
15 Bits and pieces
15.1 Casimir effect - forces from nothing

For many quantum systems, such as the harmonic oscillator, there is still some energy associated
with the lowest quantum state. This “zero-point” energy is real, and can be measured in the
‘Casimir effect’. There is a force between two metallic plates in a vacuum, because moving them
would change the wavelength/energy of the zero-point quantised electromagnetic waves between
them: this change in energy in response to a move equates to a force.

The wavefunction for transverse standing electromagnetic waves between plates of area A sepa-
rated by a in the z-direction is:

Φn = exp[i(k.r − ωnt)] sin(knz)

where k lies in the xy plane and kn = nπ/a. The energy is En = h̄ωn = hc/λ = h̄c
√

k2 + k2
n

and the force per unit area is F = −dE
da

=
d

da

(
h̄
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ωn

)
dkxdky/(2π)2 = − h̄cπ2
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Solving this involves a trick of multiplying each term by |ωn|−s, then taking the limit of s = 0.
This tiny attractive force has now been measured (Bressi, Phys.Rev Letters, 2002)

15.2 What does it mean: Wavefunction collapse and the EPR paradox

The interpretation of collapsing wavefunctions is often regarded as unphysical, or philosophically
problematic. There appears to be a contradiction with relativity in the idea that the wavefunction
collapses instantaneously throughout space, although the wavefunction is not measurable.

An attractive contrary view to the idea of ‘measurement collapsing the wavefunction’ is that for
a particular system the value of a observable is a property of the particle, and the wavefunction
only expresses averages over many particles. This kind of property is known as a hidden variable.
As we shall see, this interpretation of quantum mechanics can be tested, and is inconsistent with
experimental results.

Consider a two-photon decay from a source (e.g. 40Ca). Two polarisers are oriented along the
z-direction, and we detect whether or not the photons pass through the polariser.

The decay is one in which angular momentum is conserved, so the photons must be either both
right-polarised (eR) or both left-polarised (eL) (they travel in opposite directions). We are dealing
with bosons, so the wavefunction can be written as a superposition:

|12〉 =

√
1

2
(e1Re2R + e1Le2L)

Now convert into x and y polarisation using eR = (ex − iey) and eL = (ex + iey) to give

|12〉 =

√
1

2
(e1xe2x + e1ye2y)

From this we can clearly see that the quantum probability of the photon 1 passing through
its detector is 1

2
, and if so the wavefunction collapses onto |12〉 = e1xe2x and the conditional

probability of the second photon passing through its detector is then 1. Thus quantum mechanics
tells us that the probability of both detectors counting is 1

2
.

Contrariwise, a hidden variables argument might say that on production the photons were po-
larised in a random direction, say θ to the x-axis. In this case the probability of passing through
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either detector would be cos2 θ, and the probability of simultaneous counts will be 〈cos4 θ〉 = 3/8.
The mathematics for particles with correlated spins is similar.

Since the wavefunction collapse and hidden variable approach give different answers, we can do
an experiment to see which is correct.

15.3 Hidden Variables: Bell’s Inequality and Aspect’s experiment
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Figure 17: Aspect’s Experiment: The polarisations of both photons from the two-photon 40Ca
source are measured by analysers at angles of θ and φ.

Consider extending the experiment described above to the case of analysers at arbitrary angles
which detect all photons. We define measurables a(θ) and b(φ) as +1 if the photon is aligned
with the analyser and -1 if it is opposed. What, then, is the ensemble average value of P (θ, φ) =
〈a(θ)b(φ)〉 ? Clearly, if a(θ) and b(φ) are uncorrelated P=0, but since they come from a common
source, this is not the case: their wavefunctions are sometimes referred to as ‘entangled’.

If the photons start out with ‘hidden variable’ polarisation χ, then it is easily shown that:

PHV (θ, φ) =
1

2π

∮ (
cos2(θ − χ)− sin2(θ − χ)

) (
cos2(φ− χ)− sin2(φ− χ)

)
dχ =

1

2
cos 2(θ − φ)

Meanwhile if the wavefunction collapses at the first measurement, taken arbitrarily as A:

PQM(θ, φ) =
1

2π

∮ (
cos2(θ − χ)− sin2(θ − χ)

) (
cos2(θ − φ)− sin2(θ − φ)

)
dχ = cos 2(θ − φ)

In 1982, to test this Aspect carried out measurements on 40Ca decays using two different angles
for both θ and φ. The quantity he evaluated was:

S(θ1, φ1, θ2, φ2) = P (θ1, φ1) + P (θ2, φ2) + P (θ2, φ1)− P (θ1, φ2)

Where he chose the values which give the largest S: θ1 = φ1 + π
8

= θ2 + 2π
8

= φ2 + 3π
8

The hidden variables theory suggests the result should be S=
√

2, while the wavefunction collapse
suggests S=2

√
2 with perfect measurement devices. Imperfections in the measurement will reduce

the measured correlation in each case. Aspect measured S = 2.697±0.015, confirming the quantum
prediction.
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The apparent complexity of Aspect’s experiment is needed to eliminate sources of error due to
detector, analyser and source imperfections.

