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Lecture TOPIC 10

(Finn: 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8; )
Synopsis: Properties and processes, including applications of Maxwell relations part 2,

mainly expansion processes (Joule and Joule-Kelvin).

The Joule coefficient for a free expansion

We reanalyse the irreversible free expansion inside a rigid adiabatic enclosure from topic 3. For
the surroundings, rigid implies constant volume and adiabatic implies constant entropy, so the
natural thermodynamic potential is U(S,V). For the system, we are interested in changes in
T as V is increased. To calculate the temperature change, we need to find an expression for(
∂T
∂V

)
U

using path-independent state properties. This suggests working with T = T (V,U) and
considering an equivalent reversible process between initial equilibrium state with coordinates
(Ui, Vi, Ti) and the final state with coordinates (Uf , Vf , Tf ):

dT =

(
∂T

∂V

)
U

dV +

(
∂T

∂U

)
V

dU

Choosing U = constant along the reversible path gives the change in temperature, ∆T ,

∆T =

∫ Vf

Vi

(
∂T

∂V

)
U

dV =

∫ Vf

Vi

µJdV

The cyclical rule allows U to be incorporated inside the partial derivative [anticipating that the
derivative of U with respect to T can then be replaced with CV ].

µJ =

(
∂T

∂V

)
U

= −
(
∂T

∂U

)
V

(
∂U

∂V

)
T

= − 1

CV
×
(
∂U

∂V

)
T

Using the central equation, the derivative of U with respect to V can be written:(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− P

leading to µJ =
1

CV

(
P − T

(
∂P

∂T

)
V

)

where a Maxwell relation was used in deriving the final expression. Three examples:

(1) Ideal gas : µJ = 0 see Topic 3.
(2) van der Waals fluid : For one mole (P + a

v2
)(v − b) = RT .

µJ =
1

cV

[
P − RT

(v − b)

]
= − a

cV v2
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(3) Virial expansion: equation of state (per mole) of a real gas can be written as a power series
in the small quantity 1/v where the virial coefficients B2, B3, ... are temperature dependent.

Pv = RT
(
1 +B2/v +B3/v

2 + ...
)

=⇒ µJ = P − (R/v)
(
1 +B2/v +B3/v

2 + ...
)

Usually B1 = 1 giving ideal gas behaviour in the low density limit, and Bn have been measured
for many gases in practice. To estimate of the temperature change ∆T for a real gas starting
at “standard temperature and pressure”, it is sufficient to know its Joule coefficient (µJ) and
the increase ∆v in its volume per mole. Taking only the first two terms in the virial expansion
series, ie disregarding (because they are assumed small) the terms in

(
1
v

)n
for n ≥ 2:

µJ = − 1

cv
× RT 2

v2
× dB2

dT

For argon, dB2/dT = 0.25 cm3mol−1K−1. If a sample of 1 mole of argon at STP doubles its
volume in a free expansion, then assuming µJ is constant, ∆T ≈ - 0.6 K.

Continuous Flow Process: The Joule-Kelvin Expansion and Coefficient

In contrast with the Free (or Joule) Expansion, the Joule-Kelvin Expansion is a more practical
expansion process, referred to as a throttling process. The gas is forced steadily through a
porous plug (various designs possible) held in a cylinder with adiabatic walls, see upper sketch.

To analyse the process, consider (lower sketch) a sample of the gas initially in an equilibrium
state with thermodynamic coordinates Pi, Vi and Ti. The gas behind it, pushing it forward,
behaves like a piston which maintains the gas at its original equilibrium pressure (Pi) as it is
forced slowly but irreversibly through the plug. Beyond the plug, another imaginary piston
maintains the expanded gas at the equilibrium pressure of the gas sample as it emerges to form
its final equilibrium state (Pf , Vf , Tf ).
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If we only want to calculate initial and final equilibrium state variables, we can ignore
irreversibility. In steady flow, the plug remains in its initial state after all the gas sample has
passed through it: The process is adiabatic (∆Q = 0).

For the work done, it is easiest to consider the pistons: the first “piston” does work
∫ 0
Vi
PidV

(the second is similar). So the first law gives

Uf − Ui = Pi(Vi − 0)− Pf (Vf − 0) = PiVi − PfVf .

In terms of enthalpy (H = U + PV ) this becomes Hi = Hf : the Joule-Kelvin process is tradi-
tionally called isenthalpic. So calculations of the change in state variables such as temperature
with changing pressure are made using an equivalent, unspecified reversible isenthalpic process.
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We can always write T as a function of any two other state variables. It is convenient to use
the conserved quantity H and the applied quantity P , and write T = T (H,P ). Then

dT =

(
∂T

∂P

)
H

dP +

(
∂T

∂H

)
P

dH =

(
∂T

∂P

)
H

dP = µJKdP

µJK is the Joule-Kelvin coefficient, a state variable whose value depends on the gas being used
and the conditions. For a Joule-Kelvin expansion of a gas from Pi to Pf , the temperature change

can be calculated from ∆T =
∫ Pf

Pi
µJKdP .

The Joule-Kelvin temperature change for an ideal gas is always zero, but the temperature
change for real gases can be either positive or negative (or zero), depending on the sign of
µJK . If ∆T is negative and large, the process can be used to liquefy gases. The sequence of
equations used to describe the process is similar to that for the free expansion process, but with
the enthalpy rather than internal energy held constant.

