
9 Indistinguishable Particles and Exchange

Quantum mechanics allows us to predict the results of experiments. If we conduct an experiment
with indistinguishable particles a correct quantum description cannot allow anything which distin-
guishes between them. For example, if the wavefunctions of two particles overlap, and we detect
a particle, which one is it? The answer to this is not only that we don’t know, but that we can’t
know. Quantum mechanics can only tell us the probability of finding a particle in a given region.
The wavefunction must therefore describe both particles. The Schroedinger equation is then:
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Φ(r1, r2) = EΦ(r1, r2)

where the subscripts label each particle, and there are six coordinates, three for each particle. Φ
is a wave in six dimensions which contains the information we can measure: the probability of
finding particles at r1 and r2, but not what we can’t measure: which particle is which.

What basis states would be appropriate for Φ? An approximation is to use a product such as
Φ(r1, r2) = |a(r1)b(r2)〉 where a(r1) and b(r2) are one-particle wavefunctions of atoms 1 and 2.
This allows us to separate the two particle equation into two one particle equations:
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provided that the particles do not interact (n.b ∇2
1 does not act on b(r2)).

Unfortunately, by doing this we have introduced unphysical labels to the indistinguishable particles.
And this is wrong: the effect of it is that the particles do not interfere with each other because
they are in different dimensions (six dimensional space - remember?). When we construct a two-
particle wavefunction out of two one-particle wavefunctions we must be ensure that the probability
density (the measurable quantity |Φ|2) is independent of the artificial labels.

9.1 The exchange operator and Pauli’s exclusion principle

We introduce the exchange operator P̂12: an operator which permutes the labels of the particles.
This is a rather strange operator, because it only changes the unphysical labels which we have
attached to the one-particle wavefunctions in order to make the maths more easy. For a meaningful
solution we must have a wavefunction which has a probability amplitude unchanged by P̂12: it
must be symmetric or antisymmetric with respect to exchange: |Φ(r1, r2)〉 = ±|Φ(r2, r1)〉.
Physical solutions must be eigenfunctions of P̂12 with eigenvalues +1 (bosons) or −1 (fermions).
Also, any physically meaningful Hamiltonian must commute with P̂12, otherwise Ĥ and P̂12 could
not have common eigenfunctions and the system could not remain in an eigenstate of exchange.

A simple product wavefunction |a(r1)b(r2)〉 does not satisfy this (unless a = b). A linear combi-
nation of all permutations is required, for two particles:

|Φ−〉 = |a(r1)b(r2)− a(r2)b(r1)〉/
√

2

|Φ+〉 = Cab|a(r1)b(r2) + a(r2)b(r1)〉+ Caa|a(r2)a(r1)〉+ Cbb|b(r2)b(r1)〉
where the Cab terms are expansion and normalisation parameters. Note that the antisymmetric
combination cannot include terms where both particles are in the same state, but there are three
possibilities for the symmetric state. Although any linear combinations of Cab Cbb and Caa = 1
are possible, Cbb and Caa correspond to different configurations and are usually set to zero.

Notice that if a = b, then |Φ−〉 = 0. Thus there is no possible antisymmetric combination
involving identical states, i.e. two fermions cannot be in the same quantum state: the Pauli
exclusion principle.
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9.2 Two indistinguishable particles with spin 1/2

If we have two identical fermions of spin 1/2, confined in the same region, what is the appropriate
wavefunction? In the scattering case we could measure spins far from the interaction, and if we
knew that the total spins is conserved, spins can be associated with each particle. In the bound
state we cannot tell which particle we are measuring, so the ket must contain both spin and spatial
wavefunctions of both particles.

Assuming the spins do not interact, we can separate the two-particle spin wavefunction into
σ(1, 2) = σ1σ2. We also know the appropriate one particle basis states ↑1, ↓1, ↑2, ↓2, where ↑1

represents “particle 1” in spinor state
(

1
0

)
. The combinations for indistinguishable particles are

then:
↑1↑2, ↓1↓2, (↑1↓2 + ↓1↑2)/

√
2, (↑1↓2 − ↓1↑2)/

√
2

Operating on these with P̂12 yields eigenvalues 1, 1, 1 and -1 respectively. S2 = S(S + 1) yields
2, 2, 2 and 0, Sz yields 1,-1,0 and 0. Thus the demands of indistinguishability couples the spins
of two identical particles into a triplet (S=1) and a singlet (S=0). The spin-1 vector has three
possible Ms component values - hence the triplet.

