
12 Scattering in three dimensions

12.1 Cross sections and geometry

Most experiments in physics consist of sending one particle to collide with another, and looking
at what comes out.

The quantity we can usually measure is the scattering cross section: by analogy with classical
scattering of hard spheres, we assuming that scattering occurs if the particles ‘hit’ each other. The
cross section is the apparent ‘target area’. The total scattering cross section can be determined by
the reduction in intensity of a beam of particles passing through a region on ‘targets’, while the
differential scattering cross section requires detecting the scattered particles at different angles.

We will use spherical polar coordinates, with the scattering potential located at the origin and the
plane wave incident flux parallel to the z direction. In this coordinate system, scattering processes
are symmetric about φ, so dσ

dΩ
will be independent of φ.

We will also use a purely classical concept, the impact parameter b which is defined as the distance
of the incident particle from the z-axis prior to scattering.
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Figure 11: Standard spherical coordinate geometry for scattering

12.2 The Born Approximation

We can use time-dependent perturbation theory to do an approximate calculation of the cross-
section. Provided that the interaction between particle and scattering centre is localised to the
region around r = 0, we can regard the incident and scattered particles as free when they are far
from the scattering centre. We just need the result that we obtained for a constant perturbation,
Fermi’s Golden Rule, to compute the rate of transitions between the initial state (free particle of
momentum p) to the final state (free particle of momentum p′).

The Hamiltonian for a single particle being scattered by a fixed potential as

Ĥ = Ĥ0 + V̂ (r) where Ĥ0 =
p̂2

2m
, the kinetic energy operator

and treat the potential energy operator, V̂ (r), as the perturbation inducing transitions between
the eigenstates of Ĥ0, which are plane waves.

If we label the initial and final plane-wave states Φin = exp(ik.r−iωt) and Φscat = exp(ik′.r−iω′t)
by their respective wave-vectors, then Fermi’s Golden Rule for the rate of transitions is

R =
2π

h̄
|〈k′|V̂ |k〉|2 g(Ek)

where g(Ek) is the density of final states; g(Ek)dEk is the number of final states with energy in
the range Ek → Ek + dEk.
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The quantity 〈k′|V̂ |k〉 is known as the matrix element of the perturbation and is usually abbrevi-
ated thus

Vk′k ≡ 〈k′|V̂ |k〉 =
∫ ∫ ∫

u∗k′(r) V (r)uk(r) dτ.

The time variation has been suppressed here. For constant potential, the only non-zero terms
come from ω = ω′: elastic scattering. For a time oscillating potential (e.g. V (r) sin ω0t) the
non-zero contribution comes from ω = ω′ ± ω0: inelastic scattering where the scattered particle
gains/loses a quantum of energy from/to the system providing the potential.

12.3 Box Normalisation and Density of Final States

Plane-wave states have wavefunctions of the form: uk,ω(r) = C exp(i(k.r−ωt)) with C a normal-
isation constant. Because plane-wave states are not properly normalisable we employ the trick
of normalising them in a large (relative to potential range) cubic box of side L with periodic
boundary conditions. We then take the limit L →∞ at the end of the calculation.

Thus we require that

∫ ∫ ∫

box
u∗k,ω(r)uk,ω(r) dτ = |C|2

∫ ∫ ∫

box
dτ = |C|2 L3 = 1

giving for the normalised eigenfunctions: uk,ω(r) = L−3/2 exp(ik.r− ωt)

Of course, enclosing the system in a finite box has the consequence that the allowed momentum
eigenvalues are no longer continuous but discrete. With periodic boundary conditions

u(−L

2
, y, z) = u(

L

2
, y, z), etc.

the momentum eigenvalues are forced to be of the form

p ≡ h̄k =
2πh̄

L
(nx, ny, nz), with nx, ny, nz = 0,±1,±2, . . .

For sufficiently large L, we can approximate the continuous spectrum arbitrarily closely.

Any possible final-state wave-vector, k, corresponds to a point in wave-vector space with coordi-
nates (kx, ky, kz). The points form a cubic lattice with lattice spacing 2π/L. Thus the volume of
k–space per lattice point is (2π/L)3, and the number of states in a volume element d3k is

(
L

2π

)3

d3k′ =
(

L

2π

)3

k 2 dk dΩ

We require g(Ek), the density of states per unit energy, where: Ek = h̄2k2/2m is the energy
corresponding to wave-vector k′. Now, the wave-vectors in the range k′ → k′ + d3k′ correspond
to the energy range Ek → Ek + dEk, so that

g(Ek) dEk =
(

L

2π

)3

k 2 dk dΩ

is the number of states with energy in the desired interval and with wave-vector, k′, pointing into
the solid angle dΩ about the direction (θ, φ). Noting that dEk = (h̄2k/m) dk yields the final result
for the density of states,

g(Ek) =
L3 mk

8π3h̄2 dΩ
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12.4 Incident and Scattered Flux

The box normalisation corresponds to one particle per volume L3, so that the number of particles
crossing unit area perpendicular to the beam per unit time is just given by the magnitude of the
incident velocity divided by L3:

incident flux =
|p|/m

L3
=

h̄k

mL3

Using the Golden Rule, we have that the rate of transitions between the initial state of wave-vector
k and final states whose wave-vectors k′ lie in the element of solid angle dΩ about the direction
(θ, φ) of the wave-vector k′, is given by

R =
2π

h̄
|Vk′k|2 L3

8π3

mk

h̄2 dΩ

but this is just the number of particles scattered into dΩ per unit time. To get the scattered flux
we simply divide by dΩ to get the number per unit time per unit solid angle.

