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On the tree-like structure of rings in dense
solutions†

D. Michieletto

One of the most challenging problems in polymer physics is providing a theoretical description for the

behaviour of rings in dense solutions and melts. Although it is nowadays well established that the overall

size of a ring in these conditions scales like that of a collapsed globule, there is compelling evidence

that rings may exhibit ramified and tree-like conformations. In this work I show how to characterise

these local tree-like structures by measuring the local writhing of the rings’ segments and by identifying

the patterns of intra-chain contacts. These quantities reveal two major topological structures: loops and

terminal branches which strongly suggest that the strictly double-folded ‘‘lattice animal’’ picture for rings

in the melt may be replaced by a more relaxed tree-like structure accommodating loops. In particular,

I show that one can identify hierarchically looped structures whose degree increases linearly with the

size of a ring, and that terminal branches are found to store about 30% of the whole ring mass,

irrespectively of its length. Finally, I draw an analogy between rings in the melt and slip-linked chains,

where contact points are enforced by mobile slip-links and for which a field-theoretic treatment can be

employed to get some insight into their typical conformations. These findings are ultimately discussed in

the light of recent works on the static structure of rings and on the existence of inter-ring threadings.

1 Introduction

One of the last big mysteries in polymer physics is understanding
the behaviour of rings in dense solutions and melts.1–3 Beyond
the case of systems composed by synthetic ring polymers3

which are of interest for the design of novel materials, there is
a broad and general interest in understanding the organisation
of bacterial genomes4,5 and kinetoplasts,6,7 largely composed of
closed (ring) DNA.

It is nowadays well accepted that, in the limit of large
polymerisation index M, rings in the melt assume configura-
tions which display a typical size Rg scaling as8–11 Rg B Mn, with
n = 1/3. This value of the metric exponent n is usually associated
with collapsed polymers in poor solvents, which tightly fold
onto themselves expelling other chains and solvent from their
interior volume. On the other hand, recent works12–15 pointed
out that the fraction of a ring’s contour length that is in contact
with any other ring in solution does not scale as M2/3, as the
smooth surface of a compact sphere would, but rather as BM1,
indicating a very ‘‘rough’’ surface and a low degree of segregation.
In agreement with this finding, several very recent works from
different groups12,16–18 reported that rings in dense solutions
display largely inter-penetrating configurations: segments of rings

double-fold and thread through the contour of their neighbours,
eventually leading to strongly overlapping configurations, perhaps
best mimicked by the behaviour of ultra-soft colloids19 rather than
by that of polymers in poor solvents.

Another important element in the picture is that some
decades ago it was discovered that ring polymers embedded
in a fixed background of obstacles assume configurations known
as ‘‘lattice animals’’ (LA).11,20–27 These conformations have a
characteristic double-folded shape which can branch into
complicated and ramified ‘‘tree’’ structures. LAs are a natural
consequence of the topological invariance of the system: rings
which are prepared un-knotted and un-linked from any other
ring or from the background of obstacles have to remain
un-knotted and un-linked at any time. For a ring diffusing in
a tight gel, i.e. with lattice spacing of the order of the ring’s
persistence length, the entropy-maximising choice that satisfies
these topological constraints is to double-fold onto itself and
snake through the gel pores.

As argued in the literature,11,20,28 the situation of rings in the
melt can be thought of as similar to the case of self-avoiding
rings in an array of obstacles. In the ideal chain limit, field-
theoretic arguments led a number of authors20,24,29 to predict
this system to be in the same universality class as ideal randomly
branched polymers for which a metric exponent n = 1/4 was
found. Since this value of n would lead to a divergence in
the density of the system, some authors20,29 also suggested that
the polymer would attain the lowest physically possible value
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of n = 1/d, or n = 1/3 in 3D. The self-avoiding limit of the same
system (randomly branched polymers) was instead shown30 to
display n = 1/2 in 3D.

Numerical8,12,13 and experimental31 evidence seem to
suggest that the self-avoiding regime (n = 1/2) in fact holds
only for short rings, whereas the ideal behaviour (n = 1/3) takes
over in the limit of large polymerisation index through a broad
crossover where22 n = 2/5. These arguments seem to lead to a
picture of ‘‘crumpled lattice animals’’ where globally collapsed
polymers display local tree-like structures.

While the global structure of the rings can be directly
inferred from the metric exponent in simulations10,12 (or
neutron scattering in experiments31), their local structure
is more difficult to probe. Although the existence of local tree-
like conformations has been conjectured, there is only circum-
stantial evidence for their existence in the literature. In this
work, the aim is to explicitly prove and quantify the presence of
branches and tree-like structure in the conformation of ring
polymers in dense solutions.

In order to achieve this aim, one important step is to find a
method able to identify branches and tree-like structures in the
configurations of rings. Characterising their conformations is
in fact an open challenge10,11,13 and one of the most important
contributions in this direction has been made in ref. 10 where
the authors elegantly showed (through numerical simulations)
that equilibrated configurations of rings in solution displayed
very little change with respect to their initial state when prepared
as densely packed lattice animals. In ref. 10 the authors
focus in particular on global observables, such as the gyration
radius of the rings. Here, I will be using the data obtained from
large-scale Brownian dynamics simulations of rings in dense
solutions (from ref. 12) to identify tree-like structures at the
local scale of the rings’ segments (see Fig. 1 for a snapshot
of the system and Appendix A for details on the Brownian
dynamics simulations).

I will show that quantitative insight can be achieved by
looking at instantaneous maps of the contacts between sections
of the rings: characteristic contact patterns in fact seem to
emerge, and from these, one can identify tree-like structures. By
computing the writhing of rings’ segments, I will show that it is
possible to get an accurate measure of the number and typical
length of the terminal branches. Moreover, isolated spots in
the contact map are shown to reveal the presence of loops
which can be long-ranged, i.e. of order O(M/2). The hierarchical
looping of these structures is then addressed and from there,
an analogy to a system of slip-linked rings is drawn. By making
use of the field theoretic treatment developed by Duplantier32

for networks of polymers, I finally discuss possible insights
that can be obtained by further extending the analogy with slip-
linked chains.

The results presented in this work can be used to gain a
deeper understanding about the general behaviour of rings in
dense solutions and in particular about the existence of tree-
like structures at the local scales. They may also be used to
obtain further insight into the probability of inter-penetration
between rings12,18 and may complement recent findings on the
statistics of threadings’ lengths and how these depend on the
rings’ total contour length.16 These unresolved issues in fact
seem to play a crucial role in some of the unexplained features
displayed by rings in the melt, such as their very prolonged
sub-diffusive regime14 – which extends much further than
the typical length-scale observed for linear polymers – or the
‘‘fat-tails’’ displayed by the stress-relaxation function,3,14,33

which seem to capture some unexpected long-time collective
behaviours of the rings.

2 Patterns in the contact maps reveal
loops and branches

The first part of this work is aimed at achieving a basic under-
standing of how one should tackle the problem of characterising
tree-like structures and what are the main observables to use.
One of the most useful quantities is the instantaneous contact
map, or matrix, of a configuration. Such a map is generated by
recording the contacts between the segments (beads) making
the polymer contour. In particular here I will set the entries of
the contact matrix C as

Cij = Y(rs � |ri � rj|) (1)

where Y(x) = 1 if x Z 0 and 0 otherwise and rs Z s is the
threshold chosen to determine that two beads are ‘‘in contact’’
(s is the nominal size of a bead and rs = 2s throughout this
work). These matrices are broadly used in biophysical experi-
ments to determine the 3D organisation of genetic material of
eukaryotes34–38 and bacteria.4,39 As in the case presented here,
although on a much more complex level, characteristic patterns
seem to emerge,35 and their understanding is one of the major
challenges in the field of biophysics.