9.3 The exchange interaction

The overall wavefunction describing fermions must be antisymmetric with respect to exchange,
i.e. P̂12|Φ〉 = −|Φ〉. Therefore in an atom or molecule where Φ includes both spin and spatial
parts, the spin and spatial parts of a fermionic wavefunction have opposite exchange symmetry.

Spin must be considered even if the energy (Coulomb potential) depends explicitly only on the
spatial part. The expectation value of the potential energy is different for symmetric and anti-
symmetric spatial combinations. Using |Φ±〉 from above (with Cab = 1).

〈Φ±|V̂ |Φ±〉 = 〈a(r1)b(r2)|V (r)|a(r1)b(r2)〉 ± 〈a(r1)b(r2)|V (r)|a(r2)b(r1)〉

The first term is called the direct interaction and the second term is known as the exchange
interaction: a measurable contribution to the energy comparable in size to the first, which has no
classical analogue.

9.4 Spins and Exchange

Now notice something strange. The exchange interaction has split the S=1 states from the S=0
states. We could write the potential as V̂ = Jnl − (2Ŝ − 1)Knl, even though the Hamiltonian
does not act on the spin! This is because the sign of the exchange integral depends on the
(anti)symmetry of the spatial wavefunction. Thus we can write the matrix element as

〈Φ|Jnl − (2S − 1)Knl|Φ〉

This ‘exchange interaction’ appears to depend on the spin - the triplet states have lower energy
than the singlet (this is one of Hund’s rules for determining energy levels in atoms). It is this type
of exchange force which keeps spins aligned in a ferromagnet, not the magnetic interaction itself.
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9.5 Wavefunction for many spin one-half particles

The exchange arguments for two-particle systems can be extended to many particle systems: The
indistinguishable wavefunction consists of all possible permutations of the product of one electron
wavefunctions. For the symmetric case P̂nmΦ = Φ, a product of these permutations will suffice.
For the antisymmetric case, the correct form turns out to be given by the determinant of a matrix:

Φ =
1√
N !

det




φa(1) φb(1) ... φN(1)
φa(2) φb(2) ... φN(2)

... ... ... ...
φa(N) φb(N) ... φN(N)




This is called a Slater Determinant. For fermions, where P̂nmΦ = −Φ the Slater Determinant
obeys the Pauli exclusion principle: if any two of the one-particle wavefunctions were identical
(φn = φm), then the wavefunction would be the determinant of a matrix with two identical rows,
i.e. zero.

Note also that 〈Φ|Ĥ|Φ〉 has many more exchange terms than direct ones.

9.6 Helium

Helium is the simplest system for which we are unable to accurately calculate the energy.

For a single electron moving in the field of a helium nucleus, the spatial wavefunctions are similar
to those of hydrogen |unlm〉.
When a second electron is added, a reasonable basis set is exchange-symmetrised wavefunctions
consisting of spin states multiplying hydrogenic spatial parts:

(unlm(r1)un′l′m′(r2)± un′l′m′(r1)unlm(r2))

Since the overall wavefunction must be antisymmetric, the singlet (exchange-antisymmetric) spin
states must combine with symmetric spatial states, and the triplet (exchange-symmetric) spin
states must combine with antisymmetric spatial states.

If both electrons were in the same spatial state, the antisymmetric spatial wavefunction would be:

|(a(r1)a(r2)− a(r2)a(r1))〉 = 0

Hence there is no triplet for the ground state.

9.7 Electron-electron interaction - ground state by perturbation theory

The hydrogen wavefunctions are only a choice of basis set: the hydrogenic potential ignores the
electron-electron repulsion. A simple approach is to treat this as a perturbation and to use
degenerate perturbation theory.

