An Introduction to LabVIEW

for 4™ year projects

Stephan Eisenhardt, University of Edinburgh

S.Eisenhardt@ed.ac.uk

LabVIEW 2009

09.2010

Objectives

o To acquire familiarity with the LabVIEW Programming language

O To be able to write LabVIEW programmes incorporating pre-written
and new code

O To be able to understand, adopt and modify third-party code
o To learn how to investigate about unknown functionality

0 To acquire the skills needed to complete the 4th year project

Introduction to LabVIEW Stephan Eisenhardt

Stage 0 : Concepts & Principles

Introduction to LabVIEW Stephan Eisenhardt

The LabVIEW Concept I

o LabVIEW (in short ‘LV’) is a graphical programming language
developed and marketed by National Instruments:
— The look and feel is very different from textual programming languages

MuMmEric (- approx. eqUivaIent C++ programme
by i to calculate a sum,
L, but 1/0 only works on a text shell

complete LabVIEW programme () o o
to calculate a sum, B
it includes the graphical 1/0 , S e

— All the usual programming concepts are available

— But what is the benefit of reinventing the wheel, causing overhead,
another learning curve and paying substantial licence fees?

Introduction to LabVIEW Stephan Eisenhardt 4

The LabVIEW Concept II

o LabVIEW is designed to build graphical user interfaces (GUIs) for
laboratory instrumentation — also called Virtual Instruments’ (VIs):

— A VIs can read out to a single sensor, emulate the front-face of
commercial devices or control large integrated systems

— The idea is to provide a user-friendly interface, tailored to the needs of
the application, to an otherwise possibly obscure piece of hardware

anita e Pamal

— Like with a dashboard of a car, the user interface is what the operator
experiences for steering and monitoring of the hardware, while the
details of the implementation and the interfaces to the devices are hidden
under the bonnet

— Programming LabVIEW is like building a car, running a VI like driving one

Introduction to LabVIEW Stephan Eisenhardt 5

Principle of 'Data Flow’

0 Programme execution follows the principle of ‘data flow’:

— Each instruction comes with an interface of input and output parameters,
called ‘terminals’ (e.g. the ‘+’-operation has X’ and ‘y’ as input and the
‘sum’ as output terminal)

— An instruction is only executed once *all* its input terminals hold valid
data (i.e. the instructions it depends on, all have produced valid data)

— If there are several instructions which could be executed in parallel, LV
has reasonable defaults to chose; but if the order matters, e.g. due to
‘race conditions’, there are ways to control this

— Each VI has it own set of terminals and can be called as an instruction in
another VI (e.g. also function calls provided by LV are VIs themselves)

Introduction to LabVIEW Stephan Eisenhardt 6

Implemented Design Principles

O

Encapsulation: (main design feature)

— [Each VI has its user-definable interface, and can be operated as ‘black box’
element within other VIs once it is working reliably

Type checking: (main design feature)

— Checked at time of coding, VI cannot run if output and input between two nodes
do not match in type

Templates: (now fully integrated since v8.0 and promoted as default)
— Called ‘Express VIs': configurable, pre-written code for standard tasks

Scope of parameters: (supported)

— VIs run with their own set of local variables, and one can manage different sets of
global variables...

Recursive functions: (supported)

— Vs can be configured to run as parallel instances and can call themselves
Inheritance: (not in the way you know it from C++, only while coding)

— Configurations of existing elements may be ‘inherited’ by new elements you place
Function overloading/Polymorphism: (implemented for library functions)

— Provided for many standard functions in the library, but hard to code by one-self

Introduction to LabVIEW Stephan Eisenhardt

Stage 1 : The Way around LabVIEW

Introduction to LabVIEW Stephan Eisenhardt

How to use this Guide

0o Layout:

Proposed instructions are green

o While reading the following pages:

Run LabVIEW in parallel and try all the discussed actions for yourself

Feel free to branch out from the guide to browse some of the many other
possibilities and return to the text at your own pace

At this stage you are deliberately *not* given any example.vi — the first
stage is about learning to find your way around and ways to help yourself

A second stage will deal with the functionality you will need to employ
during your project

Introduction to LabVIEW Stephan Eisenhardt 9

Getting Started

o Start LabVIEW: (used here: version 9.0.1)
— Windows: double-click LV icon or Start menu — All Programs

— Linux/SunOS: type ‘labview &’

0 Startup screen: select ‘New: Blank VI’
— We start from scratch and keep it simple

— A simple data member and a sum will
give the opportunity to learn much about
the way around LV

— That should give you the tools and techniques to better find the needed

information later on

Introduction to LabVIEW

13 Getti ng Started

Eile Operate Tools Help

& LabVIEW

‘|, Emply Project
*&) VI From Template. ..

2 More...

en
(£ Browse

nnnnnnnnnnnnnnnnn

Getting Starked with LabVIEW

LabVIEW Help

List of All Hew Features
Examples

Q Find Examples...

Stephan Eisenhardt

10

Basics

o A LabVIEW programme comprises of two types of screens:

— The ‘front panel’ (FP):

this acts as the user interface, with
controls and displays

W
@
&
oe
it
=
T
=
El

Q, Search | [|
. . . . ¢ L] |+ Express
associated with it is a ‘Controls N Ts
window (Cnt) to drag & drop GUI
interface elements
|| b User Controls
| Select a Contral.

— The ‘Block Diagram’ (BD): (invoke with Ctrl-e |f needed)
this contains the computational code

File Edit Wiew Project ;p ate Tools Window Help

which handles the data
associated with it is a ‘Functions’
window (Ftn) to drag & drop code
Clermenie E ssssssssssssssssss
— itis stored in a file <name>.vi | ree=

| selectavi...

Introduction to LabVIEW Stephan Eisenhardt

@ @ |I'._UIEID’H 13pt Application Font |v'| ::W"'-_EI:" ‘ﬁv{‘ﬁd
E
11

Mouse Tips

0 Basic manipulation techniques:
— over items selects the focus
— selects an item
— selects to edit an item

- opens a menu for configuration and digging further

Introduction to LabVIEW Stephan Eisenhardt

Learn from a Simple Example

O A simple example will show the basic functionality: a data member

— In the ‘Controls’ window: under the ‘Express’ tab open the ‘Numerical
Controls’ sub-tab and select the plain ‘Numeric Control’ GUI

. close
, : open e
— drag & drop it to the FP I P o
— notice what happened: e s
1. on the FP you got N
with a data display, increment handle and name label Mumeric
0
— play around with it: edit the value, the label, use the increment Z“’ R
— notice the e b — whenever a value is still transient
e

2. on the BD you got an

MNurneric

with the same label ﬁ
— it represents the memory allocation and displays the data type

Introduction to LabVIEW

Stephan Eisenhardt 13

Element Manipulation I

O Lets dig a bit deeper into what can be done to the data members:
— right-click the input terminal and select ‘Representation’:

you see the LV can handle e
by rows, in the different precisions:

NNNNNNN

floating point
signed integer
unsigned integer
complex

— by default LV chooses ‘double precision’ = 32-bit floating point
— note how for the various types
— try it out, e.g. to change to ‘complex extended precision’” and see how

the data display on the FP changes

Introduction to LabVIEW Stephan Eisenhardt 14

Element Manipulation II

NNNNNNN

0o And on the front panel: e—
— right-click the data display and select ‘Visible ltems’:
you see now also the other visual items available: s

Reprssentation

— try out the radix, select the ‘U8’ data type and value '10’;

— click the radix and change to ‘Hex’, ‘Octal’ and ‘Binary’

— note that you have to chose an integer data type for these settings to
be available

— try to activate the ‘Unit Label’, you cannot...