In Fig. 2(A–B) I give some examples of contact patterns that
one can observe in idealised and naive tree-like conformations

Fig. 1 Tree-like conformations of rings in dense solutions. This figure
represents a snapshot of the simulated system of rings where only few
chains (M = 256 beads long) are explicitly shown for sake of clarity.
One can readily notice the presence of loose loops and the lack of a
strictly double-folded trunks, typically imagined for ideal lattice animal
configurations. Further details on the computational methods are given in
Appendix A and ref. 12.
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compared to a real contact map computed from the conforma-
tion of a ring polymer in dense solution. It is useful to bear in
mind that contact maps are symmetric with respect to the
operation i 2 j (as one can see from eqn (1)). This means that
recording the upper or lower half of the matrix is enough to
fully characterise the contacts. For this reason in Fig. 2 I only
report the upper of lower triangle of a contact map.

From the figure one can readily notice that perfectly double
folded rings, or lattice animals, have characteristic contact
patterns. The first feature is the main diagonal which comprises
the points

D ¼ ðt; t� rÞjt 2 f0; . . . ;M � 1g; r 2 0; rs½ �f g (2)

and captures the beads self-interaction and the chain connectivity.
Second, trunks, or backbones (see for instance b and g in
Fig. 2(Aii)), are elements of the set of lines of length t

B ¼ M0;M0ð Þ þ ðt;M � tÞjt 2 t0; t0 þ t½ �; t0 �M=2� tf g (3)

where M0 represents an arbitrary translation along D and a
modulo M operation is taken implicitly due to the periodicity of
the beads indexes introduced by the ring closed topology.

This symmetry entails the existence of a family of contact
maps which all capture the same LA conformation and it is also
interesting to notice that thanks to the composition of the two
symmetries of the system, i.e. (i, j) B ( j,i) and (i, j) B (i + M, j) one
can readily identify points along the contact map boundaries
so that (i, j) B ( j,i + M). For instance, points bi1 and bi2 in

Fig. 2(Ai) can be identified as the same point, this would not be
possible if the polymer was linear (see also Appendix B).

The last element to point out is the set of ‘‘terminal branches’’
(see bri in Fig. 2(Ai) and (Aii)), also sometimes called ‘‘leaves’’,
which belong to a subset of B determined by the fact that the
elements of this set have to originate from D, i.e.

T b ¼ M0;M0ð Þ þ ðt;M � tÞjt 2 ½M=2� t;M=2�f g: (4)

At this point it is worth reminding that Fig. 2(Ai) and (Aii)
represent idealised and perfectly double folded LA configura-
tions. In reality, rings in dense solutions would hardly look
exactly like these. By relaxing the constraint on the double-
folded structure, one can draw LA-like conformations which
can accommodate loops (see inset of Fig. 2(Bi)). Loops are
represented as ‘‘spots’’ in the contact maps and they can be
classified as elements of a subset of B where t C 1, i.e.
including short segments.

Finally, Fig. 2(Bii) reports the contact map obtained from a
ring M = 256 beads long equilibrated in a dense solution (from
ref. 12). In this case the contact map shows the presence of
some structures which can be associated to those of idealised
LA, such as terminal branches, but it also shows the absence of
long trunks at the advantage of several spots, or loops, which
assume hierarchical, i.e. ‘‘loop-within-loop’’, character. For
instance loops L1, L2 and L3 in Fig. 2(Bii) form a ‘‘higher order’’
looped structure that is also commonly known as a ‘‘rosette’’40,41

or ‘‘transitive’’ loops.35 This type of looped structure has been

Fig. 2 Contact patterns of rings in the melt reveal branches and loops. Panels (A)–(Bi) show contact maps obtained from idealised two-dimensional
lattice animals (shown in the insets): they display characteristic contact patterns that allow one to identify tree structures. Stiff trunks are represented by
lines running perpendicular to the main diagonal; terminal branches, or ‘‘leaves’’, are captured by lines perpendicular to the main diagonal and originating
from it. By relaxing the double-folded structure one can see that loops can be introduced and identified in the map as short lines, or spots, joining two
segments (beads) far apart along the contour (see text for more details on the patterns). Panel (Ai) highlights the identification of beads bi1 and bi2 using
the periodic symmetry introduced by the ring closed topology in the contact map. Panel (Aii) highlights how a backbone split in several branches is
captured by the contact map. Panel (Bi) represents the contact map of a tree whose double folded structure is relaxed to accommodate loops. Panel (Bii)
reports the instantaneous contact map obtained from a 3D ring configuration in dense solution. One can readily notice the presence of some familiar
patterns observed in the contact maps of idealised LA, such as branches and loops, but the absence of other patterns such as long trunks. In particular,
one can notice two branches originating from the diagonal (B1 and B2) and several spots characterising the presence of (hierarchical) looping. The
patterns circled in red are at this point difficult to interpret but I will discuss them in more detail later. An arbitrary 2D projection of the 3D ring
configuration is shown in the inset and its contour length is colour-coded in terms of the beads index as shown by the colour bar. All rings in this figure
have contour length M = 256 beads.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
1 

O
ct

ob
er

 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
E

di
nb

ur
gh

 o
n 

01
/1

2/
20

16
 1

7:
18

:3
7.

 
View Article Online

http://dx.doi.org/10.1039/c6sm02168a


9488 | Soft Matter, 2016, 12, 9485--9500 This journal is©The Royal Society of Chemistry 2016

identified in the contact maps obtained from ‘‘Hi-C’’35 experi-
ments on eukaryotic nuclei and it has been associated with the
presence of transcription factories42,43 and with other types
of ATP-driven organisation of chromosomal domains in
both, interphase and metaphase chromosomes.35,44–47 It is
somewhat intriguing to find similar patterns in the much
simpler case of a dense solution of ring polymers as the one
studied in this work; in particular, it may suggest that
these higher-order looped architectures may also be guided
by entropic forces working alongside topological constraints
(more on this in the next sections).

The final remark I would like to make in this first section is
that the contact map shown in Fig. 2(Bii) displays some
patterns (circled in red) that are more difficult to interpret
uniquely at this stage. These in fact might capture either
terminal branches or loops. In order to better classify these
patterns one may want to seek for other observables: in the next
section I will show that one possible choice is the local
unsigned writhing of the polymer segments.

3 Local writhing identifies the location
and length of terminal branches

One of the main motivations for introducing the ‘‘writhe’’ of a
curve some decades ago48 was to describe the super-coiling of
torsionally constrained (closed) elastic ribbons such as circular
double-stranded DNA.49 In this case, the writhe of the ribbon
(Wr) is connected to the linking of its two edges (Lk) and its
twist (Tw) via the formula Wr = Lk � Tw.48,49

In fact, by taking the limit of infinitely narrow ribbons,
it is possible to generalise the writhe of a ribbon to a single
curve C and directly compute its writhing number as the
Gauss integral49–51

Wr ¼ 1

4p

ð
C

ð
C

r1 � r2ð Þ
r1 � r2j j3

� dr1 � dr2ð Þ: (5)

This quantity can be thought of as the result of (i) summing the
(directional) self-crossings of the curve C associated with a
particular two-dimensional projection and of (ii) averaging over
infinitely many viewpoints.51 In other words it is a measure of
how much entangled the curve is with itself.

The writhe of curves and polygons has been studied in the
past as a measure of their entanglement in a number of works
(see e.g. ref. 52–56 and references therein). In the large majority
of these works the authors have investigated the global writhe
of polymers, either free,52,53 in confinement56 or in dense and
poor solutions.52

In the case of achiral polymers it is also useful to consider a
variant of eqn (5) which better captures the degree of self-
entanglement of a torsionally relaxed curve. This quantity is
obtained by removing the information on the directionality of
the crossings and it is therefore defined as the ‘‘unsigned’’

writhe, or ‘‘average crossing number’’:57–59

Acn ¼ 1

4p

ð
C

ð
C

r1 � r2ð Þ � dr1 � dr2ð Þj j
r1 � r2j j3

: (6)

Eqn (6) gives a measure of the average number of crossings of the
whole curve C, or polymer configuration. In principle, one can
generalise this quantity for the case of local polymer segments50,60

and, in particular, it is possible to define a ‘‘segmental average
crossing number’’ or ‘‘local unsigned writhing’’ as

Acn k; lwð Þ ¼ 1

4p

ðk
k�lw

ðkþlw
k

r1 � r2ð Þ � dr1 � dr2ð Þj j
r1 � r2j j3

; (7)

which gives a measure of the (un-directional) self-crossings of
the segment l = [k � lw, k + lw].