The perturbing potential is just V = e2/4πε0r12 where r12 = |r1 − r2|. The unperturbed spatial
ground state is just a product of the hydrogenic ones with Z=2 for helium:

u100(r1)u100(r2) =
Z3

πa3
0

e−Zr1/a0e−Zr2/a0

so by perturbation theory, the energy shift due to this potential is given by:

〈u100(r1)u100(r2)|e2/4πε0r12|u100(r1)u100(r2)〉
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The electron-electron repulsion is over 30% of the unperturbed energy (4Zµe4/h̄2), so perturbation
theory may seem inappropriate. Strictly, it isn’t even the right integral, as it neglects correlation.
But in fact the value of this integral is 5Zµe4/8h̄2 within 5% of the actual energy.

Note also that the radial wavefunctions are different for 2s and 2p, so the electron-electron inter-
ation splits the degeneracy between 1s2s and 1s2p configurations.

9.8 Multiplicity and Degeneracy of Excited States

Ignoring electron-electron interaction, all 1s2s and 1s2p states have the same energy. The pertur-
bation (e2/4πε0r12) lifts that degeneracy, and we can treat it with degenerate perturbation theory.
Rather than evaluating the integral in the 4x4 matrix exactly, we can use a physical argument:
(e2/4πε0r12) is not an external potential, and so applies no net torque or force on the electrons.
The perturbation cannot change the angular momentum, so it cannot mix states with different l
or m. The theta integral will be δll′ , and the phi integral δmm′ , total angular momentum remains a
good quantum number: L=0(1s2s) or L=1(1s2p). Since the 2s state has finite probability of being
at the nucleus, and the 2p has zero probability of being there, the 2s state is less well screened
from the nuclear charge by the 1s and will have lower energy.

For a given spatial excited state the possible normalised
spin wavefunction combinations, consistent with the anti-
symmetry requirement are a spin triplet and a spin singlet.

Φ3 = (φnlm,n′l′m′ − φn′l′m′,nlm)(↑↑)/
√

2

(φnlm,n′l′m′ − φn′l′m′,nlm)(↓↓)/
√

2

(φnlm,n′l′m′ − φn′l′m′,nlm)(↑↓ + ↓↑)/2
Φ1 = (φnlm,n′l′m′ + φn′l′m′,nlm)(↑↓ − ↓↑)/2

Where |φnlm,n′l′m′〉 represents electron 1 in a hydrogenic
state with quantum numbers n, l and m and electron 2
with n′, l′, and m′. The subscripts on the Φ label spin
multiplicity (2S+1)

(1s) (2p), (1s)(2s)
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2
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0
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Again whole effect of the potential is contained in the spatial part, the spin integral will be δσσ′ .
so off-diagonal matrix elements are all zero. We need to evaluate

Jnl = 〈φnlm,n′l′m′|(e2/4πε0r12)|φnlm,n′l′m′〉 - the direct integral.

Knl = 〈φnlm,n′l′m′|(e2/4πε0r12)|φn′l′m′,nlm〉 - the exchange integral.

with which perturbation theory gives an energy shift in the 1s12s1 state of:

1

2

e2

4πε0

(〈φ100,200|1/r12|φ100,200〉+〈φ200,100|1/r12|φ200,100〉±〈φ100,200|1/r12|φ200,100〉±〈φ200,100|1/r12|φ100,200〉)

where the + applies to the singlet state and the − to the triplet. The direct integral, electron-
electron repulsion, increases the energy, but the exchange integral can either increase of decrease
energy.

Thus the energy levels are split by different direct interactions into L=0 and L=1 and again
through exchange interaction into singlet and triplet. The final degeneracies of states with one
electron excited to n=2 are 3,1,9 and 3. The spectroscopic notation in the figure gives the quantum
numbers as: (nl)(n′l′)2S+1LJ

Again, the most useful quantum number labels are the total spin and angular momentum: we could
write the perturbation energy as ∆E = Jnl − (2S − 1)Knl, even though the perturbing potential
does not act on the spin. The ‘exchange force’ selects preferred spin state via the requirement of
overall antisymmetry.
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