— you have to chose a floating data type first to use a ‘Unit Label’,
use e.g. 'V’ as label

— now you cannot change the radix to ‘Hex’, ‘Octal’ or ‘Binary’ anymore,
nor can you change to integer data types...

— you must clear the ‘Unit Label’ again by editing (double-click), to
enable integer types once more

— thatis all due to the already performed at the coding

rrrrrrrrrr

_ staq_e _
Introduction toLabVIEW Stephan Eisenhardt 15

Element Manipulation III

0 Dizzy already? There still is more worth to know at this stage:

— for the terminal or data display find the ‘Data Operations’ menu and
‘Reinitialize to the Default Value’: the data display should show ‘0’ again

— enter a value<>0 and ‘Make Current Value Default’

= provided you save now the .vi, next time you call it you will start with
the value you have chosen

— This works fine: but for transparency | strongly recommend to
to sensible defaults at the start of running, it makes
life (debugging) so much easier... — we will come to that...

Introduction to LabVIEW Stephan Eisenhardt 16

Element Manipulation IV

0o And one more on ‘states’ of elements:
— for the data display find the ‘Advanced’ menu and use ‘Hide Control’
... 00ps... — you want it back? — terminal: ‘Show Control’, easy

— another game on the ‘state’ of our element:
data display — Advanced — Enabled State — select Disabled & Grayed
... hmm... you still can do everything you have done so far...

yes, because you are in ‘editing mode’, ‘disabling’ means to lock the
access at run-time. i.e. for the operator

— Now: all operations on ‘states’ of elements, e.g. data operations,
colouring, animation, formatting, visibility of components, etc., are
available at run-time as well; so called allow for their
test and manipulation ... —imagine ...

— you find a comprehensive collection of states of an element in the right-
click menu under ‘Properties’ — go and explore...

Introduction to LabVIEW Stephan Eisenhardt 17

Quo Vadis?

O You are worried because you ‘haven’t done anything’ yet?

So wrong! You have achieved so much more than in the usual approach
of putting ‘some lines of code together and run it’...

You have gasped a of LabVIEW!

You have gained a to query and understand the elements of
your programme!

we continue, and you should expect much more from LabVIEW: as each
new principle opens a new dimension in the spectrum of possibilities

don’t shy away from the mightiness of LV, curiously explore

BTW: Vee is the competitor language developed by Agilent, one of the
main competitors of National Instruments
» when you learn LV, you quickly can pick up Vee as well as they are similar

» but the languages are not compatible...: imagine how the C-compilers of
Microsoft and Borland would look like if there wouldn’t be the ANSI
consortium to standardise the C-language...

Introduction to LabVIEW Stephan Eisenhardt 18

Help Yourself

— the’
it gives you the
» describes all
* gives a link to the

— to invoke do either:

* Help — Show Context Help

* push the “?" button
« Ctrl-h

O Here is what you can do to get more information:
" window is extremely useful:

of the element you mouse-over

of an element

(for all library functions)

Context Help 2G|

Add]

o >
¥

Computes the sum aof the
inputs.

Detailed help [v

[F[5[2]<| [2]

IEE context ve 0

— for free textual search go to LabVIEW help:

» Help — Search the LabVIEW Help...

e Citrl-?

Introduction to LabVIEW

= T
Tools Window Help ﬂ add |
s =%
-uﬂ .,tsh wy Contexk Help CtrlH ez; L
ot [¢ Lack Cantext Help CrbeShift+L \ 7 :7.__[>——— sy
Search the LabWIEW Help... Cr+? Computes the sum of the
Ezplain Error... inputs,
Gl il Detailed help.]
Find Examples. 21¢ |
o i [El2]< (2]
== Find Instrument Drive
_1: _\Lﬁ-_ Wieh Resi) riction
L
T T¥I Class Driver Help. .. il
NI MA¥ Configuration WI Reference P Programrmin:)
b Measurement k10
Activate Lab¥IEW Components. . y -I “t — .t.]ﬂOI
nnnnnnn
Patents... o’b
L About Lab¥IEW. .. b Mathemat
[LabVIEW Help BER
Hide Locate Feck Fomerd O
Corterts | Indes | 8o
T e = i

[vetain wire values

Select topic:

| Tite

Stephan Eisenhardt

LabVIEW™ Help

June 2009, 371361F-01

| This help vt m includes info! rmat
2 a

ou install a LabVIEW add-on such as a

paIEtt , menus,
hlp system, use the Contents, Index, and Search tabs to
window.

abol tL vaEW prog mmmmmmmmmmmmm
for using Lal bVIEW refer infol rmat b t
d tm:ls.

toolkit, madule, or driver, the

19

Reading Third-Party Code

O Learning from examples is a great way to progress:

Introduction to LabVIEW

menu: Help — Find examples...

explore the possibilities to:
— narrow search to specific hardware
— maintain your favourites
— online information in the LabVIEW Zone

read existing third-party code

some examples are simple, some complex
to make the most of it: use the following

strategies:

follow the flow of data

)3 HI Example Finder

| Browse | Search | Submit

Browse according to:
(@ Task

) Directory Structure

) LoV Zor
’ LD';\'I‘:I“I @ Articles
G Beesen |y | pusuca
% ISR % EEE
‘o)

Visit Lab¥IEW Zone

[Cinclude ni.com examples
. Al.com query Hmeaut

Hardware
Mo hardware Found

[it results to hardware

el |

Daouble-click an example to open it

=) Analyzing and Processing Signals
£5) Building User Interfaces

2 Acquiring User Input

(3 Controlling Front Panel Objects

Programmatically

) Customizing Contrals

(7 Designing Dialog Boxes

{23) Displaying Data

£5) General

|¥ing contral,

|when you select an 3
;r\ng the r\ng keeps that value unt\l it
lis hen using a ring a

| ple, while not
|specific ally written for the
|LabYIEY Real-Time Module,
|runs on RT targets.

| This V1 simulates latch action an a

Ring with Latch Action.wi B = | y u m\ght want th qt
Run Dual Mode Thermometer #Controlvi [;\atch in the new value {i.e. keep the
~ |new walue until the diagram reads
5'"D| Do 'Md Thermometer i |it), and then return to the default
:value
=2 =3
wdw in Picture Contral.vi E, |Using a local variable, you can do
apping L:';‘ ithls by resett\ng the ting ta its |
Ward wrapping using Get NEh Line.vi Hil |default value after you read it. |w
(221 Graphs and Charts 7'
) Listboxes and Tables || Readirements
I Pict
. General 1
2 Menus and Toalh
) Playing Sound
) Communicating with External Applications
7 Distributing and Documenting Applications
) Favarites
22 Fundamentals =
1 Hardiara Tonuk and Cukonok &)
Add to Favarites] [Setup...] l Help] [Close]

of elements and the used functionality, get ideas

follow the variables

use right-click —

use the debugging tools
to study the and

of events

Stephan Eisenhardt

to see where data is used/re-used in the code

20

Ways to Build: the second element

0o Now relax as this is easy — but there are several ways to Rome:

— revert back to the default settings of the first Numeric Control and add a
second Numeric Control

— which way have you done it?
* via the Controls window again? OK
» you also could have done via Copy & Paste (Ctrl-c & Ctrl-v) on either
the FB or the BD — try both, and delete (Ctrl-x) or undo (Ctrl-z)

MNurneric
Murneric
.

o 1 the with Copy&Paste is
— mwmericz that you also copy all configurations you have
o 0., done to the source (did you really reset
everything?)
— note the if you perform the actions on the FP or BD:

« if you place the new element on the FP: the new element on the BD will be
placed in (approximately) the same relative position to the first element

« if you place the new element on the BD: the new element on the FP will be
placed as near as possible (without overlap) to the top-left corner of the FP

Introduction to LabVIEW Stephan Eisenhardt 21

o As always in LV, again you have several ways to do it:

Introduction to LabVIEW

Ways to build: chose an operation

in the Functions window: activate the extension button i
follow: — Programming — Numeric
drag the ‘Add’ operation to the BD

sssssss

q
-ation
Control Design & Simulation
‘ v

note the of available

Arit

functionality

go & find in the ‘Programming’ branch: While Loop, Local Variable, Array
Subset, Transpose Matrix, Bundle Cluster, © constant, True constant,
type conversion Boolean to (0,1), Carriage Return constant, Max&Min
test, Wait Until Next ms Multiple, Three Button Dialog, Scan From File,
Property Node, Acquire Semaphore, Play Sound File

note that in other parts of the tree

others do not: so go & find: Gauss Peak Fit, Numeric Integration, Sine
Wave Generator, Random Noise Generator, Convolution, Normalisation,
1/f Filter, Fast Fourier Transformation, Initialize Mouse

Stephan Eisenhardt 22

Ways to build: use the context menu

o No, that was only one way so far, here comes the second:

— right-click on one input terminal: depending on its data type you will get a
palette entry which provides the most common elements this terminal
would connect to, and links to further related sub-palettes

4 Add

BEEEEE o
e } S @> m> this provides a
== % = & B & B fitting to the element it is used for,
FE B B BB in general it is much faster to use this one —
and it seems pretty comprehensive
[IEI

— a look ahead: in the same way under the ‘Create’ entry you find an
exhaustive list of related elements to create

— the clou with this is: the new element is already configured and linked to
the ‘parent’ element,

— try to create a ‘Property Node’ to programmatically control the foreground
colour of the label...

Introduction to LabVIEW Stephan Eisenhardt 23

Ways to build: use inheritance

0 This way of coding, by using context menus, is powerful and efficient:
— now verify the inherited properties:

Numeric Mumeric Murneric
ji‘: Wisible Items 13 ﬁ
== EH =
B o e . .
w5 | _ — right-click the coloured part of the property
e o node — Link To — Pane:
R ety see to which terminal it is linked
g : — note that the property is already
; configured
— right-click the property itself: note the additional
Gh— i entries in the menu, enabling manipulation, e.g.

. to add an element and Change to Write

Value o v
vale (Sigralngy o

= — when you left-click on the property you can

Data Entry Limits 4 Colors All Elements

rement Key Binding Size H

Increment Key Binding Visible C h O Se a d Iffe re n t O n e
SI0NS ! lside Li

Urit Label y Pt '

o - — now Yyou can get rid of the Property Node again

Increment/Decrement Yisible? Selection 3
Mumeric Texd
Radix Visible? Text

Text Width Text Colors 3

Introduction to LabVIEW Stephan Eisenhardt 24

Wiring Basics

0 Now we connect the elements:
— remember that
— the data travels between elements through ‘wires’

Mumeric

— your Block Diagram should look like this again: B

Murmeric 2

— mouse-over the terminal and ‘+’ operation:

— note the : the mouse looks like a
little spindle when you hover over the I/O ports of the elements — which
are indicated by orange circles and black background for the active one

— by pointing & dragging: string a wire from one input terminal to the x-
input of the ‘+’ operation

Murneric Mumeric

— and add the wire for the second |[F=i.............. |
Murneric 2 $>O Q Murneric 2 |>
— note: output goes izt iz
input comes

Introduction to LabVIEW Stephan Eisenhardt 25

More Wire Skills

0o You will use this a lot...:
— mouse over a wire: actually slightly next to it, so that the mouse pointer is

a spindle

— click and start to draw an extension to the wire a2

— click again to create fixed support points while you drag fizhowr—— T

— right-click to abandon your wiring Numeric 2 =

— try again and now double-click to end the wire mid-air fe———

— note that the new wire, by dashing, is indicated as

— also the original wire bears to say that it doesn’t work anymore

— mouse-over the cross and see what is wrong: N;m - |
fair enough, LV doesn’t like loose ends ve: Wve s Tose endz)

— 80 pick up the open-ended wire and connect it to the sane one: N;ZS:

bugger! now everything is messed up...
- while you code " 1o O ICREEE ,
and lets you immediately know if something is wrong [i mnnectsmwethawne data source.

Murmetic 2

Introduction to LabVIEW Stephan Eisenhardt '

And More Wire Skills

. 12301 -r- 84 - - - -, p
o Of course, we know what is wrong: : :
1 1 Murneric 2 ..I> :
— mouse-over a Segment Of the Offendlng wire) [This wire connects mnr‘e than one data source.
C o . . . fizsf- = ;
— this time precisely, for the pointer being an arrow ol '-_‘; --------- !
umeric oy
click once to select a segment Tl g d o ferree :
' '
double-click to select up to the next branches N =
LIMEric :]

trip|e-C|iCk tO SeleCt everything Up tO the I/O por'tS ‘Nzap - [This :h'ire connecks more than one data source,

o g o o o]

— getrid of only the offending part, in either way: mumer;r‘«ﬁm
 Ctrl-x R e '
« right-click: Delete Wire Branch N 2
e

£ =2
"I [This wire: connects mare than one data source,

— now select one of the remaining segments and drag it around

— try different positions and different segments and observe:
* how does it look if two each other? look closely...
« what happens if you try to produce a ?
— note: the actual connection to the elements is in the centre of the I/O
ports, i.e.
Introduction to LabVIEW Stephan Eisenhardt 27

Wiring needs Order

O Is your wiring well messed up — making the code incomprehensible?

— right-click: Clean Up Wire === pumen:
h | t t 2z 2zp
...aaah... now |l get i m
Murneric 2 [> Murneric 2 [>
fiz3} fiz23}
— only: the LV algorithms to order wires are , at times

annoying, and in a few cases do bad choices (this may or may not have
improved now since v7.1), expect that:

« at wiring the depending on which direction you go between
the ports of two elements

» ‘Clean Up Wire’ nearly always will come up with a different layout than the
wire placement

. wires run straight through them

* in some circumstances (usually with bigger structures) the wires may leave a
port in the opposite direction than one would expect, and emerge under the
of the object (especially hard to decipher in third-party code...)