In light of this generalisation, and in analogy with the
findings for plectonemes in supercoiled DNA,50 it is natural
to ask whether terminal branches display a higher value of
Acnðk;lwÞ with respect to a non-branched part of the polymer
contour length. In practice, I employ the numerical scheme
discussed in ref. 50 to compute the profile Acnðk;lwÞ along the
contour of ring polymers made of M discrete beads ranging
from M = 256 to M = 2048 using a fixed value of lw = 3lp = 15s.‡

In Fig. 3 I report an example of the profiles obtained using
this procedure on the same ring that yields the contact map

Fig. 3 Local (unsigned) writhing of the segments identifies terminal
branches. Panel (A) shows the same arbitrary two-dimensional projection
of the ring considered in Fig. 2(Bii), this time colour-coded in terms of the
local unsigned writhe as per colour-bar. Panel (B) shows the contact map
of Fig. 2(Bii) (turned by 451) to ease the comparison between contact
patterns and local writhing. Panel (C) shows the local unsigned writhing
Acnðk;lwÞ (defined in eqn (7)) which quantifies the entanglement of local
segments. Its peaks correlate with the location of terminal branches in the
contact map and their width quantifies the length of the branches.
Arbitrary (good) choices for the parameters are Acnmax ¼ 0:6, Acnmin ¼
0:3 and lw = 3lp = 15s. In panel (A) the location of the terminal branches can
be readily spotted (see also ESI,† Movie M1 for a 3D view of the
configuration).

‡ Large values of lw result in flatter profiles which lose the ability of detecting
short branches. On the other hand, segments can writhe only on length-scales
larger than the Kuhn length lK = 2lp = 10s. As discussed in Appendix C, the
optimal value for lw seems therefore to lie in between 1 and 2 Kuhn lengths.
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shown in Fig. 2(Bii). The figure shows Acnðk;lwÞ as well as the
2D projection used in Fig. 2(Bii) this time colour-coded in terms
of the value attained by the local unsigned writhe. One can
readily notice the presence of three peaks which correspond to
the two branches already identified in the contact map (B1 and
B2 in Fig. 2(Bii)) and a third, which could have been classified
as a loop near the main diagonal (middle branch). It is there-
fore natural to identify the location of terminal branches with
the local maxima of the function Acnðk;lwÞ. Furthermore, it is
also possible to determine the length of the terminal branches
by measuring the distance between the first two local minima
at the sides of each peak (in practice one also requires that the
value of the local unsigned writhe is above (below) a certain
threshold Acnmax ¼ 0:6 ðAcnmin ¼ 0:3Þ in order to remove
spurious fluctuations, see also Appendix C).

3.1 Statistics of branching

At this point it is natural to ask several questions regarding the
nature of the terminal branches, for instance how does their
statistics vary with the length of the rings?

As reported in Fig. 4(A), the number of terminal branches per
ring, Nbr, is normally distributed (solid lines represent Gaussian
fits) and the mean hNbri increases linearly with the ring size, M
(shown in the inset). This finding is interesting when seen in
light of the fact that the number of inter-penetrations between
rings was also found to scale linearly16,18 with the ring size. It
may therefore be tempting to associate threadings with at least
some of the terminal branches.

While the number of branches grows with the length of the
rings, their average length, hLbri, is instead observed to robustly
attain the value of C25 beads independently of M (see inset
Fig. 4(B)). Importantly, the fact that hLbri is independent of the
total ring length is valid for any choice of the parameter lw (see
Appendix C) and it is in full agreement with the observation
that the bond auto-correlation function measured for rings in
dense solutions displays a negative dip whose minimum is
located at few persistence lengths irrespectively of the total ring
length.10,61,62 On the other hand, this finding does not exclude
that there might be hierarchical branches whose effective
length extends further than hLbri; the algorithm proposed in
this section only captures terminal branches, and does not
quantify higher order structures such as branches within loops,
for instance. A further remark is that the distribution of lengths
shown in Fig. 4(B) is not simply Gaussian, as in the case of
P(Nbr) but it displays ‘‘heavy tails’’ and it may be better fitted by
a log-normal distribution. In other words, some of the branches
extend much further than the average length hLbri.

Because hNbri B M and hLbri B const it follows that the
number of beads involved in terminal branches must also
scale with M. This is shown in Fig. 4(C) where I report that
the probability distribution of observing a certain fraction
of contour length inside terminal branches. As one can
readily notice, the distribution narrows when longer rings are
considered while its mean, hfbi (shown in the inset), appears to
be independent on M and it amounts to about the 30% of the
total ring’s mass.

From the results reported in Fig. 4, it is straightforward to
extract also the free energy associated with generating Nbr

branches on a ring M beads long as

F Nbr;Mð Þ ¼ �kBT logP Nbrð Þ � kBT

2Z2 Nbrð Þ Nbr � Nbrh ið Þ2 (8)

where hNbri = 0.011(3)M is the mean value of the fitted P(Nbr),
and Z2(Nbr) = 0.010(1)M its variance.

From eqn (8) one can notice that the free energy penalty
involved in creating one additional branch from an equilibrium
state decreases with M and it is about DFðn; nþ 1; lÞ ’ 2kBT for
a 25 beads segment. This free energy difference comes from the
competition between the bending energy cost and the entropy

Fig. 4 Statistics of terminal branches. Panel (A) shows the probability
distribution of the number of terminal branches per ring, P(Nbr), for
different chain lengths. The solid lines are Gaussian fits to the distributions.
In the inset, the scaling of the mean value hNbri is shown to linearly
increase with the rings’ contour length M in a log–log plot. Panel (B) shows
the probability distribution of the terminal branches’ length, Pl(Lbr), for
different chain lengths. The solid line is a log-normal fit while the dashed
one a Gaussian fit. The mean value is shown in the inset to be independent
on the chains’ length. Panel (C) shows the probability distribution of
observing a certain fraction fb of a ring’s mass stored in the terminal
branches. In the inset, the mean values of the distributions are shown to
attain the constant value of 30% independently on M. Error bars represent
standard deviations.
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gain of forming an extra branch. The former term can be crudely
computed as the energy required to bend an elastic rod of
length l = 25s and persistence length lp = 5s into an ‘‘O’’ shape
(see regions of high local writhe in Fig. 3(A)), i.e.

DEb ¼
4p2kBTlp

2l
’ 4kBT ; (9)

while the resulting entropic gain is DS ¼ DEb�
DF n; nþ 1; lð Þ ’ 2kB.

The numbers that can be extracted from Fig. 4 and eqn (8)
also allow one to estimate that the free energy minimising
configurations possess one terminal branch, on average, every
90 beads and, by using the fact that its average length is about
25 beads, one can also estimate the average separation between
branches as being about 65 beads.

In light of this and of the fact that DFðn; nþ 1; lÞ ’ kBT for
l C 50s it may be tempting to conjecture a possible mechanism
able to robustly select a typical branch length: (i) very short
branches are energetically very costly (see eqn (9)) therefore
(ii) branches sprout only when capable of covering a certain
contour length min{Lbr} C 10s (see Fig. 4(B)); starting from
these ‘‘sprouts’’, terminal branches keep growing proportion-
ally to their length (and hence the multiplicative ‘‘heavy tails’’
displayed by the distribution of lengths) until a critical length
of around 50–65 beads is reached.§ At this point they split into
further terminal branches while the part of the original branch
moves away from the main diagonal in the contact map,
i.e. from the set T b to B, and only the remaining tips are
identified as terminal branches. This is because only the
terminal branches remain tight and highly self-entangled while
the branches that move away from the diagonal open up to
become ‘‘loose’’ (more about this mechanism is discussed
Section 5 through the analogy with slip-links).