There is an apparent contradiction between quantum mechanics and relativity, in that the in-
terpretation of quantum mechanics requires instantaneous collapse of the wavefunction. There
is no measurable quantity for which the two theories give different predictions. “Teleportation”
can transport a quantum state arbitrary distances, but it doesn’t transfer information instantat-
neously.

Most of the wavefunctions we have solved are from Schrodingers equation, which treats time and
space in different ways. For a properly relativistic approach, they should be equivalent. This
discrepancy between quantum and relativity is easily resolved: the Dirac equation provides a fully
relativistic wave equation for which the Schrodinger equation is a low energy approximation. A
nice thing about the Dirac equation is it can only be solved by spinors: as with quantisation the
observed physics turns out to be the only way to solve the mathematics.

The three original papers described in this section are beautifully clear, copies are linked from the
course webpage.

15.4 When can things interfere? What counts as a measurement?

Interference from two slits of a single particle with itself remains a difficult concept to understand.
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Figure 18: Feynman’s ‘classical’ explanation of the destruction of the interference pattern by
measurement, and two separate demonstrations that it is really a quantum effect

Feynman introduced an nice argument based on the uncertainty principle. He argued that the
wavelength of light required to detect which way a particle went must be smaller than the slit
separation. From the uncertainty principle, it follows that the momentum transfer must be so
large that it would destroy the interference pattern. Thus the measurement device destroyed the
interference. Unfortunately, more recent experiments show things are more complicated than that.

Eichmann et al (Phys.Rev.Lett, 1993) set up a ‘two slit’ experiment using photon with lead atoms
as the scatterers. With careful choice of energy, he was able to arrange that the scattering event
changed the internal electronic state of the atom: a process which requires negligible momentum
transfer but would allow subsequent measurement of the atomic state and determination which
way the particle went. As a consequence, the interference fringes vanish.

Durr et al (Nature, 1998) used a standing light wave to scatter rubidium atoms. Added to this
was a microwave source which changed the hyperfine state of the atoms at one of the “slits”,
which could in principle be measured but supplies negligible momentum. The interference pattern
disappeared.

Again, quantum mechanics has been shown to give a correct description: non-identical wavefunc-
tions do not interfere even if they describe the same particle! It does not matter whether the
measurement of the internal states is actually performed: the mere fact that it could be is enough
to destroy the interference.
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15.5 Relativistic Quantum Mechanics

The Schroedinger equation itself it clearly inconsistent with relativity; It has second deriva-
tives of space, and first derivatives of time. If we use the relativistic expression for energy
E2 = |p|2c2 + m2c4 we obtain

−h̄2 ∂
2

∂t2
φ(r, t) = −h̄2 c2∇2φ(r, t) + m2c4φ(r, t)

which is called the Klein Gordon equation. It has solutions describing a relativistic quantum
particle, but others which describe particles of negative total energy, together with negative prob-
abilities for finding them! Applied to hydrogen it gets the relativistic kinetic energy correction
correct, but it doesn’t account for other observed relativistic effects, such as the spin-orbit correc-
tion or the Darwin term (see Atomic and molecular physics).

Dirac tried keeping time and space on an equal footing using a linear equation

ih̄
∂

∂t
ψ(r, t) =

{
c α · p̂ + β mc2

}
ψ(r, t) = Ĥψ(r, t) where α·p̂ = −ih̄

(
αx

∂

∂x
+ αy

∂

∂y
+ αz

∂

∂z

)

Consider a free particle, no terms in the Hamiltonian Ĥ should depend on r or t as these would
describe forces. Dirac assumed that αi and β are independent of position, time, momentum and
energy, so α and β commute with r, t, p̂ and E but not necessarily with each other.

Since relativistic invariance must be maintained, ie E2 = |p|2c2 + m2c4,

Ĥ2 ψ(r, t) =
(
c2 |p̂|2 + m2c4

)
ψ(r, t)

=
{
c α · p̂ + β mc2

} {
c α · p̂ + β mc2

}
ψ(r, t)

Expand the RHS of this equation, being very careful about the ordering of αi and β

Ĥ2 Ψ(r, t)

=
{
c2

[
(αx)

2 (p̂x)
2 + (αy)

2 (p̂y)
2 + (αz)

2 (p̂z)
2
]

+ m2c4 β2
}
ψ(r, t)

+ c2
{

(αxαy + αyαx) p̂xp̂y + (αyαz + αzαy) p̂yp̂z + (αzαx + αxαz) p̂xp̂z

}
ψ(r, t)

+ mc3
{

(αxβ + βαx) p̂z + (αyβ + βαy) p̂z + (αzβ + βαz) p̂z

}
ψ(r, t)

relativistic invariance for the free particle requires that the second and third term are zero, and
so

(αx)
2 = (αy)

2 = (αz)
2 = β2 = 1

αi αj + αj αi = 0 (i 6= j)

αx β + β αx = 0 (and similarly for y, z)

Thus αi and β cannot be just numbers. The simplest representation for α and β are 4x4 matrices,
meaning that the wavevector is a 4-component vector. When we work this through, there are no
negative probabilities, but two of the components turn out to have negative energy. Full details
of the derivation are on the course website.

It turns out that the four components accurately describe the two spin states of the electron
and the positron. More remarkably, Dirac solved the equation before the positron had even been
discovered!
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