— plea: use manual re-ordering where needed, improve readability of code
Introduction to LabVIEW Stephan Eisenhardt 28

Finalise the Sum: the Indicatior

0O You want to display the calculated sum. What is the best way - think:
— | suggest: right-click the output port of the sum and create an Indicator

— this way a new variable is allocated, already wired fumeric
and the necessary properties 7= ?
(e.g. data type, name label of the output port) et >
— and where did the data display end up? =
— here is a short-cut: right-click the new element — Find Indicator
— and the way back: right-click the new element — Find Terminal
— note the ; hureric
» greyed data display, no controls xﬂ“’ izap iy
 thin-lined terminal, with data entering from the left — [&> ﬁza
— though you everything as for the terminal, try: S

» radix, Unit Label, data value, make some data default (even if it doesn’t make
sense at this stage...)

* now change the data representation to U16 and enter (x,y)=(2.5, 3.1)
* run the VI; ||He Edt few Broiet gee , how try (2.5, -3.1), then 116, ...

S)lom

Introduction to LabVIEW Stephan Eisenhardt 29

Selecting

O You have messed up the configuration? OK, start again:
— on the FP click the indicator and remove it (Ctrl-X) [e von ot
— notice that the , NQrIr... : o
— go to the BD and look what is wrong: aha, a loose wire was left over
— right-click the wire stub — Remove Loose Ends: OK
— could we have done that easier? yes!
— 2x Ctrl-z to revert to the problem...
— on the BD now point to the background and lasso the indicator and wire..

Ureric

— selecting this way needs a bit of practise, as:) ey

—————————

ey
« all elements (or labels) will be selected I o I |
only will be selected izl |
— hold Shift, point & click to select and deselect otheritems 77777 :
Murneric ot T T ! Murneric ——
! i Mumeric,
g, oy b ity B i
Murneric 2 i I> e i ‘I Murneric f_::::::B_: M fﬂuﬁéﬁc_ff::::"b:
= | = ool

Introduction to LabVIEW Stephan Eisenhardt 30

Programme Execution

o Have you noted?

File Edit Wiew Project

— while you code the between @[m and
fe Edt_vew et , 1.€. €NADLlING and disabling the execution of the VI
@Eem
— the LV interpreter is whether your VI complies with
all rules

— some basic reasons for broken Vls you know already:
 at least one input port of one element does not get data
« unused wire stubs are present, i.e. data is not properly delivered
(though it is OK to leave output ports unwired, i.e. unused)
* mismatch in data type between output and input of two connected elements

(though the input port of an element may provide limited data coercing with
default casting rules — it is not recommendable to rely on this)

— a working ‘Run’ button means that your program
this does not state anything about the programme logic, i.e. whether it
makes sense... that remains your job...

Introduction to LabVIEW Stephan Eisenhardt 31

Saving

Mumeric

0 Revert back to the good, standard case: b IFE by
— it's now a good time to save your VI, Numeric 2)
you may have to returntoit |
— Ctrl-s to select path and name of the VI (or to overwrite if existing)

— note the from T Block Dingral *)
to @ﬂck Diﬂgr@ File Edit Wiew Project Operate Tools
File Edit Wew Project Operate Tools @IE
on]

» the ™ always indicates unsaved changes, even if only of cosmetic nature
» and you have now named the VI

— if you exit a VI with unsaved changes, LV will ask you whether they
should be saved

 if there are any which this VI depends on, LV
will also ask you whether you want to have them saved as well

— use Citrl-Shift-s if you want to save your current VI and all it depends on
— use menu File — Save As for more options

Introduction to LabVIEW Stephan Eisenhardt 32

Various Manifestations of Elements

O Elements on the BD and FP can have various manifestations:

— on the BD: terminals and indicators can be shown as
* jcon

MNumetric

Murnetic
nty [DBLF
i wt
e variable ty_
— with exactly the - e
— to toggle: right-click — View As lcon as icons

as variables

— on the FP: controls and indicators have a wide range of representations
— to select style: right-click — Replace — Num Ctrls — <Style> Chob°
« some examples of inputs for double variables:

Murneric Slide 2- ' -5
tOSU|tthetask E;,':' """l_'|-|) .

« change the input range of the slide: double-click the axis labels to edit
— what happens if you edit a centre axis label?

« operate the knob as input for a double, now change the representation to U8
— how does the operation of the knob change? O.1knob

* right-click a slide/knob — Mapping — Logarithmic J 1

— note: you cannot enter “0” anymore in DBL representation, but in U8 J
Introduction to LabVIEW Stephan Eisenhardt 0.01 10

Debugging: Coding Errors

0o Now we deliberately break the VI to learn how to investigate
problems:

convert the indicator into a terminal:

on the FP or BD right-click the indicator — Change to Control

— explore the ways to find out about the error:

in the BD mouse-over the red cross/broken wire

Murneric

Murneric 2

Murneric

} b 1.22]
Murmetic 2

|¥ou have connecked an oukput of Add bo a Conkral,
:[Change the control ko an indicator,

to get a quick explanation/suggestion
 hit the broken run button | eie edt wview project
to get an O[n
with a more verbose explanation for each error/warning
Show Error will focus back to the location on the BD
Help will open LV Help with an exhaustive discussion
O
"+ menu Help — Explain Error...

error 1 chosen by hand,
not related to the example

input s pal contain a character not alowed
by the O3 5

= MI-488: Comman d requires GPIB Controller ko be Controller-
In-Charge.

Stephan Eisenhardt

still after resolving problems like the above there
may be run-time errors, they usually come with error
codes, here you can get them better explained

43 Error list g@
Ttems wi ith errors
X Sum_DEL.vi ||
:v'
2 errors and warnings Show Warnings [
& Block Diagram Errors [a]

You have connected an output of Add to a Control. Change the control to an indicato
¥ou have connected to a palymorphic terminal that cannot accept this data type.

[w]
Details

A wire must be connected to one and only one daka source, such as a contral's terminal or a | a |
Function output, This wire is connected ko twa such sources. You must remove a source,
perhaps by changing a control ko an indicator,

dose | [__showenor | [hep

34

Debugging: Programming Logic

File Edit Wiew Project

QEom

Kty

DE|

Murneric

o When LV finds all rules obeyed the run button is unbroken,

but this does not check for flaws in the programmmg logic:
— these you can sift for in the
toggle the running mode with the lamp button @Euﬁ[

single [2] or continuous|®] operation then will execute in slow-motion
* you can enter arbitrary values at the input terminals before execution

| « on the BD you can watch the between the elements
= - the of the data packets are shown at the 1/O ports
= DEEIMNER

Numeric 4 e
pause (1] or stop [@®] operation at any point

« when paused, the element just being executed will blink
* mouse-over the wires and I/O ports to inspect the values

 step-buttons allow to execute the code element by element:
— [bal branch into sub-VI and stop at its first element
— [®@] step over this element
— of| finish this VI and stop after its call in the parent VI
Introduction to LabVIEW Stephan Eisenhardt 35

Murneric

Wty

DE|

Debugging: using Probes

O Probes are useful to watch values from various locations:

— probes are as the VI executes e

— right-click a wire — Probe

— this will add the probe to the
« double-clicking a probe will focus back to the BD

Murneric

 right-click a probe to access further options, e.g.
* buttons provide further options to manage your probes: | er...