Finally, it is worth highlighting the finding that the fraction
of contour length that is stored in the terminal branches for any
one ring is, on average, the 30% of its whole mass¶ (see inset
Fig. 4(C)). One should in fact bear in mind that the branches
captured by the algorithm discussed in this section are only the
terminal ones, i.e. no higher order branching is identified and
quantified at this stage. In the next section I will attempt to
characterise the higher levels of organisation of the rings by
quantifying their hierarchical looping.

4 Hierarchical looping

An interesting observation that was pointed out in ref. 11 and
28 and discussed in Section 2 is that rings in the melt do not
need to display a strictly double-folded structure; in fact, they
can accommodate loops. The presence of loose loops in the
configurations of ring polymers in the melt was first identified
in ref. 13 (where they were also referred to as ‘‘voids’’) and it can

be readily observed in the snapshot reported in Fig. 1 or in the
contact map plotted Fig. 2, where the spots are scattered and
do not form long lines as for the case of idealised LA. It is
also tempting to associate loose loops with openings of the
double-folded structure which offer some ‘‘threadable’’ surface16

to the neighbouring rings. For this reason it may be of interest
to quantify the number of loops, their typical size, and some of
the hierarchical structures that may emerge when multiple
loops come together.

From a contact map such that the one showed in Fig. 2(Bii) it
is possible to extract the number of isolated spots. The general
procedure requires two steps: (i) marking the boundaries of the
spots by checking the presence of clustered ‘‘on’’ pixels against
the ‘‘off’’ background, and (ii) enumerate different clusters by
progressively adding the boundary points that fall within a
certain radius Rc of one-another. Here I set Rc = 10 = 2lp/s since
one may argue that contacts between beads that are shorter

Fig. 5 Counting loops in the contact map. Panel (A) shows the same
contact map of Fig. 2(Bii) and 3(A) where this time the boundaries of spots
away from the diagonal are marked with different colours as per the
discussed clustering algorithm (see text). Contacts on the map that are
closer than %Lbr are considered belonging to terminal branches and are
discarded. The inset shows a magnification of one of the spots, where
orange squares mark the boundaries of the spot and the cross identifies
the geometrical centre of the spot. Panel (B) shows the distribution of
number of loops Nloops and the scaling of the mean value hNloopi as a
function of the rings length, M, which seems to grow linearly within errors
(see inset). Loop number ‘‘1’’ in panel (A) is a consequence of the ring
closed topology which acts as lower bound on the total number of loops.

§ The precise numbers will be, of course, system dependent, while the general
mechanism should be more general.
¶ For comparison, some species of biological trees seem to display a ‘‘leaf mass
ratio’’ in the range63 25–35% while others (Acacia or Acer) reach a staggering64

50–60%.
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than two persistence lengths cannot form ‘‘loose’’ loops since
the connecting segments are stiff on this length scale.8

Furthermore, one can use the knowledge of the length of the
terminal branches (extracted from Fig. 4) to exclude spots
which are closer than %Lbr to the main diagonal, where %Lbr is
defined through the following formula

ð �Lbr

0

dlPlðlÞ ¼ a; (10)

and a = 0.9 in order to exclude the large majority of terminal
branches that may appear as spots in the contact map (the
results reported are not sensitive to the precise value of a as
long as it allows one to discriminate between a loop and a
terminal branch).

Following this procedure one obtains contact maps with
enumerated spots as exemplified in Fig. 5(A) where I report the
same contact map shown in Fig. 2(Bii) and 3, but where the
boundaries of isolated spots are now marked in different
colours and enumerated.

4.1 Statistics of looping

One of the quantities that can be easily extracted from this
procedure is the number of loops, Nloops, as a function of the
rings size; the distribution and the (roughly linear) scaling of the
mean value hNloopsi is shown in Fig. 5(B). A further interesting
observable to quantify is the size of the loops. The probability
P(Lloop) of observing a loop of size Lloop is clearly related to the
probability of contact between two segments distant s beads
apart, Pc(s), often investigated in relation to the statistics of
rings11,12 and to obtain information on the 3D configuration of
bio-polymers.35,41,65 This probability is known to scale as

Pc(s) B s�gc (11)

with a ‘‘contact’’ exponent11 gc C 1 � 1.2 and one may expect
P(Lloop) to scale with the same exponent.

In order to extract this distribution from the contact map
one can consider the geometric centre of the spots computed
from their boundaries (see Fig. 5(A)) and measure the loop size
from its location (i, j) as Lloop = min{j � i, M � ( j � i)}, which
accounts for periodic boundary conditions in the rings indexes
(in practice, I also require j � i to be smaller than M � %Lbr again
for symmetry considerations and the constraint on the length
of the terminal branches). The number of observations of a
loop of length Lloop across the sampled rings is then normalised
by the total number of loops to give the probability distribution
shown in Fig. 6. In agreement with the previous argument,
P(Lloop) is found to decay as a power law with an exponent gl C
1.04 compatible with the known values of gc and in particular
with the one directly measured (in ref. 12) on the configura-
tions of the rings studied in this work (gc C 1.05).

A direct consequence of this scaling is that loops can be
formed at any length-scale, i.e. there is no preferred loop size,
differently from the case of terminal branches where a selected
length-scale could be observed. A further interesting point
is that the curves in Fig. 6 display a ‘‘bump’’ in the region
Lloop C M/2 which may suggest a number of loops covering
order O(M/2) contour length above the one predicted by scaling
(the same ‘‘bump’’ was already observed in ref. 13 through the
contact probability Pc).

4.2 Hierarchy of looping and looping degree

The last aspect of looping which is left to address is its
hierarchical architecture. For instance, loops 7, 6 and 5 in
Fig. 5 may be thought of as progressively forming ‘‘loops within
loops’’. Another example also previously discussed is the case of
‘‘rosettes’’40 where multiple loops come together in a single 3D
hub such as the one formed by loops 2, 3, 4 and 5 in Fig. 5 (see
also Fig. 2); these have also been recently called ‘‘transitive
loops’’ in the specific case of the organisation of the so-called
‘‘topologically associated domains’’.35

In order to quantify these hierarchical structures one can
recursively classify the loop degree ld of spots which contain
other spots (always excluding the spot in the corner (0, M � 1)
and in practice allowing some degree of error in the location of
each spot), and assign the highest score of ‘‘looping degree’’,
ld = max{ld}, to the whole tree-like structure. For example, loops
near the terminal branches (such as ‘‘7’’ or ‘‘2’’ in Fig. 5) would
score a loop degree ld = 0 while loop ‘‘3’’ would have ld = 4.**
The result of this algorithm is sketched in Fig. 7(A) where the
same contact map of Fig. 5(A) is shown (turned by 451). The
spots are this time labelled as L1–L6 and coloured in terms of
their looping level.

Fig. 6 Loops can form at any length-scale. This figure shows the prob-
ability distribution of the loop size Lloop. The decay is well fitted by a power
law with exponent gl C 1.04(3) in agreement with the one expected for the
contact probability11 Pc(s). A power law decay of this distribution signals
the fact that loops can emerge at any length scale along the rings contour
length. It is worth noticing that these curves show a ‘‘bump’’ for Lloop C
M/2 perhaps indicating some enhancement of long-ranged looping.
Because of the translational symmetry of the beads indexes, the length
Lloop is taken as the minimum length between j � i and M � ( j � i) and the
constraints j � i 4 %Lbr and j � i o M � %Lbr are imposed.

8 Again, one may argue that in the limit Rc c lp one loses information of the fine
looped structure, while in the other limit Rc { lp small chain fluctuations may
lead to ‘‘false’’ isolated spots. The scaling properties of the derived observables
and the general picture should not be affected by the precise value of Rc in the
range of few persistence lengths.

