METHODS OF MATHEMATICAL PHYSICS

Solution of Partial Differential Equations

Tutorial Sheet 8

K: key question – explores core material

R: review question – an invitation to consolidate

C: challenge question – going beyond the basic framework of the course

S: standard question – general fitness training!

8.1 Green function for Helmholtz operator in 1d [s]

Show that the Green function for the modified Helmholtz operator in one dimension, $\mathcal{L}(x) = \frac{d^2}{dx^2} - k^2$, subject to the boundary condition that it should vanish at $x \to \pm \infty$ is

$$G(x, x') = -\frac{1}{2k}e^{-k|x-x'|}$$

8.2 Inhomogeneous diffusion equation [s]

The density $\rho(x,t)$ of a radioactive gas diffusing into the atmosphere (x > 0) from the ground (x < 0) satisfies the equation

$$\frac{\partial^2 \rho}{\partial x^2} = \frac{1}{\kappa} \frac{\partial \rho}{\partial t} + \gamma \rho \qquad \text{(for} \quad x > 0\text{)} \tag{1}$$

Assuming that $\rho(x, 0) = 0$ and $\rho_x = -\alpha$ at x = 0 and that $\rho(x, t) \to 0$ as $x \to \infty$:

(i) Use a Fourier cosine transform to obtain the solution

$$\rho(x,t) = \frac{2\alpha}{\pi} \int_0^\infty \frac{1 - \exp[-\kappa(\gamma + y^2)t]}{\gamma + y^2} \cos(xy) dy$$

(ii) Use a Laplace transform with respect to t to obtain a solution to (1) in the form

$$\rho(x,t) = \int_0^t g(x,\tau) d\tau$$

giving an expression for $g(x, \tau)$

(iii) Demonstrate that the two solutions are equivalent by showing that (i) satisfies

$$\frac{\partial \rho}{\partial t} = g(x, t)$$

8.3* Laplace transform of erfc [c]

(i)* if $L[f(x,t)] = \frac{\exp(-a\sqrt{s})}{s}$ show by using the inversion integral and deforming it into a loop integral around a branch cut, that

$$f(x,t) = \operatorname{erfc}(a/2t^{1/2})$$
 where $\operatorname{erfc}(x) \equiv \frac{2}{\sqrt{\pi}} \int_x^\infty du e^{-u^2}$.

(ii) Conversely, if $f(t) = \operatorname{erfc}(a/2t^{1/2})$, show that $g(t) \equiv f'(t)$ is

$$g(t) = a \exp\left\{-a^2/4t\right\} / 2\sqrt{\pi t^3}$$
.

**Show that $G(s) \stackrel{\text{def}}{=} L[g(t)] = \exp(-as^{1/2})$, and deduce that $L[f(t)] = \exp(-as^{1/2})/s$. [Hint: calculate G'(s) and thereby show that G(s) satisfies the (simple) differential equation $G'(s) = -a G(s)/2s^{1/2}$. A boundary condition for this equation can be found by evaluating G(0) explicitly.]

8.4 Green function for Laplace's equation in 2d [s]

Show that the axially symmetric Green function for Laplace's equation in 2D is

$$G(\underline{x}, \underline{x}') = \frac{1}{2\pi} \ln |\underline{x} - \underline{x}'|$$

8.5 Laplace's equation in the quarter plane[s]

The function u(x, y) satisfies Laplace's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{for} \quad 0 < x < \infty \quad \text{and} \quad 0 < y < \infty$$

The boundary conditions are

$$u(x,0) = 0$$
 $u_x(0,y) = -Q\theta(b-y)$
 $u_x \text{ and } u_y \to 0$ as $x \text{ or } y \to \infty$

By taking the Fourier sine transform with respect to y, obtain the solution

$$u(x,y) = \frac{2Q}{\pi} \int_0^\infty \frac{1 - \cos(kb)}{k^2} e^{-kx} \sin(ky) \, dk$$

8.6 The method of images [s]

a) Find the position and magnitude of the image charges appropriate to the following problems:-

- (i) A point charge q at distance d R > 0 away from the surface of a conducting sphere of radius R which is earthed ($\phi = 0$ on sphere)
- (ii)* The same as part (i) but with the sphere isolated (carries zero net charge)
- (iii) A dipole \underline{p} at distance d from a conducting plane, with \underline{p} at an angle θ to the normal to the plane.

b)

- (i) For the 1d heat conduction equation determine the Green function.
- (ii) For the case of the semi-infinite rod (see 9.5) where the boundary is kept at fixed temperature T(0, t) = 0, use the method of images to construct the solution for an initial delta function source at x = a, t = 0.