_ opens a for the selected probe

use it next to the BD or FP during execution

— X selects all probes in the Probe Watch Window
use Shift-click and Ctrl-click to alter the selection

- remove a probe from the list

— [E collapse/expand the probe display on the right

Introduction to LabVIEW Stephan Eisenhardt

{3 probe Watch Window E]@
b
Prohe(s) velus Lestlp date] (e
= Em?f?l?.lzn::anc 15.500E+0 2 113 [FEE—
[2Probe 19.280E+0 21j09/2010 12:13:01
i
Murneric 3 [2]Pr... .SE
[15.5
[19.28

Debugging: using Breakpoints

Murneric

O Program execution will pause at breakpoints: =

right-click a wire or element — Breakpoint — Set Breakpoint

MNumeric 2

and you can take it step-by-step from there
to manage the points: iz
* right-click a breakpoint — Breakpoint — Clear Breakpoint
to remove the point -
* right-click a breakpoint — Breakpoint — Disable Breakpoint '
to keep but ignore the point

multiple points can be easily handled with the

* right-click a breakpoint — Breakpoint — Breakpoint Manager (Gemmim BT

« similar to the Probe Watch Window us can use: N ShEs
-9 to enable a selected point =
- O to disable a selected point
— ~~ toremove a selected point
- iZ selects all points

o use Shift-click and Ctrl-click to alter the selection
Introduction to LabVIEW Stephan Eisenhardt 37

Debugging: using Conditional Probes

o An even more powerful tool is the Conditional Probe:

— right-click a wire — Custom Probe — Conditional xxx Probe
acts as a

Murneric

you can set conditions on which this probe

13 Probe Watch Window =<
FEE D‘SD'EIV
X+':-" EOb:e(?urr[‘l]Dazrx‘anc ::I‘Znsm :jtn:'zdnalzzjwjnu [P:useifaiy?:‘:::lluwini:ir
I e
DE: [#] Less than |
— you can switch between the and the in the
Probe Watch Window as well as in the new window to permanently
watch the probe: S5 Numeric 2 =) O B3] [BB1vmenic 2 =) B3
Data | Condition Diata | Condition |
Fause if any of the Following:
Equal to 435
43.78 Greater than 4 3.7
Less than 43,3
— otherwise it behaves like ordinary probes
Introduction to LabVIEW

Stephan Eisenhardt

38

Keeping Order

o If VIs become more complex keeping order is essential to maintain
readability (for others and yourself...):

— even though LV provides some support for that [f=-1[T=~][#5~]a], coding
discipline is essential as the algorithms will leave you wanting

— lasso/select some elements on the DB/FP and play with the tools to see:

[[N = «[2=-] Align Objects: align object boundaries or centres of selected elements

e — object boundaries are always the square around the ,i.e.
& o= |lom depending on the and including , but only if they are shown...

— when aligning to top/bottom/left/right always the xxx-most will be the reference
— when aligning to centres alignment will be done to the centre of the selection

«[5=~] Distribute Objects: arrange objects apart

— object boundaries as for alignment
— distribution takes place within boundaries of selected objects

— compression makes objects touch
. Clean Up Diagram: fully automatic rearrangement

. Reorder:

— group or ungroup selections
— select stacking order if elements overlap (I advise strongly to avoid overlaps!)

ca —
s || &
B B

Introduction to LabVIEW Stephan Eisenhardt 39

Keeping Order: Examples

O Here is some taste of what the automatic tools can do:

MNumeric

Mumeric
xty Muboreesic 2 wty

DE

ez
DE:

Aty

our example after vertical
alignment of centres J—
. r'-iJmericz
Humetic E after hor.&vert.
-+ i compress

Mumetric
[=]1.23]
M e

Murneric

T

s
DE

after horizontal
alignment of centres

Kty
after auto-align

note the change
in the label position

after hor.&vert.
distribution of centres

— so0: use the tools with care and don’t shy away from manual improvement
— and there is always Ctrl-z ...

Introduction to LabVIEW Stephan Eisenhardt 40

Extra Labels & Decorations

0 Be kind to others and yourself — add explanatory labels:

you will value them when you revisit your code after some time
double-click on the background of the BD/FP to start editing a label
double-click the label to re-edit
select to move or change the font |t aepication Fort |~ |
right-click the label for further options

Wty
CE:

Murneric

ez
DE:|

Murmeric 2

zimple educational
example

=)

on the FP or BD like frames, bars or arrows may

significantly improve the overview:
* FP: Controls Palette — System — Decorations
« BD: Functions Palette — Programming — Structures — Decorations

colouring them is possible via and (but
that is too complex to be convenient for a ‘quick tint’ of some elements)

Introduction to LabVIEW Stephan Eisenhardt

41

The Interface

O Encapsulation is mediated via the VI interface:

— lets customise the interface of our example (currently default):
@ |: - double-click icon to open the icon editor:

et B

s — this 32x32 pixels image is helpful if you design modules which you call later

— you can play with it if you have time, e.g. you can alter it to: ===

=/ojes

i
Bl

— more importantly, manage the hidden ; ?.ji. =
» on the FP right-click the icon — Show Connector
— in the default layout you see 6 input ports on the left and 6 output ports on the right
* right-click connector — Pattern, to select the layout suitable for this VI
— or right-click connector — Add/Remove Terminal, to adjust left or right side
« click a terminal in the connector to select — note the appearing —
and next select an input or output element on the FP to make a connection
— break such a connection by right-click connector — Disconnect This Terminal
— note the colour of connected terminals representing the
— note that (input: left, output: right) is only a , YOU can cross-connect
— configure the connection with right-click connector — This Connection Is — XXX

* mouse over the connector or icon: note the in the

—. LI'Context Help — now your VI is a new building block, ready to be called
Sum_DBL2.vi

_abVIEW Stephan Eisenhardt 42

Mumeric u e Bt
. HRE Ky
Mumeric

Configuring VI Behaviour

o To individually configure the behaviour of your VI during edit and

running:

— Ctrl-l or menu — File — VI Properties, explore categories, e.g.:
» General: counter increments every time you save the VI

Editor Options: you can

— the defaults are sensible...

for FP and BD

— look up the options in Custom — Customize

Window Appearance: customise features available at run-time

Execution: Allow debugging: switch off if performance matters
Execution: Reentrant execution:

of VI can run in parallel(second can start before first has finished)

— use ‘Preallocate clone for each instance’ if they

run independently

— use ‘Share clones between instances’ for recursive

operation

configure the example this way for later use in a
recursive setting (OK), and save the VI

« Execution: Run when opened: e.g. when the user shall not edit...