** It is interesting to mention that one can use this classification of the loops to
re-analyse the distribution of loop sizes for each looping degree. The results of
this analysis are reported and discussed in Appendix D and in Section 5.
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From this figure it is interesting to notice that there are two
clear types of structures in the same tree: the first is a ‘‘rosette’’
formed by loops L1–L4, i.e. these four loops come together in
the same 3D ‘‘hub’’; this can be readily identified by the fact
that part of their ‘‘boundaries’’ are shared, which means that
the beads at the base of the loops are near one another in 1D,
and therefore, also in 3D. The second structure is made by
loops L4–L6 which form ‘‘loops-within-loops’’ in a fashion that
resembles a stapled hairpin, or a ‘‘stack’’ – i.e. an aligned
cluster – of slip-links66 (also called a ‘‘necklace’’). This structure
is rather different than a rosette which can instead be pictured,
by extending the analogy, as an isotropic cluster of slip-links. It
is also worth mentioning that a ‘‘rosette’’ implies only the 3D
co-localisation of the contact points forming loops, and does not
specify any topological information about the cluster of loops.
On the other hand, the ‘‘necklace’’ has a specific topological
structure (more on this later).

Finally, an interesting quantity that can be extracted
from the described procedure is the looping degree ld of a
given tree-like structure. In Fig. 7(B), I report the distribution of
this quantity, which can give an estimation of the number of

hierarchical levels in the tree-like representation of a ring.
Interestingly, the mean of the distributions is found to scale
linearly (within errors) with the size of the rings M (see inset).

Summarising, in this section I have shown that the configura-
tions of ring polymers (captured through their contact maps)
display loops, which strongly suggest the absence of a perfectly (or
even partially) double-folded LA conformation. Furthermore,
loops can have a hierarchical structure, and the degree of the
hierarchy scales linearly with the size of the rings. Loops in the
conformation of rings can be thought of as temporary contacts,
and one important consequence of the findings reported in this
section (Fig. 5) is that the number of loops tends to fluctuate
around hNloopsi. A crude approximation of such a picture is that
of a ring with a fixed number of contact points which can
diffuse along the ring contour. In turn, this approximation is
extremely akin to that of a ring decorated with slip-links. This
analogy (which was introduced earlier to describe the two
topological structures observed previously) will be further explored
in the next section.

5 Analogy with slip-linked rings

A ring configuration is the result of the competition between
energetic and entropic forces, the former favouring the presence
of few large loops, the latter favouring the creation of many short
terminal branches. In order to shed some light on the possible
structures that such interplay might produce it may be of
help to push the analogy with slip-linked chains mentioned
earlier further.

As briefly introduced in the previous section, the findings
reported in Fig. 5 support a (crude) approximation where a ring
polymer embedded in dense solution or melt can be thought of
as a slip-linked chain with hNloopsi slip-links. These can freely
diffuse along the polymer contour and enforce the presence
of hNloopsi contact points while also allowing the exchange of
contour length among the ring segments stored in between the
slip-links.

To put this analogy more in the context of rings in the
melt, one may imagine that the entanglements and topolo-
gical constraints experienced by the rings in dense solutions
form effective tight ‘‘gates’’28 which ‘‘squeeze’’ some parts of
a given ring polymer. Because of the rings closed topology,
such a gate would enforce a sliding contact point for the
polymer segments as long as the entanglement is present.
For this reason, while physical slip-links are only allowed to
slide along the chain, in this case it may be more appropriate
to envisage a combination of sliding and un-binding/
re-binding with a typical rate that is related to the entangle-
ment relaxation time.

It might also be worth pointing out at this stage that within
this model slip-links would be allowed to form pseudo-knots.
Although barely noticeable in the contact map in Fig. 7(A), a
close inspection of the 3D configuration of the ring (see ESI,†
Movie M1) reveals that loops L2–L1 and L4–L3–L1 cross each
other. In other words, the arc diagrammatic representation66

Fig. 7 The looping degree of the rings. Panel (A) shows the same contact
map of the previous figures where spots are labelled L1–L6 and coloured
according to their looping degree ld as detailed in the text. In this map one
can identify four levels of hierarchical looping (5 if the ring itself is
considered as a loop). The looping degree ld of the tree structure is
defined as the maximum looping degree. In the left inset one can see
the topology of the L1–L4 part of the contact map reconstructed using the
levels of looping, the ‘‘black box’’ contains the right inset where the
topology of the L4–L6 part of the map is shown. By gluing together
the two insets one can assemble a ring with the same topological structure
of the contact map. Terminal branches are denoted by ‘‘tb’’. Panel (B)
shows the distribution of looping degree ld for different rings’ length. The
scaling (shown in the inset) is linear although the last data point falls quite
below the value predicted by the scaling possibly showing that these rings
have not reached an equilibrated state for this observable.
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derived from the contact map (Fig. 8(A)) contains crossing arcs.
In addition, it is worth highlighting that loops L1–L4 still form
a rosette in 3D, but now the topology of the rosette (unknown
before) is also determined.††

5.1 Theory for slip-linked chains

The slip-links analogy naturally lends itself to be discussed in
terms of these arc-diagrammatic representations. For instance,
the contact map in Fig. 7(A) can be represented as the arc-
diagram shown in Fig. 8(A). Fig. 8(B) shows the diagram in
terms of a ring configuration with physical slip-links while
Fig. 8(C) shows the corresponding ‘‘polymer network’’
representation.32,66

Borrowing from the work of Duplantier,32 there are several
observations that can be made solely based on the topology of
the network representation. In general, the number of config-
urations for a polymer network G made by N chains with

lengths m1,. . .,mN summing up to M and joined at vertexes of
functionality L is given by

Z � mMm
gG�1
N f

m1

mN
; . . . ;

mN�1
mN

� �
(12)

where f is an appropriate scaling function and gG � 1 is a
topology-dependent exponent equal to

gG � 1 ¼ �ndLþ
X
L	1

nLsL: (13)

In eqn (13) L is the number of closed paths‡‡ in the graph, nL

the number of vertexes of functionality L and sL the exponent
related to the L-leg vertex.32

It is also worth noticing that slip-links locally appear always
as a 4-legged vertex. This implies that the exponent gG can be
computed directly by knowing only the number of slip-links on
the chain. In the case of hNloopsi slip-links one has

gG ¼ 1� nd Nloops

� �
þ 1

� �
þ Nloops

� �
s4: (14)

In turn, this entails that the exponent gG of a ring polymer
with fixed number of contacts remains the same, no matter the
specific global topology of the network. For this reason, the
simpler network represented in Fig. 8(D) obtained by shifting
the arcs L2 and L4 inside the arcs L1 and L3–L1 respectively,
has the same exponent as the graph in Fig. 8(C) (this argument
of course neglects the scaling function f which can instead
vary66,67).

In terms of the jargon introduced in ref. 66, the network
shown in Fig. 8(D) is a ‘‘round-table’’ (small loops decorating a
large central loop made by L1, L2 and L3§§), glued to a ‘‘necklace’’
(concentric arcs made by loops L4–L6). Further physical properties
of these two special topologies can be inferred66 from eqn (12);
in particular, one can obtain informations about the statistics
of loop sizes and this, in turn, might shed some light into
the findings of the previous sections and, in general, on the
configurations of ring polymers in the melt.

Starting from the assumption that all the decorating loops
are small compared to the central one, the ‘‘round-table’’
configuration with L closed loops connecting the L � 1 vertexes
carries a statistical weight (see also Fig. 8(E))

Zrt � m
dn�ðL�2Þ
4

YL�1
i¼1

m�dnþs4
i : (15)

This means that while the central loop is swollen
dn � ðL � 2Þ ’ �0:2ð Þ due to the sliding entropy of the slip

links, the decorating loops are tight (s4 � dnC �2.2) therefore
being self-consistent with the initial assumption. For the
‘‘necklace’’ structure one in general finds that the terminal
loops are expected to be tight, as one would expect for terminal

Fig. 8 Rings in the melt as slip-linked chains. Panel (A) shows the arc
diagram obtained after a close inspection of the configuration whose
contact map is plotted in Fig. 7(A) and whose snapshots are shown in the
insets (see also ESI,† Movie M1 for a 3D view of the configuration). Loops L2
and L4 are observed to cross loops L1 and L3–L1, respectively. Panel (B)
shows a physical representation of the arc diagram where the contacts are
enforced by solid slip-links. Panel (C) shows the network diagram of (B)
while panel (D) shows a simpler network with same exponent gG obtained
by shifting the beads forming L2 and L4 inside L1 and L3, respectively.
Finally, panel (E) shows the ‘‘round-table’’ section of graph (D) where the
size of the closed paths mi is denoted.