12.5 The Differential Cross-Section
We now have all the ingredients, the scattered flux and the incident flux, to compute the cross-
section:

dσ

dΩ
≡ scattered flux

incident flux
=

mL3

h̄k′
2π

h̄
|Vk′k|2 L3

8π3

mk

h̄2

Noting that, for elastic scattering , k′ = k, we obtain finally the so-called Born approximation for
the differential cross-section:

dσ

dΩ
=

m2

4π2h̄4L6
∣∣∣〈k′|V̂ |k〉

∣∣∣
2

where the matrix element Vk′k ≡ 〈k′|V̂ |k〉 is given by

〈k′|V̂ |k〉 =
1

L3

∫ ∫ ∫
V (r) exp (−iχ.r) dτ

with χ ≡ k′−k, the so-called wave-vector transfer . Thus the required matrix element in the Born
approximation is just the 3-dimensional Fourier transform of the potential energy function. The
total scattering cross section is simply:

σT =
∫ dσ

dΩ
dΩ =

∫ ∫ dσ

dΩ
sin θ dθdφ

Observe that the final result for the differential cross-section is independent of the box size, L,
which we used to normalise the plane-wave states.

12.6 Further Simplification to 1D for Conservative, Central Potential
Consider a central potential V (r) = V (|r|) where energy is conserved |k′|2 = |k|2. Here χ is a
vector of length 2k sin θ

2
where θ is the scattering angle.

We can make some progress with the matrix element integral if we choose a polar coordinate
system with χ along the z-axis, so that χ.r = χr cos θ. Since we are trying to integrate over all
space this change does not affect the limits of the integral.

Vk′k =
∫ 2π

0
dφ

∫ +1

−1

∫ ∞

0
V (r)e−iχr cos θr2drd(cos θ)

= 2π
∫ ∞

0

e−iχr − eiχr

−iχr
V (r)r2dr =

4π

χ

∫ ∞

0
rV (r) sin(χr)dr
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But since |k| = |k′|, |χ| = 2k sin θ
2
, Whence we obtain the most useful form of the Born approxi-

mation:

dσ

dΩ
=

m2

(k sin θ
2
)2h̄4

∣∣∣∣∣
∫ ∞

0
rV (r) sin(2kr sin

θ

2
)dr

∣∣∣∣∣
2

Thus the scattering cross-section is independent of φ (due to cylindrical symmetry of the problem).
Note that this shows that the differential cross section does not depend on scattering angle and
beam energy independently, but on a single parameter χ. By using a range of energies for the
incoming particles, k, this dependence can be used to test whether experimental data can be well
described by the Born Approximation.

The most common use of the Born approximation is, of course, in reverse. Having found dσ
dΩ

experimentally, a reverse Fourier transform can be used to obtain the form of the potential.

12.7 Example of Born Approximation

Consider scattering of particles interacting via a 3D square well potential: V (r < a) = V0;
V (r > a) = 0.

The integral required here is then (with χ = 2k sin θ
2
):

∫ a

0
rV0 sin(χr)dr =

[
sin(χr)− χr cos(χr)

χ2

]a

0

whence:

dσ

dΩ
=

[
2µV0

χh̄2

]2 [
sin(χa)− χa cos(χa)

χ2

]2

Using a Maclaurin expansion, the low energy limit is:

dσ

dΩ
=

[
2µV0

χh̄2

]2
1

9

[
1− 1

5
χ2a2

]

From integrating over θ and φ the low and high energy limits for the total cross section are

σ(E →∞) = 2π
[

µ

h̄2

]2
[
V0a

3

ka

]2

σ(E → 0) = 2π
[

µ

h̄2

]2
[
V0a

3

ka

]2
8

9
(k2a2 − 2

5
k4a4 + ...)

12.8 General Notes on Scattering in the Born Approximation

The square well illustrates some general feature of scattering in the Born approximation:

• Born approximation is based on perturbation theory, so works best for high energy particles.

• Scattering depends on V 2
0 , so both attractive and repulsive potentials behave the same.

• At high energy, cross section is inversely proportional to the energy (E = h̄2k2/2m)

• Dependence on k and θ arises only through the combination χ = 2k sin θ
2
. Thus as energy

increases, the scattering angle θ is reduced and the scattered beam becomes more peaked in
the ‘straight on’ direction.

• Angular dependence depends on the range of the potential a but not on the strength V0.

• Total cross section depends on both range a and depth V0 of the potential.
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