Introduction to LabVIEW

& Properties

rrrrrrrr

tllows debugging

normal priority

Category

instance

@ h
" (mainlains state For each instance)

[l Clear indicators when called

Auto handle menus at launch

Stephan Eisenhardt

Configuring LabVIEW Behaviour

O To configure the general behaviour of LV, across the Vis:

— menu: Tools — Options, explore categories, e.g.:

* Front Panel: Front Panel Grid: Enable Grid Alignment
— toggle the snapping to the grid if objects are moved

» Block Diagram: Block Panel Grid: B opan -0
‘ o] Ervironment
— Enable Grid Alignment ; | &
_ useful for Structured Coding :cnlors hanges ko marked options wil take effect the next time you stark LabWIEW,
* Environment: Maximum undo steps per VI: ey
— set to 99 (max value, default = 30) i
* Environment: note the m—
lF.Hw'\k%lmum:l
Blink Background
=
Menu Background
L1
\:|i V Cuskom Colars, \n,
ok | [cancel | [hel

* Menu Shortcuts: manage you

» VI Server: to configure conditions under which a remote application can call a
local VI

Introduction to LabVIEW Stephan Eisenhardt 44

Local Variables

o Traditionally LV knows and variables:

— the scope of a is the VI it resides in:
it can be bound (‘linked’) to any I/O terminal of the VI
« writing/reading to the Local Variable is as if writing/reading the terminal itself
 this way one also can or

— just to play with it:

» to add one, right-click BD — Programming — Structures — Local Variable
» tolink it: right-click — Select ltem — xxx Humeric
ﬁ

MNumetric

* change I/O direction: right-click — Change to Read
g g g

« and for now get rid of it again...

Introduction to LabVIEW Stephan Eisenhardt 45

Global Variables

O variables can be powerful and dangerous:
— the scope of a IS, surprise, global:
» itresidesina , that only consists of a FP to contain global variables

in any VI can be linked to it
distinct VIs with global variables can be maintained
matching names of two global variables from different VIs are possible...
... and bear a high risk of confusion (hard to debug!!)
they are useful for
they may be used for between independently running Vls

— just to play with it:

to add one, right-click BD — Programming — Structures — Global Variable

to create it: double-click — “Global X Front Panel” opens — place a Numeric "‘;”““E”‘
to link it: right-click — Select ltem — xxx ®

note: only the & distinguishes the global variable now from the terminal
advice: use clear, distinctive !

to change the Global VI to select from: right-click — Replace — All Palettes
— Select a VI

Introduction to LabVIEW Stephan Eisenhardt 46

Shared Variables

O are a relatively new concept in LV:
— they are designed for ;
* e.g. they can be and against multiple write accesses

» but they are only available on Windows and Real-Time platforms

 inter-communications are supported for:
— different parts of a BD where wiring is difficult or impossible
— between independently running VIs on one host
— between independently running Vls on different hosts on the same network

e.g. between a master VI on a control PC and an autonomously running VIl on a
remote Real-Time data acquisition system

— to get a flavour of Shared Variables you may feel adventurous and try:
» embed the Vls into a project (menu: Project — New — Add VIs)

 in the Project Explorer window: select an item and use New to create a
shared variable, then configure to need (to complex to discuss here...)

» ... we don’t need all that now: to get rid of all quit LV without saving...

Introduction to LabVIEW Stephan Eisenhardt 47

A Recursive Example I

o We start from our simple example again and build a recursive VI:
— we need to rebuild:

open your VI and save it e.g. as Modulo.vi, update the label text

rename the controls to ‘sum’ and ‘divisor’

remove the ‘x+y’ indicator

add: DBL control ‘dividend’, U32 control ‘iteration’

add: DBL indicator ‘sum out’, U32 indicator ‘iteration out’

ensure for all controls/indicators that ‘0’ is the default value

edit the VI connector to 4 input and 2 output ports and wire up the terminals
edit the VI icon to bear the name ‘modulo’

add a x>y’ comparison & link the output of the ‘+’ to x and the ‘dividend’ to y
add a Case Structure and link the “?’ to the output of the >’ operation

on the BD right-click the ‘divisor’ control, create a local variable and place it in
the ‘false’ case and change it to Read; repeat for the ‘dividend’

add a ‘+1’ increment in the false case
right-click BD — Select VI... — place Modulo.vi in false case
wire up the VI inputs/outputs: the sum from the ‘+’, the iteration via the ‘+1’

Introduction to LabVIEW Stephan Eisenhardt 48

A Recursive Example II

0 How does your VI look like? Maybe like this: =
— note the 4 tunnels (= feed-through terminals): |

m
a3y

to hand over data: filled on the left —» OK
broken on the right: because there ins no input in the ‘true’ case yet...

— finish the VI:

in the ‘true’ case: feed through the ‘sum’ and ‘iteration’

multiply the ‘iteration’ with the ‘divisor’

from the product create an indicator ‘quotient’

move the ‘quotient’ outside the case structure, and wire back to the product
in the ‘true’ case: subtract the ‘quotient’ from the ‘dividend’

from the difference create an indicator ‘remainder’

move the ‘remainder’ outside the case structure, and wire back ...

upgrade the connector to 4 outputs and connect the ‘quotient’ & ‘remainder’
fix the link to Modulo.vi: right-click — Relink To SubVI

fix the ‘false’ case by wiring the ‘quotient’ & ‘remainder’

— try out the VI with values>0 for dividend & divisor: it should work...

Introduction to LabVIEW Stephan Eisenhardt 49

A Recursive Example III

13 Modulo.vi Block Diagram E]@

O The basic functionality is OK now: " el il (el

— here is how my Modulo.vi looks like:
13 Modulo.vi Front Panel E]@
Fle Edi View Progct Operste Took Window Help
@\@ [130t application Font _vﬂ;uv”ﬁvﬂﬁvi @
e 5l] 3 o] L
Crge T e e e BD: false case 1
g DRI pEE < : | DE
S RS SRS SRS A SRS N NSE 1 AR SHS RS S aSa S nS 13 Modulo.vi Block Diagram ==
Jim | =] =] =] =] 59 i =] =] =] | Fle Edt Wiew Project Operate Tools Window Help
SRS = = = iteration out = = = = | 1@\.@@@Dﬁ?i13ptﬂpph:atiun Font -v”:;..”qﬂ-”m-”s;gj
Front Panel
< ¥

— but | am not happy:

there are four major flaws
1) the FP shows to much information
2) the default values for dividend and divisor (0) cause an infinite recursion
3) the Vlis not safe against ill chosen input values

4) the VI immediately starts execution: a user dialog for input is desirable
Introduction to LabVIEW Stephan Eisenhardt 50

BD: true case

~

A Recursive Example IV

O | also get a bit ambitious and want the VI to have a pop-up GUI:
— solving issue 1) is easy:

for the sum/iteration control/indicators — Advanced — Hide control/indicator

— lissues 2) & 3) actually can be solved in one go: with a test against _ &>
— but the GUI needs infrastructure and it is sensible to write a

create a — menu: File — New VI (Ctrl-n)

add a ‘Prompt User’ dialog box to the BD:
— right-click BD: Programming — Dialog & User interface — Prompt User

configure the dialog box to ask for dividend & divisor
wire collected data to the tests [g>

the output of the tests should ‘enable’ two Display Messages informing about
the numerical requirements for the inputs

place a While Loop around everything:
— change the to Continue If True {&]

add an OR ¥ between the two test results and the Loop Condition
right-click loop edge to add two Shift Registers : ,wire user values to them
viola: you have an and against unsupported inputs