†† The abundance of pseudo-knotted configurations can be readily measured by
checking for loops which stem from base-points that alternate along the contour
of the ring. Pseudo-knots appear in about 50% of the configurations for M = 256,
85% for M = 512 and more than 99% for M Z 1024.

‡‡ Closed paths in the network represenation of a slip-linked chain are also
incidentally called ‘‘loops’’. These are different from the loops discussed in the
previous sections, whose size was defined as the whole stretch of contour length
separating two monomers near one another in 3D space. Here, the size of a closed
path is the sum of the segments joining vertexes in the network representation.
§§ It is worth reminding that due to the ring periodicity, loop L1 can be seen as
non-containing L2 and L3, i.e. these three loops do not form concentric arcs.
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branches, while one of the inner loops can be swollen, i.e. of the
size of the whole contour length.

5.2 Applications of slip-link theory to rings

Understanding how the statistics of loop lengths changes when
the ‘‘round-table’’ and the ‘‘necklace’’ structures are glued
together or in the case of more complex network topologies
such as the one in Fig. 8(C) is far from the scope of this work
and it remains an open challenge for the future. Nonetheless, it
is interesting to notice that the distribution of loop sizes for
loops of degree zero – i.e. the smallest ones that appear in the
contact map and that do not contain any other loop – shows a
power law decay with an exponent g0 remarkably close to the
value dn � s4 = 2.2 predicted by the field theory for the size of
tight loops on slip-linked chains (see Fig. 9 and Appendix D).
This might suggest that the smallest loops appearing in the
conformations of rings might indeed be thought of as originating
from a slip-link model.

Another interesting remark that may be relevant for com-
pleting the analogy between rings in the melt and slip-linked
chains is that it would be of interest to compare the behaviour
of rings in dense solutions with that of rings with ‘‘sticky’’
slip-links. This model would in fact display a transition
between a swollen coil and a collapsed globule with branches
sticking out – a sort of sea urchin or large rosette – depending
on the interaction strength.

Crudely, the transition point may be inferred from the free
energy of n slip-links interacting with attraction energy e and
forming n + 1 loops of equal size l. By making use of eqn (14)
one may write

F ’� e
n2

2þ An
� kBT gG � 1

� �
logðlÞ

¼ � e
n2

2þ An
þ kBT ndðnþ 1Þ � ns4ð Þ logðlÞ

(16)

where the first term increases only linearly in n in the limit of a
large rosette due to the finite number of interactions that any
one slip-link can make with its neighbours. The last term in
eqn (16) can be obtained from eqn (12) in the limit where all
loops have equal size and the rosette is made by n slip-links
(vertexes) having 4 legs each. The system with the free energy
expressed in eqn (16) displays a transition between the fully
swollen state and the fully collapsed ‘‘sea-urchin’’ state, the
latter being attained for

e 4 ec = kBTA(dn + s4) log(l). (17)

By using n = 0.588 for d = 3, s4 = �0.46, and considering loops
made by 50 beads and a number of 10 maximum number of
neighbours per each slip-link (A = 0.2) one obtains a critical
attraction strength of ec C 1kBT.

In addition to this crude estimation, it may be relevant to
study (i) a more accurate model where slip-links are allowed to
move along the chain and can form loops of different sizes and
(ii) an effective non-equilibrium model where the binding/
un-binding kinetics of the slip-links – related to the temporary
nature of the entanglements with the neighbours – may affect the
steady state of the system. By drawing an analogy to the recent work
on ‘‘ephemeral’’ DNA-binding proteins,68 the (un)binding kinetics
may, also in this case, offer a mechanism through which the
coarsening towards a large rosette is arrested and the coexistence
of several structures is stabilised. Finally, it would be interesting
to investigate whether the structures produced by these models
might resemble those assumed by rings in the melt.

6 Trees, slip-links and threadings

One important message of the previous section is that in the
case of simple networks made of slip-linked chains, loops of
completely different sizes have been shown to coexist (e.g. very
tight and very loose in the round-table configuration). From the
analogy with slip-linked chains it is therefore tempting to
speculate that rings in the melt might also be able to show
coexistence of long-ranged loops and small ones.

The presence of long-ranged and ‘‘loose’’ (in that they do not
form a double-folded trunk) loops, although in contrast with
the classical double-folded LA picture for rings in the melt, is
supported by several findings: (i) large tails in the statistics of
contacts13 and of loop sizes (see Fig. 6) which indicates the
significant presence of O(M/2) looping, (ii) the absence of
strictly double-folded, or ideal lattice animal, conformations13

and the observation of ‘‘voids’’ in the rings configurations13

and (iii) the presence of threadings whose number grow with
the length of the rings12,18 and with the size of their minimal
surface.16 All these observations tend to suggest that rings
display loose long-range looping which may lead to large
‘‘threadable’’ surfaces, not unlike certain equilibrium config-
urations of slip-linked rings.66

This conjecture naturally leads also to the following
speculation: a solution of dense ring polymers, obtained by
squeezing together tight and loose loops from neighbouring

Fig. 9 Size distribution for loops of zero degree. This figure shows that
the loop size distribution P(Lloop) of loops of degree ld = 0 decays more
sharply than the distribution found for loops of any degree. The latter has
been shown to decay with an exponent gl C 1, in agreement with the one
regulating the contact probability Pc. The former appears to decay with an
exponent g0 C 2.3, remarkably close to the field-theoretic prediction
for tight loops in slip-linked chains.66 In this figure, only rings made of
M = 2048 beads are considered for sake of clarity and both distributions
are normalised by the total number of loops to aid the comparison. Loop
size distributions for loops of larger degree are reported in Appendix D.
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chains, is bound to show the presence of threadings formed by
tight loops accommodated inside the loose ones. The beha-
viour of these threadings may also be imagined (as argued in
ref. 16) as random walks originating and returning to planes
formed by the locally flat minimal surface spanning a threaded
ring. This argument is supported by the distribution of thread-
ing lengths which is shown to be well fitted by a power law with
an of exponent �1.5 compatible with that expected for a 3D
random walk in between interactions with a surface.

6.1 Threadings as (non) returning walks

A relevant observation in regard to this conjecture is that the
exponent �1.5 can be observed for the distribution of lengths
of 3D random walks that can be absorbed only by the origin
(see Fig. 10(A)). In this case, though, the returning probability is
smaller than one,69 and this in turn implies that some of the
walks are never re-absorbed by the origin (and hence the spike
at large walk lengths shown in Fig. 10(A)).

This observation may have some significance for estimating
the length and extension of a threading. In fact, a threading
displays, by definition, both an outgoing and an ingoing segments
passing through the threaded chain. While the ingoing segment is
bound to return to the threaded region, the outgoing segment can
freely wander as if it was a truly free random walker in 3D. In other
words, the tip of a threading may be thought of as the one
performing a 3D random walk in space.

In the case the threading originates from a very small disk,
the probability of the tip returning to the same position, and
therefore to vanish, is smaller than one. This implies that, in
some circumstances, some of the threadings may wonder off
and display a length that is limited only by the amount of mass
that can be stored in the threading segment. Because of the
large lengths of these non-returning walks, they also display a
large ‘‘extension’’–X, defined as their maximum distance from
the origin – which scales with their length l as hXi B ln.

In the case of walks that can be re-absorbed to the origin,
this scales with the size of the entire walk n as

hXi B nn. (18)

On the other hand, the case in which the tip of the threading
may be re-absorbed at any point over an infinite plane leads to
shorter average walk lengths, i.e.

hli ¼
ðn
0

lPpðlÞdl � n1=2 (19)

which leads to an average extension

hXi B nn/2. (20)

These two regimes can be seen in the inset of Fig. 10(A) where n
= 1/2 as per ideal walks.

