$

giving an expression for $g(x, \tau)$
(iii) Demonstrate that the two solutions are equivalent by showing that (i) satisfies

$$
\frac{\partial \rho}{\partial t}=g(x, t)
$$

8.3* Laplace transform of erfc [c]

(i)* if $L[f(x, t)]=\frac{\exp (-a \sqrt{s})}{s}$ show by using the inversion integral and deforming it into a loop integral around a branch cut, that

$$
f(x, t)=\operatorname{erfc}\left(a / 2 t^{1 / 2}\right) \quad \text { where } \quad \operatorname{erfc}(x) \equiv \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} d u e^{-u^{2}}
$$

(ii) Conversely, if $f(t)=\operatorname{erfc}\left(a / 2 t^{1 / 2}\right)$, show that $g(t) \equiv f^{\prime}(t)$ is

$$
g(t)=a \exp \left\{-a^{2} / 4 t\right\} / 2 \sqrt{\pi t^{3}} .
$$

**Show that $G(s) \stackrel{\text { def }}{=} L[g(t)]=\exp \left(-a s^{1 / 2}\right)$, and deduce that $L[f(t)]=\exp \left(-a s^{1 / 2}\right) / s$. [Hint: calculate $G^{\prime}(s)$ and thereby show that $G(s)$ satisfies the (simple) differential equation $G^{\prime}(s)=-a G(s) / 2 s^{1 / 2}$. A boundary condition for this equation can be found by evaluating $G(0)$ explicitly.]

8.4 Green function for Laplace's equation in $2 \mathbf{d}[\mathbf{s}]$

Show that the axially symmetric Green function for Laplace's equation in 2D is

$$
G\left(\underline{x}, \underline{x}^{\prime}\right)=\frac{1}{2 \pi} \ln \left|\underline{x}-\underline{x}^{\prime}\right|
$$

8.5 Laplace's equation in the quarter plane[s]

The function $u(x, y)$ satisfies Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \text { for } \quad 0<x<\infty \quad \text { and } \quad 0<y<\infty
$$

The boundary conditions are

$$
\begin{aligned}
u(x, 0)=0 & \quad u_{x}(0, y)=-Q \theta(b-y) \\
u_{x} \text { and } u_{y} \rightarrow 0 & \text { as } \quad x \text { or } y \rightarrow \infty
\end{aligned}
$$

By taking the Fourier sine transform with respect to y, obtain the solution

$$
u(x, y)=\frac{2 Q}{\pi} \int_{0}^{\infty} \frac{1-\cos (k b)}{k^{2}} e^{-k x} \sin (k y) d k
$$

8.6 The method of images [s]

a) Find the position and magnitude of the image charges appropriate to the following problems:-
(i) A point charge q at distance $d-R>0$ away from the surface of a conducting sphere of radius R which is earthed ($\phi=0$ on sphere)
(ii)* The same as part (i) but with the sphere isolated (carries zero net charge)
(iii) A dipole \underline{p} at distance d from a conducting plane, with \underline{p} at an angle θ to the normal to the plane.
b)
(i) For the 1d heat conduction equation determine the Green function.
(ii) For the case of the semi-infinite rod (see 9.5) where the boundary is kept at fixed temperature $T(0, t)=0$, use the method of images to construct the solution for an initial delta function source at $x=a, t=0$.