Introduction to LabVIEW Stephan Eisenhardt 51

Express VIs

0o The User Prompt and Display Message structure you just have used
are ;

— their main purpose is to for the programmer
— they provide for standard tasks
— note: corresponding may offer more functionality

and control than Express Vls, but are significantly less convenient to use

— EXxpress Vls are towards:
e user
» files
 (virtual or real) instruments ()

Introduction to LabVIEW Stephan Eisenhardt 52

A Recursive Example V

0 Continue towards the output GUI:
— first we do it ‘per pedes’, i.e. with fundamental functions:

place the Modulo.vi on the BD
wire the user variables and an initial ‘0’ to the ‘sum’ terminal of Modulo.vi

convert the 4 DBL variables to strings:
Programming — Sting — String/Number Conversion — Number To Fractional String

add text constants ([owisent:])and Carriage Return Constants _
and use the function — EE
to build a suitable output text N

add another Display Massage to present the calculated result to the user

for the wiring to look reasonable: use an iterative combination of
— Clean Up Wire
— manual corrections

Introduction to LabVIEW Stephan Eisenhardt

A Recursive Example VI

o How does your VI look like? Here is mine...

r:-E Modulo_GUI. vi Block Diagram L:JLEJ

<

File Edit Mjew Projeck Operate Tools Window Help .,..ﬂ
e e
.@@ huiﬁl'] of | 13pt Application Font |« l :mvl .u-v! |c;;vl|ﬂ 71 |
[+
IDivident: : \ 1
=
L& F H '
Display Message ; -
ko User ﬁ
- ? N Enable - ¥
* M isplay Message
5 ¥ eoszage F ko Users
Iser Input Far = Enable
Modulo Operation Message
Ga v it Y |
e o P = L

divisol 4

el

Display Message
ba Userz

& L3 Enable

Message

i | (]

— NOW

replace the string configuration with a Build Text Express VI...

Introduction to LabVIEW Stephan Eisenhardt 54

Hierarchies

o We have a little hierarchy of ViIs now: let’'s have a look at that...

— Modulo_GUI.vi: menu: View — VI Hierarchy
— note the shown if done in Modulo.vi
— explore the possibilities, e.g.:

 switch on/off branches

« manage the display
« include/exclude VI Lib / Global Variables

* menu: Tools — Find Vls on Disk...

* right-click Vils:
— Show/Hide All SubVls
— Show All Callers

— Find All instances @

double-click: to open Vls

Introduction to LabVIEW Stephan Eisenhardt

25

F1ODULD|

55

VIs as Executables

o Finally: Vls ready for use can be compiled to stand-alone

— this has benefits in the performance
— the code ins protected against (accidental) alteration
— menu: Tools — Build Application (exe) from VI...

« from: Modulo_GUI.vi

» this generates a
— Modulo.lvproj
— Modulo.aliases

« and opens the

— select target name and location

— Build
* bingo:
— it

... without LV open

...asa
executable

Introduction to LabVIEW

{3 Build Application from VI

craate & stand-slone application Fram Madula_GULvi. When you click

bYIEW creates a new build specification in a new praject and

Properties dislog box. To build the application, click the Build
b

Shared Yariable Deployment
es

Run-Time Languag

13 Build status

BE%

Modulo_GUT

The build is complete, You can locate the build at
Cheisenhariwork|UoE)SeniorHonour sibuilds|Modulo_GUTModulo_GUI.

Build specificatior

Madulo_gut

Target filename
Modulo_GUL &3

Destination dire
C:ieisenhariworkiUoE|SeniorHonour sibuildsiMadule_GUIModulo_GUT

n name

)

ctory

Build specification description

2
bitten in the properties dislog bo,
LabVIEW project (,lvproj) to create
CiheisenhariworkloE!SeniorHonoursiLabYIEW _introductioniModulo_GUIL. lvproj
continve | [Caneel | [e |
i3 Medulo_GUI2 Properties
Information

Build] [ok] [Cancel] [Help

)

(

|- wearnings

T

Stephan Eisenhardt

56

No Coding Experience Yet?

O You are still worried that you have no coding experience yet?

you have!

just the set of functionality is limited yet...

but now you know a comprehensive set of tools and practices to find you
own way around LabVIEW

it is time to make use of them

the planes of LabVIEW are vast and fruitful...
 to sustain yourself you have been given bow, arrows and a knife
» and you learnt how to use them
* now go: hunt & explore

Introduction to LabVIEW Stephan Eisenhardt 57

Best Coding Practices

o Butit's along way to write good, complex code...:
— ... the following is not needed for small, quick hacks — but becomes

beneficial for bigger projects

— in LV Help: search for ‘best practices’, e.g. look at:
« LabVIEW Style Checklist: revisit as you progress gaining experience

* VI Memory Usage: dive deep...
— get aware of optimisations

» VI Execution Speed:
— performance-orientated...

— in LV Help: use Locate Le ;

e.g. look at:
— Fundamentals
— Development Guidelines
— Concepts

— Common Development Pitfalls

Introduction to LabVIEW

[M]f=)/X]

Ste

Contents | Index | S arch Favorites

[2] Glossary
@ LaEVIEW 2009 Features and Changes
@ Activating Your Software
@ Using Help
@ LabVIEW Documentation Resources
@ Gelting Started with LabVIEW
([Fundamentals
@ LabVIEW Envimonment
= @ Building the Front Panel
= @ Building the Block Diagram
= @ Runring and Debuaging Vls
= @ Creating Wis and SubVls
= @ Working with Projects and Targets
% @ Building and Distributing Applications
5 @ Loops and Stuctures
5 @ Event-Diiven Programming
5 @ Grouping Data Using Stings, Amraps, and Clusters
5 @ Local Yaiiables, Global Varibles, and the Feedback Node
= @ Graphs and Charts
= @ Graphics and Sound Vls
= @ File /0
= @ LabVIEW Objsct-Oriented Programming
= @ Documenting and Printing 41
= @ Programmatically Controling s
= @ Networking in LabWIEW
& @ LabVIEW \web Services
% @ Calling Code Wiitten in Text-Based Programming Language
+ @ Windows Connectivity
= @ Formulas and Equations
% @ Managing Perfomancs and Memorny
% @ How LabVIEW Stores Data in Memory
@ Porting and Localizing Vs
([} Development Guidsines
= [} Concepts
[2) LabVIEW Style Checklist
[7] Development Guidsfines Related Documentation
[9] Planning and Designing a Project
=i [[)) Development Modsls

[7] Life Cycle Madsls

Incorporating Quality inta the D svelopment Frocess
Frototyping and Design Techniques

Scheduling and Project Tracking

Creating Documentation

G

&
@
@
L

[ne

[

&1 i | 2]

Common Development Pitfalls

If you have developed large applications before, some of the following statements probably sound
familiar. Most of these approaches start out with good intentions and are gquite reasenable. However,
these approaches often are unrealistic and can lead to delays, quality problems, and poor morale among
team members.