6.2 Return probability on a finite-size surface

Clearly, this is only a crude estimation which neglects several
important elements. One of these is that the absorbing element
is neither a point or an infinite plane, but more likely a disk of
finite area. Because the average length of the walk is mainly

dominated by the non-returning walks, if there are, it is
important to estimate the return probability in systems with
absorbing surfaces of finite area. In order to estimate this
quantity I have performed simulations of ideal random walkers
on a cubic lattice leaving the origin and being absorbed on a
square of size Lsq (in units of lattice spacings). In Fig. 10(B) I show
the return probability computed by averaging over 105 walks of
length 104 steps. The return probability goes from the expected
0.34 for Lsq = 0 to unity for the case of an infinite plane passing
through intermediate values which are still smaller than one.

This strongly suggests that also in the case of threadings which
pass through loops – which form the boundaries of surfaces of
finite-area – there may be some whose tip does not return to the
surface. These may have a length that grows with the maximum
size of the walk, i.e. with the size of the ring M itself, and their

Fig. 10 Threadings as (non) returning random walks in 3D. Panel (A)
shows the probability distribution of the length of a 3D random walk of
n = 1000 steps on a lattice absorbed by either a n infinite plane (Pp(l), red
line) or by the origin (Po(l), blue line). Both distributions scale with an
exponent �1.5 while the latter also displays a ‘‘spike’’ for l = n indicating the
walks that have not been re-absorbed (averages are made over 105 walks).
The inset of panel (A) shows the average extension hXi (defined as the
maximum distance in 3D from the origin) of the walks. Because of the
presence of non-returning walks, this quantity scales with the size of
the walk with an exponent n = 1/2 (for ideal walks) in the case they are
absorbed into the origin (blue circles) and with n = 1/4 in the case of
absorbing infinite plane (red squares). Panel (B) shows the returning
probability of a random walk leaving the origin and being absorbed by a
square of size Lsq. The data points in this figure are averages over 105 ideal
random walks of 104 steps on a cubic lattice. Since the tips of the
threadings may be imagined as random walks originating from a threaded
surface,16 their return probability pr is related to that of a random walk
being absorbed by a finite-size surface. Because pr displays values smaller
than one for a range of Lsq, one may argue that some of the threadings
may grow with M and their extension with Mn.
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extension can reach Mn, therefore establishing large (both in 1D
and in 3D) and long-lived, topological constraints.

As a practical example, one can consider the loops of degree
zero whose size distribution is shown in Fig. 9. From this, one
can estimate their average size as being around 20 persistence
lengths for rings M = 2048 beads long. Because the area of the
minimal surfaces spanning rings in the melt scales linearly
their contour length,16 these zero-degree loops can be crudely
mapped to squares of linear size Lsq C 5 for which the return
probability is about pr C 0.8 o 1. This means that 20% of the
threadings through these zero-degree loops might wonder off
and form long-lived topological constraints.

Clearly, there are other aspects that I have neglected in this
argument which may be important for the problem, such as the
sliding of the segments at the origin of the threading and the
self-avoidance of the polymer segments. Nonetheless, the con-
jecture described here may suggest that in some circumstances
threadings may be able to grow with the size of the threading
ring and reach considerable extensions. In these cases, the
topological constraints that they generate on the configurations
of the threaded neighbours (or of itself, in the case of self-
threading25) lead to long-lived correlations that are strong
candidates for explaining the ‘‘slowing down’’ in the rings’
dynamics observed by several groups.14,16–18,70,71

The arguments presented here, together with several pre-
vious observations16,18,70 also support the conjecture that in the
limit of very large rings, long threadings will populate the
system, and may eventually lead to spontaneous topological
vitrification.72 Compelling numerical evidence12 indeed
suggest that a ‘‘topological glass’’ state can be achieved by
randomly pinning even a small fraction of rings in dense
solutions when these are long enough. On the other hand,
the existence of a spontaneous transition to this state – i.e. at
zero pinning fraction – is still an open question which lends
itself to be best tackled in the future through scaling arguments
rather than brute force simulations.

7 Conclusions

In this work I have tried to tackle the problem of characterising
local tree-like structures in conformations of globally crumpled
rings in equilibrium in dense solutions.

By looking at the contact maps of the rings one can readily
conclude that they do not assume perfect ‘‘lattice animal’’
structures but accommodate loops which can be long-ranged.
Further, and from the same contact maps, one can also identify
the presence of terminal branches which appear as lines
originating from the main diagonal (Fig. 2).

I have shown that by measuring the unsigned local writhing
of the rings segments (see eqn (7) and Fig. 3) one can determine
that the number of terminal branches scales linearly with the
size of the rings and that their length is instead independently
determined. Further, the fraction of mass stored in the terminal
branches is about 30% of the total mass of the rings, irrespective
of their total polymerisation index (Fig. 4).

Looping has been analysed by identifying isolated spots in
the contact map (Fig. 5). The loop size distribution is found to

scale as PðLloopÞ � L
�gl
loop where the exponent gl is, unsurpris-

ingly, in agreement with the one describing the contact prob-

ability Pc(s) B s�gc. A more interesting remark is that P(Lloop)
shows the presence of ‘‘bumps’’ at the scale O(M/2), perhaps
suggesting a significant number long range loops (Fig. 6). The
number of loops has been shown to thermally fluctuate around
a free energy minimising value hNloopsi while the ‘‘looping
degree’’ of the tree-like structure has been characterised by
measuring the hierarchical levels of looping and shown to scale
linearly with M within errors (Fig. 7). The looping degree ld also
allows one to compute the loop size distribution for loops of
given degree and I have shown that for ld = 0 (i.e. loops which
do not contain any other loop) this scales with an exponent
g0 C 2.3 remarkably close to the one predicted by field-theoretic
arguments (see Fig. 9).

The observation that rings display a preferred number of
loops may allow one to draw a crude analogy with slip-linked
chains, where slip-links are placed along the polymer contour
to enforce the presence of a certain number of contact points
(Fig. 8). A slip-link may be thought of as replacing an entangle-
ment generated by the neighbours of a given ring. The idea of
using slip links to describe entanglements among polymers in a
network of linear chains goes back to S. Edwards and R.
Ball.73,74 Here, given the closed topology of the rings and the
un-concatenation with their neighbours, slip links would repre-
sent an effective replacement of the entanglements which make
the ring polymer segments ‘‘squeeze through a gate’’ and
enforce self-contacts. Further, such slip-links may be thought
of as locally sliding for a time comparable to the relaxation of
the entanglements and then allowed to unbind once the
entanglement has been released.

From the slip-links analogy, one can draw several observa-
tions by using the field-theoretic results of Duplantier for
polymer networks.32 In particular, an interesting point is
that slip-links always appear locally as 4-legged vertexes and
therefore the global network exponent gG is solely determined
by the number of loops hNloopsi (see Fig. 8). Information about
the statistical weight associated with loops of a certain size can
be inferred for networks of simple topologies66 for which the
free energy minimising configurations see the coexistence of
loose and tight loops. Furthermore, simple arguments may be
proposed to study the collapse transition of a system of ‘‘sticky’’
slip-links decorating a ring polymer. The ‘‘stickiness’’ is here
thought of as replacing an effective entropic force which tends
to squeeze contact points together in co-localised ‘‘hubs’’ or
‘‘rosettes’’.

Finally, it is tempting to draw a connection between
the coexistence of different-size loops with the observed
remarkable abundance of threadings between rings in dense
solutions.12,16,18 Within this picture, tight loops would accom-
modate through loose ones. Simple arguments related to the
statistics of ideal random walks absorbed by either a point or by
a finite or infinite flat surface also suggest that, in some cases,
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threadings may grow with the size of the rings (see Fig. 10).
Such large threadings may eventually generate topological
constraints which can leave a signature in the long-time
relaxation of the rings3,13,16,18,70,72 and allow one to generate
topologically frozen states by randomly pinning a small fraction
of the rings.12

In summary, I have shown that the conformations of rings
in dense solutions contain local tree-like structures that are not
necessarily described by the classical tightly double-folded
lattice animal picture. The two major emerging structures,
loops and branches, have been characterised trough contact
maps and local writhing. The analogy with slip-linked chains
has been shown to lead to interesting insights into the rings’
equilibrium conformations although a more thorough investi-
gation of this avenue is left open as a future challenge.

