
8 The Variational Principle

8.1 Approximate solution of the Schroedinger equation

If we can’t find an analytic solution to the Schroedinger equation, a trick known as the varia-
tional principle allows us to estimate the energy of the ground state of a system. We choose
an unnormalized trial function Φ(an) which depends on some variational parameters, an and
minimise

E[an] =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

with respect to those parameters. This gives an approximation to the wavefunction whose accuracy
depends on the number of parameters and the clever choice of Φ(an). For more rigorous treatments,
a set of basis functions with expansion coefficients an may be used.

The proof is as follows, if we expand the normalised wavefunction

|φ(an)〉 = Φ(an)/〈Φ(an)|Φ(an)〉1/2

in terms of the true (unknown) eigenbasis |i〉 of the Hamiltonian, then its energy is

E[an] =
∑

ij

〈φ|i〉〈i|Ĥ|j〉〈j|φ〉 =
∑

i

|〈φ|i〉|2Ei = E0 +
∑

i

|〈φ|i〉|2(Ei − E0) ≥ E0

where the true (unknown) ground state of the system is defined by Ĥ|i0〉 = E0|i0〉. The inequality
arises because both |〈φ|i〉|2 and (Ei − E0) must be positive.

Thus the lower we can make the energy E[ai], the closer it will be to the actual ground state
energy, and the closer |φ〉 will be to |i0〉.
If the trial wavefunction consists of a complete basis set of orthonormal functions |χi〉, each
multiplied by ai: |φ〉 =

∑
i ai|χi〉 then the solution is exact and we just have the usual trick of

expanding a wavefunction in a basis set. Alternately, we might just use an incomplete set with a
few low-energy basis functions to get a |Φ〉 close to the ground state |i0〉. In practice, this is how
most quantum mechanics problems are solved.

8.2 Excited States

The variational method can be adapted to give bounds on the energies of excited states, under
certain conditions. Suppose we choose a trial function Φ1(βn) with variational parameters βn.
which is made orthogonal to the ground state φ0, by imposing the condition 〈φ0|φ1〉 = 0.

If we know |φ0〉 = |i0〉, then similar to the above

E[an] =
〈Φ1|Ĥ|Φ1〉
〈Φ1|Φ1〉 =

∑

ij

〈φ1|i〉〈i|Ĥ|j〉〈j|φ1〉 =
∑

i

|〈φ1|i〉|2Ei = 0+E1+
∑

i=2

|〈φ1|i〉|2(Ei−E1) ≥ E1

So the variational method gives an upper bound on the first excited-state energy, and so on. We
can satisfy 〈i0|φ1〉 = 0 if |i0〉 is known, or if it has a known symmetry from which we can exploit
(e.g. if |i0〉 has even parity, chosing |Φ1〉 to be odd.)

In general, though, we only have a variational estimate of the ground state φ0(αn). In this case the
expression above, subject to the constraint 〈φ1(βn)|φ0(αn)〉 = 0, gives an estimate of E1 . However,
the error in this approach will be larger than for E0 because not only is the wavefunction incorrect,
but also the constraint 〈φ1|φ0〉 = 0 is not quite correct; using an approximate ground state does
not guarantee that we get an upper bound for the excited states.

If the excited state has different symmetry from those of the lower-lying levels, and we choose trial
functions with the correct symmetries, orthogonality is guaranteed and we get an upper bound to
the energy of the lowest-lying level with those symmetries, which is the excited state.

28



8.3 Analytic example of variational method - Binding of the deuteron

Say we want to solve the problem of a particle in a potential V (r) = −Ae−r/a. This is a model for
the binding energy of a deuteron due to the strong nuclear force, with A=32MeV and a=2.2fm.
The strong nuclear force does not exactly have the form V (r) = −Ae−r/a, unlike the Coulomb
interaction we don’t know what the exact form should be, but V (r) = −Ae−r/a is a reasonable
model.