« "I have not really thought it through, but I think that we can complete the project in..."
Estimates made without planning rarely are accurate because they usually are based on an
incomplete understanding of the problem. When develaping for someone else, often you each have
different ideas about the project requirements. To make accurate estimates, you both must
understand the requirements and work through a preliminary high-level design to understand the
components you need to develop.

"I think I understand the problem the customer wants to sclve, so I can begin development
immediately.”

There are two problems with this statement. The first problem is that a lack of consensus on project
goals results in schedule delays. Your idea of what a customer wants might be based on inadequate
communication. Reguirement lists and prototvpes are two useful tools for clarifying project goals.

A second problem with this statement is that immediately beginning development frequently means
writing code without a detailed design. Just as builders do not construct a building without
architectural plans, developers do not begin building an application without a detailed desian.
« "We do not have time to write detailed plans. We have 3 strict schedule, =0 we need to begin
developing immediately."
This situation is similar to the previous example but is such a commaon mistake that it is worth
emphasizing. Software developers frequently skip important planning steps because planning does
not seem as preductive as developing code. As a result, developers create VIs without a clear idea
of how the Vs all work together. Consequently, you have to rework code as you discover
mistakes. Taking the time to develop 3 plan can prevent costly rework at the development stage.
"We can incorporate all the features in the first release. If the application does not include every
feature, it is useless."

In some cases, this statement is correct. However, for most applications, developing in stages is a
better approach. When you analyze the requirements for a project, prioritize the features. You can
develop an initial VI that provides useful functionality in a shorter time at a lower cost. Then you
can add features incrementally. The more you try to accomplish in a single stage, the greater the
risk of falling behind schedule. Releasing software incrementally reduces schedule pressures and
ensures a timely software release.

"If I can just get all the features in within the next month, I can fix any problems before the
software releases.”

To release high-quality products on time, you must maintain guality standards throughout
development. Do not build new features on an unstable foundation and rely on correcting problems
later. This development technique exacerbates problems and increases cost. Even if you complete
all the features on time, the time required to correct the problems in the existing code and the new
code can delay the release of the product. Prioritize features and implement the most important
ones first. Once the most important features are tested thoroughly, you can choose te work on
lower priority features or defer them to a future release.

"We are behind in the project schedule. We need to increase the number of developers working on
the project.”

In many cases, increasing the number of developers actually delays the project. Adding developers
te a preject requires time for training, which takes away time originally scheduled for development.
Add resources earlier in the project rather than later. There also is a limit to the number of people
who can work on a project effectively. With fewer people, there is less overlap. You can partition
the project so each persen works on a particular section. The more developers you add, the more
difficult it becomes to awoid overlap.

Recommended Resources I

0 Helpful resources from NI are:

— LV menu: Help — Web Resources... (the official path)

 — Technical Resources — Getting Started with LabVIEW: then e.g.
— Learn LabVIEW Basics

— On-Demand LabView Training (registration/login required)
— NI: LabVIEW Introduction Course — Six Hours (the traditional approach)
* http://zone.ni.com/devzone/cda/tut/p/id/5241
— NI: Support Forum, Technical Support & Developer Zone (the Full Monty...)
 http://forums.ni.com/ni/
 http://www.ni.com/support/
* http://zone.ni.com/dzhp/app/main

— NI: LabVIEW Object-Oriented Programming (available only from LV 8.5)
* http://zone.ni.com/devzone/cda/tut/p/id/3574

— LabVIEW mailing list: read by experienced/helpful people, some from NI
* http://www.info-labview.org/

Introduction to LabVIEW Stephan Eisenhardt 59

Recommended Resources 11

0 Selected unofficial web and offline resources are:

LabVIEW Wiki: with LabVIEW Turorial
* http://labviewwiki.org/Home & http://labviewwiki.org/LabVIEW tutorial
Rensselaer Polytechnic Institute: Tutorials in G (for first practical steps)
 http://www.cipce.rpi.edu/programs/remote_experiment/labview/
Connexions: online course on LabVIEW Graphical Programming (LV 7.1)
 http://cnx.org/content/col10241/1.4/
LAVA: LabVIEW Advanced Virtual Architects (for advanced problems)
» http://lavag.org/
Univ. of Utah, Dep. of Physics & Astro.: LabVIEW teaching materials
 http://www.he-astro.physics.utah.edu/~jui/3620-6620/
— Supplement Materials
— Lectures and accompanying Materials
Stackoverflow: Q&A forum for programmers — search for LabVIEW
 http://stackoverflow.com/questions/tagged/labview
Books: LabVIEW for Everyone & The LabVIEW Style Guide

Introduction to LabVIEW Stephan Eisenhardt 60

Stage 2 : More Useful Functionality

Introduction to LabVIEW Stephan Eisenhardt

61

Senior Honours Projects

O You have now a general overview of the functionalities of LV:

— not all of the discussed you will need to complete your Senior Honours
project

— and there is more functionality you should familiarise yourself with before
you start designing and coding for the project

Introduction to LabVIEW Stephan Eisenhardt 62

o A:

Introduction to LabVIEW

Stephan Eisenhardt

63

o A:

Introduction to LabVIEW

Stephan Eisenhardt

64

Conclusions

o A:

Introduction to LabVIEW

Stephan Eisenhardt

65

	An Introduction to LabVIEW�	for 4th year projects
	Objectives
	Stage 0 : Concepts & Principles
	The LabVIEW Concept I
	The LabVIEW Concept II
	Principle of ‘Data Flow’
	Implemented Design Principles
	Stage 1 : The Way around LabVIEW
	How to use this Guide
	Getting Started
	Basics
	Mouse Tips
	Learn from a Simple Example
	Element Manipulation I
	Element Manipulation II
	Element Manipulation III
	Element Manipulation IV
	Quo Vadis?
	Help Yourself
	Reading Third-Party Code
	Ways to Build: the second element
	Ways to build: chose an operation
	Ways to build: use the context menu
	Ways to build: use inheritance
	Wiring Basics
	More Wire Skills
	And More Wire Skills
	Wiring needs Order
	Finalise the Sum: the Indicatior
	Selecting
	Programme Execution
	Saving
	Various Manifestations of Elements
	Debugging: Coding Errors
	Debugging: Programming Logic
	Debugging: using Probes
	Debugging: using Breakpoints
	Debugging: using Conditional Probes
	Keeping Order
	Keeping Order: Examples
	Extra Labels & Decorations
	The Interface
	Configuring VI Behaviour
	Configuring LabVIEW Behaviour
	Local Variables
	Global Variables
	Shared Variables
	A Recursive Example I
	A Recursive Example II
	A Recursive Example III
	A Recursive Example IV
	Express VIs
	A Recursive Example V
	A Recursive Example VI
	Hierarchies
	VIs as Executables
	No Coding Experience Yet?
	Best Coding Practices
	Recommended Resources I
	Recommended Resources II
	Stage 2 : More Useful Functionality
	Senior Honours Projects
	Slide Number 63
	Slide Number 64
	Conclusions