Appendix A: computational details

The rings are modelled as N Kremer–Grest75 semi-flexible bead-
spring polymers of length M and persistence length lp = 5s. The
system monomer density is fixed at r = NM/L3 = 0.1s�3 and s is
the nominal size of a bead. The main control parameter is the
rings’ length M which is varied from M = 256 to M = 2048.
The simulations are performed with the LAMMPS engine in
Brownian Dynamics mode, i.e. the solvent is implicitly modelled
and the beads undergo Langevin dynamics in an NVT ensemble.
Further details on the specific system studied in this work are
provided in ref. 12 while a detailed description of the Kremer–
Grest polymer model can be found in ref. 75.

Appendix B: symmetries of the rings’
contact maps

The contact map for a linear polymer displays the usual
symmetry (i) i 2 j or (i, j) B ( j,i) (from eqn (1)). In the case
of ring polymers, the periodicity in the beads index introduce a
further relation (ii) (i, j) B (i + M, j) B (i, j + M) B (i + M, j + M).
Given symmetries (i) and (ii) it is possible to make the identifi-
cation (i, j) B ( j,i + M). A general contact map would therefore
look as the one sketched in Fig. 11, where numbers help the
reader to identify identical points along the boundaries which
are also connected by dashed lines.

Appendix C: size of terminal branches

In this section I discuss how the typical length of the branches
Lbr found in Section 3 depends on the choice of the size of the
sliding window lw through which the local unsigned writhe is
computed. In Fig. 12 I report the profile of the unsigned
writhing Acnðk;lwÞ for four choices of lw = 10, 15, 20, 30 beads
corresponding to the range lw = 1–3 Kuhn segments (lK).

As mentioned in the main text, this is a physically motivated
range for lw since in the limit lW B M, the profile of Acnðk;lwÞ
is expected to become flat, and for lW = M the computation
must return a constant that captures the total writhing of the

curve ðAcnðk;MÞÞ. In addition, values of lw shorter than the
Kuhn length have to be excluded since the chains cannot writhe
on these length scales.

Clearly, choosing larger values for lw leads to a loss of
resolution. For instance, in a situation where two terminal
branches are separated by a short and weakly self-entangled
segment, a sliding window that too large will not be able to
distinguish the presence of two terminal branches and will
classify the whole stretch as one long terminal branch (this can
be seen happening in Fig. 12(B) for lw \ 2lK).

From this one can readily conclude that lw should be con-
sidered to correctly capture the presence and size of branches is
of the order of one or two Kuhn lengths. The value of lw = 15s =
3lp = 1.5lK used in the paper lies in the middle of this range. In
this Appendix I show what happens when other values of lw are
considered. The values of Acnmin and Acnmax employed are:
Acnmax ¼ 0:35; 0:6; 1; 1:6 and Acnmin ¼ 0:25; 0:4; 0:5; 1, 1 for
lw = 10, 15, 20, 30 beads.

Fig. 12(C) shows that larger values of lw shift the distribution
of branch lengths to larger Lbr. This implies that the precise
value of hLbri is sensitive to the choice of lw. In particular one
finds hLbri C 20, 25, 34, 45s for lw = 10, 15, 20, 30 beads.

Fig. 12(C) also shows that irrespectively of lw, the mean hLbri
is always independent of the total ring length M. In other
words, the distributions are always found to collapse on top
of each other, no matter the value of M. This is an important
point, especially because it is in full agreement with previous
studies which measured the bond auto-correlation function
(BACF) in systems of dense rings.10,62 This BACF is reported to
display a negative correlation dip, which is interpreted as the
signature of terminal double-folded branches and the position
of its minimum – i.e. the typical branch size – is observed to be

Fig. 11 Figure representing the symmetries of the contact map for ring
polymers using 7 locations as reference for the eye. Dashed lines connect
points that can be identified (in the same triangle). Arrows and letters help
the identification of the boundaries of the map across the square.
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independent on the total rings’ length. In particular, ref. 10
studies a system of rings not too dissimilar from the one
investigated here (in terms of rings’ stiffness and system density)
and observes that the minimum of the BACF is attained at
about 20–24 beads, in agreement with the values of hLbri found
for lw = 10–15 beads.

Perhaps even more importantly, for all the values of lw

considered in this appendix the fraction of mass that is stored
in the terminal branches is always found to be around 30%
(Fig. 12(D)). This can be understood through the simple observa-
tion that larger lw lead to the detection of wider, but fewer,
terminal branches so that the total fraction is conserved and
independent on the choice of lw (within the physically motivated
range discussed above).

Appendix D: distribution of loop sizes
for a given loop degree

From the study of the looping degree described in Section 4 one
can classify each loop in terms of its degree. An interesting
quantity that can be extracted from this classification is
obtained by measuring the distribution of loop sizes Lloop for
each individual looping degree ld. This is reported in Fig. 9 in
the main text and in Fig. 13 in this Appendix for chains with
M = 2048 beads. As discussed in Section 4, the distribution of
loop sizes for loops of any degree is shown to decay as a power

law with exponent gl C 1 (discussed in Section 4, Fig. 6). The
same distributions restricted for given loop sizes are instead
observed to follow different statistics.

The first observation is that the distribution for loops of degree
zero, i.e. the first that appear near the diagonal and that do not
contain other loops, can still be fitted by a power law which decays
with an exponent g0 close to the one predicted by the slip-link
theory for tight loops nd � s4 = 2.2 (see Section 5.2 and Fig. 9).

Fig. 12 Panel (A) shows the profile of Acnðk;lwÞ for the configuration used in Fig. 3 of the main text and for different values of lw. One can readily notice
that in this case the general profile remains largely unchanged for increasing lw and that with appropriate values of ACNmin and ACNmax one can retrieve
similar statistics of branching. Panel (B) instead shows a case in which increasing values of lw lead to a situation where two distinct peaks are replaced by
one larger peak therefore clearly proving the loss of detail involved with large lw. Panel (C) shows the distribution of branch lengths for different values of
total ring length M and different values of lw. Remarkably, the mean hLbri is insensitive to M for any value of lw considered. On the other hand, increasing lw
leads to a larger hLbri. Panel (D) finally shows that irrespectively of the chains length M and the choice of lw, the distribution of the fraction of length that is
stored in terminal branches remains peaked at about 0.3. This can be understood as larger values of lw lead to wider, but fewer, peaks which preserve the
total fraction of mass stored in the branches.

Fig. 13 This figure shows the distribution of loop sizes for loops of any
degree (dark purple line) and for loops of degree ld ranging from 1 to 10.
The former decays with an exponent gl C 1, the latter show that there exist
a minimum length for which a loop of a certain degree can appear and,
interestingly, loops with high degree seem to ‘‘accumulate’’ at large
lengths near Lloop C M/2. In this figure all distributions are normalised by
the total number of loops to aid the comparison and are computed for
rings M = 2048 beads long.
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The second observation is that the loop size distribution for
loops of degree greater than zero are no longer following a simple
power law statistics. They show that there exist a minimum length
at which loops of certain degree appear. Furthermore, loops of very
large degree (larger than 4) tend to accumulate towards the end of
the spectrum of available lengths, perhaps explaining the ‘‘bump’’
that can be observed in Fig. 6 and in contact probability Pc.

13

The final observation is that the same exponent near nd � s4

seems to describe the decay of loop size distribution of loops of
intermediate degree (in between 1 and 3) perhaps indicating
the ‘‘mixed nature’’ of these loops, being able to include loops
of lower degree but still being ‘‘tight’’ in terms of their slip-
link representation.
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