The Joule-Kelvin coefficient for a throttling process

A process taking place in an isolated box is of little practical use. Real refrigeration requires
cycling of the working fluid, i.e. flow. In a throttling process gas is forced through a nozzle or
porous plug from a region of high pressure to one of low pressure. For free, adiabatic expansion
the surroundings, have no entropy change and exert zero external pressure. Hence the relevant
thermodynamic potential for the system is the enthalpy, H. We now follow a similar procedure to
the previous section, this time looking at the expansion of a gas subject to a different constant
potential, namely enthalpy H. The properties of a reversible isenthalpic process are used to
calculate a temperature change when a gas expands irreversibly.

The initial state of the gas has thermodynamic co-
ordinates (Pi, Ti), and a number of possible final co-
ordinates (Pf1, Tf1), (Pf2, Tf2). The various Pfn are
all < Pi because the gas expands. However, all the
equilibrium states have the same value of enthalpy
H = U + PV .
The most appropriate indicator diagram is a TP
diagram. A line through a set of points (Pi, Ti),
(Pf1, Tf1), (Pf2, Tf2), etc. is an isenthalp, and dif-
ferent isenthalps are found for different starting co-
ordinates (Pi, Ti), (P ′i , T

′
i ), (P ′′i , T

′′
i ) etc. A set of

experimentally-determined isenthalps resemble the
schematic sketch shown alongside.
The initial and final coordinates, (Pi, Ti), and
(Pf , Tf ), determine the size and sign, positive or
negative of the temperature change ∆T . The curve
through the maxima of the isenthalps (second fig-
ure) is called the inversion curve. The temperature
at the maximum on any isenthalp is called the inver-
sion temperature for this particular value of enthalpy.
As drawn, cooling occurs to the left of the inversion
curve where (∂T/∂P )H > 0 and warming to the right
where (∂T/∂P )H < 0.

To calculate the change in temperature we need an expression for (∂T/∂P )H . We get this
from T = T (P,H) by considering an equivalent reversible process between equilibrium states
with initial coordinates (Hi, Pi, Ti) and final coordinates (Hf , Pf , Tf ):

dT =

(
∂T

∂P

)
H

dP +

(
∂T

∂H

)
P

dH =

(
∂T

∂P

)
H

dP
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The last equality follows from the constant enthalpy dH = 0 process. The finite change in
temperature is then

∆T =

∫ Pf

Pi

(
∂T

∂P

)
H

dP =

∫ Pf

Pi

µJKdP

The cyclical rule is then used to incorporate H inside the partial derivatives [anticipating making
use of CP = (∂H/∂T )P ] and then using dH = TdS + V dP [by analogy with dU = TdS − PdV
for a Free expansion] to re-express the pressure derivative of the enthalpy.

µJK =

(
∂T

∂P

)
H

= −
(
∂T

∂H

)
P

(
∂H

∂P

)
T

= − 1

CP
×
(
∂H

∂P

)
T

From dH = TdS + V dP ⇒
(
∂H
∂P

)
T

= T
(
∂S
∂P

)
T

+ V we get µJK =
1

CP

(
T

(
∂V

∂T

)
P

− V
)

using a Maxwell relation in the final step.
From the equation of state of the gas, ∆T for a pressure drop ∆P in a throttling process

can be found, approximately, from ∆T = µJK∆P , assuming µJK to be constant. As with free
expansion, there is no change in temperature for an ideal gas. However, for a real gas the change
of temperature may be negative or positive depending on conditions, and can be estimated
from a virial expansion approximation of the equation of state or directly from the equation of
state itself.

gas (Tmax
in ) Tliq

argon 723 K 87 K
nitrogen 621 K 77 K

hydrogen 205 K 20 K
helium 51 K 4 K

The Inversion temperature is obtained from the condition
µJK = 0 and the maximum inversion temperature by then set-
ting P = 0. The maximum inversion temperature, Tmax

in varies
enormously for different gases: Tmax

in is higher for gases with
strong interactions. Unfortunately, those strong interactions
mean that the gas liquifies at higher T, so can’t be used.

Reversible adiabatic expansion

A decrease in temperature can also be produced by a simple adiabatic expansion, and in general
– for the same pressure drop – is larger than for a Joule-Kelvin expansion.

Production of liquid helium and other gases

Typical refrigerators have an (idealised) cycle of
1) isenthalpic expansion.
2) isobaric warming of the working substance (extracting heat from the cool box).
3) compression pump (external work done).
4) isobaric cooling of the working substance (back to room temperature).
Commercially, the Joule-Kelvin expansion is used as the basis of gas liquefaction devices since

it has fewer moving parts to be maintained than any purely adiabatic device could possibly have.
For He, pre-cooling is needed to get an initial temperature the maximum inversion temper-

ature for He of 51K. Pre-cooling is typically done by controlled adiabatic expansions of helium
in which there is cooling but no vapour-to-liquid phase transition. Once the temperature of the
helium is low enough, the gas, at high pressure, goes through a throttling process where some
of it liquefies and the rest – now at low pressure – is used to contribute to pre-cooling of the in-
coming gas, at high pressure, via a heat exchanger. Earlier helium liquefiers used other liquefied
gases (nitrogen and hydrogen not without serious accidents) to produce the pre-cooling.
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