The potential is spherically symmetric, most attractive at r = 0 and falls rapidly to zero at large r,
so we choose a trial wavefunction which does the same, say φ = ce−αr/2a. This has only one dimen-
sionless variational parameter, α. The value of c follows from normalisation

∫
c2e−αr/a4πr2dr = 1;

which gives c2 = α3/8πa3. (The 4πr2 comes from the problem being three dimensional).

According to the variational principle, our best estimate for the ground state using this trial
function comes from minimising 〈φ|Ĥ|φ〉 with respect to α.

〈φ|H|φ〉/〈φ|φ〉 =
−h̄2

2m

∫ ∞

0
c2

(
e−αr/2a∇2e−αr/2a

)
4πr2dr − A

∫ ∞

0
c2 exp [−(α + 1)r/a] 4πr2dr

=
h̄2α2

8ma2
− A

(
α

α + 1

)3

From this we find the minimum for E(α) at α0

dE

dα
=

h̄2α

4ma2
− 3A

(
α2

(α + 1)4

)
= 0 =⇒ (α0 + 1)4

α0

= 12Ama2/h̄2

Solving for α0 gives α0 = 1.34, and substituting back into 〈φ|H|φ〉 gives E0 = −2.14MeV .

This is fairly close to the exact solution for this potential, which can be obtained analytically as
a Bessel function of

√
8mA(a/h̄)e−r/2a if you manage to spot that change of variables! The exact

solution gives E0 = −2.245MeV .

8.4 Quantum forces: the Hellmann-Feynman Theorum

For many systems one is often interested in forces as well as energies. If we can write the energy
of a in state φ as E = 〈φ|Ĥ|φ〉 and differentiate with respect to some quantity α then

dE

dα
= 〈dφ

dα
|Ĥ|φ〉+ 〈φ|dĤ

dα
|φ〉+ 〈φ|Ĥ|dφ

dα
〉

But since Ĥ|φ〉 = E|φ〉 and 〈φ|φ〉 is 1 for normalisation:

dE

dα
= 〈φ|dĤ

dα
|φ〉+ E

d

dα
〈φ|φ〉 = 〈φ|dĤ

dα
|φ〉

This result is called the Hellmann-Feynman theorem: the first differential of the expectation value
of the Hamiltonian with respect to any quantity does not involve differentials of the wavefunction.

e.g. if α represents the position of a nucleus in a solid, then the force on that nucleus is the

expectation value of the force operator dĤ
dα

. It can be applied to any quantity which is a differential
of the Hamiltonian provided the basis set does not change.

Caveat: if we use an incomplete basis set which depends explicitly the positions of the atoms,
then we have |φ〉 =

∑
n,i |un,i(r)〉. This give spurious so-called “Pulay” forces if φ is not an exact

eigenstate.
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8.5 An aside about Kinetic Energy

The expectation value of the kinetic energy 〈T̂ 〉 is always positive. This can be shown by an
integration by parts in which the first term vanishes provided the wavefunction tends to zero at
infinity (which it will for a bound state). In 1D:

〈T̂ 〉 =
−h̄2

2m

∫
Φ∗ d2

dx2
Φdx =

−h̄2

2m
[Φ∗ d

dx
Φ]∞−∞ +

h̄2

2m

∫ d

dx
Φ∗ d

dx
Φdx =

h̄2

2m

∫ ∣∣∣∣∣
d

dx
Φ

∣∣∣∣∣
2

dx

The second term integrand is positive everywhere, so the kinetic energy is always positive.

8.6 Variational Method in MAPLE

The variational method is exceptionally well suited to computer algebra packages such as maple.
The procedure is as follows:

• Define Trial wavefunction Φ

• Evaluate Normalization factor |c2| = 〈Φ|Φ〉
• Evaluate unnormalised kinetic energy 〈T 〉 = −h̄2〈Φ|∇2|Φ〉/2m
• Evaluate unnormalised potential energy 〈V 〉 = 〈Φ|V̂ |Φ〉
• Differentiate with respect to variational parameters Dan = d

dan
(〈T 〉+ 〈V 〉)/c2

• Solve Dan = 0 for all an

• Substitute optimal value for an into Φ.

• Evaluate [〈T 〉+ 〈V 〉]/c2 using optimised wavefunction.

If one needs to do another variational calculation for a different potential and trial wavefunction,
only definitions 1 and 3 need to be changed.

8.7 Density functional theory (Nobel prize 1998)

If we consider the total probability density of a system of many interacting particles ρ(r), there
may be several possible wavefunctions which could give rise to it: call this set S(Φ).

Now, consider the expectation value of the energy 〈Ĥ〉. We know from the variational principle
that 〈Ĥ〉 ≥ Eo. If we define a functional F [ρ(r)] = MinS(Φ)〈Ĥ〉, then it follows that F [ρ] ≥ Eo.

Consequently we can use the variational principle to find the ρ(r) which minimises the value of F,
and this may give us the ground state energy without having to evaluate the wavefunction. This
is especially useful when the wavefunction consists of complex combinations of many different
single-particle wavefunctions, as with the many electrons in a solid or molecule.

The drawback is that for interacting electrons, the functional is not known.

30



8.8 Kohn-Sham functional

For solids, we have 1026 electron states. Analytic solution becomes impossible. In the past 20
years the density functional theory has come to dominate condensed matter physics, extending to
chemistry, materials, minerals and beyond.

A popular form of DFT functional was introduced by Nobel laureate Walter Kohn and Lu Sham:

F (ρ) = T [ρ] +
1

2

∫ ρ(r)ρ(r′)
4πε0|r− r′|d

3rd3r′ + Exc[ρ] +
∑

i

∫ Zieρ(r′)
4πε0|Ri − r′|d

3r′

Nobody has found a satisfactory functional for T . What is generally used is:

− h̄2

2m

∑

i

∫
φi∇2

i φid
3r

which is the kinetic energy of non-interacting “quasiparticles” and depends explicitly on the wave-
functions. The integrals represent electrostatic interactions between the electrons and between
electrons and ions, and Exc is ‘everything else’. The advantage of this form is that it can be
recast to give a set of one-particle equations with non-interacting fermions moving in an effective
potential:

Veff =
∑

ion

Ze

4πε0|Rion − r′| +
∫ ρ(r′)

4πε0|r− r′|d
3r +

δExc[ρ]

δρ(r)

Since Veff depends on ρ(r) these equations must be solved self-consistently.

Thus the density functional theorem shows that the problem of solving the Schroedinger equation
for a collection of interacting electrons can be transformed to that of a system of non-interacting
‘quasiparticles’, with the cost that the Hamiltonian depends on the electron density ρ(r):

H[ρ(r)]φi = Eiφi where ρ(r) =
∑

i

|φi(r)|2

Thus the Schroedinger equation is a nonlinear differential equation of many variables. Thus we
must turn to the variational method. The most general approach here is to use a Fourier Series
(plane wave basis set). The wavefunction for the ith electron is then written as

φi =
∑

k

cik exp(−ik.r) and the variational equation becomes : E0 = Min
∑

i

〈φi|Ĥ(ρ)|φi〉

The accuracy of the ground state energy of the electrons is determined by the number of Fourier
components used. The wavefunctions are expanded in a computer-friendly basis set and the
variational principle is used to transform the problem from a set coupled non-linear differential
equations into a minimisation of a single function of many variables. Most structural properties
of materials depend only on the electron ground state.

The single particle eigenstates of Kohn-Sham functional are not proper single electron states:
indistinguishability means there is no such thing. Nevertheless, they are Bloch states, and they
do exhibit well defined symmetry and energy “band-structure” which can help with interpretation
of the electronic structure
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