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Synopsis: Gibbs Rule. First and Second order phase changes. The Ehrenfest equations and illustrative
examples (the lambda transition in liquid He4 and superconductivity).

Gibbs Phase Rule for multicomponent systems

The number of independent variables which must be specified to fully describe thermodynamic equilib-
rium is equal to C + 2−NP where C is the number of components (different chemical species, minus
constraints from reactions or charge balance) and NP is the number of phases. For example

• in liquid water NP = 1, C=1, so there are two independent variables (P,T).

• At the freezing line P and T are related via Clausius-Clapeyron: NP = 2;

• At the triple point Pt , vt and Tt are uniquely defined: NP = 3,

• A gas mixture of O2 and H2 molecules and H2O vapour, C=3, NP = 1 four independent variables
(e.g. T, P, NO2 NH2)

• Allowing a reaction in the gas mixture, 1
2 O2 +H2⇔ H2O introduces another constraint from the

reaction equilibrium. So C=2 and there are only three independent degrees of freedom.

Ehrenfest classification of the “order” of a Phase Transition.

First order transitions have a discontinuous change of first derivative of the free energy (e.g. entropy or
volume, magnetic moment).
Second order phase transitions have discontinuous derivatives of second derivative of the free energy
(e.g. heat capacity, thermal expansion, compressibility, Magnetic susceptibility).

The discontinuities at 1st order transitions

First order phase changes can be specified in terms of
changes in the properties across the phase boundary:
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The ‘discontinuities’ at continuous phase changes ( 2nd order or higher)

For continuous transitions, The entropy is continuous crossing the phase boundary and so there is no
latent heat. In the region very close to the transition, called the critical region very general scaling laws
can be derived that describe the behaviour. Typically, the disordered phase contains many mesoscopic
“ordered” regions, of varied orientation which fluctuate in size. As one gets closer to the transition,
this regions approach the macroscopic size of the sample. Once a single ordered region spans the entire
sample, the transition occurs.

For an ordering transition, we define a parameter which specifies the long-range order. e.g. the
magnetisation1 of a ferromagnet is:

M = M0

(
Tc−T

Tc

)β

, (T < Tc)

= 0 , (T > Tc)

1For MP students: magnetisation is the ratio of induced to applied magnetic field
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For the idealised Curie ferromagnet, the critical exponent β = 1
2 . Just above the transition, the sponta-

neous magnetisation is zero, susceptibility is:

χ = χ0

(
Tc

Tc−T

)γ

, (T > Tc)

with γ = 1 for the idealised Curie Weiss Law. Phase transitions can be assigned to Universality Classes
according to these exponents.

Second Order Transitions
g1 = g2
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The relations are useful for identifying many phase changes experimentally. Even if there is no latent
heat, and no visible separation of the phases, second-order transitions can be identified by discontinuous
changes in other state variables: heat capacity, expansivity and compressibility. These changes fre-
quently occur under extreme conditions of T and P, and can be correlated with changes in behaviour of
substances such as ferromagnetism, piezoelecticity, superfluidity, superconductivity, Bose condensation
etc. Detailed study of these latter properties is beyond the scope of this course.

The Ehrenfest equations for second order phase changes

The Ehrenfest equations are the equivalent of the Clausius Clapeyron equation for second order transi-
tions. Consider entropy across the phase boundary. For a second order transition s1(T,P) = s2(T,P),
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Because cP = T (∂ s/∂T )P, the discontinuous second partial derivative of g implies different values of
the heat capacity for the two phases (labelled 1 and 2): cP,1 6= cP,2.

The variation of s with changing pressure at constant temperature can be used via a Maxwell relation,
to bring in the variation of v:(
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So this discontinuous second partial derivative of g implies different values of thermal expansivity
βP for the two phases: β1 6= β2.

Finally, from (∂v1/∂P)T 6= (∂v2/∂P)T , we see that the compressibilities are different.

To use this in generating a phase diagram, we use a similar approach to the Clausius-Clapeyron
derivation. Let A and B be neighbouring points on the phase boundary, at (T,P) and (T +dT,P+dP),
respectively. For second order transitions there is no change in s and no change in v in going from one
phase to the other. So:

at A s1(T,P) = s2(T,P)

at B s1(T +dT,P+dP) = s2(T +dT,P+dP)
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Use the first of these together with the second expanded to first order using Taylor’s theorem to get:(
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Multiply through by T and make replacements according to the definitions of cP, β . This leads to “the
first Ehrenfest equation”:

dP
dT

=
cP,1− cP,2

T v(β1−β2)
=

CP,1−CP,2

TV (β1−β2)

“The second Ehrenfest equation” follows from a parallel treatment of the continuity of specific volume
v across the phase boundary. It is:

dP
dT

=
β2−β1

κ2−κ1

Equating the two gives a relationship between the properties of the two phases

CP,1−CP,2κ1−κ2 = TV (β1−β2)
2

Discontinuity in the equation of state, and metastability

For any particular material, the equation of state for a given single phase (e.g water) is a continuous
function, represented by a surface in PVT space. A different phase of the same material (e.g. ice) is
represented by a different surface in PVT space. The equation of state for the material comprises the
EoS for the phase with lowest Gibbs free energy. Thus it can jump discontinuously from the surface
representing one phase to another.

In practice, a material may stay in the “wrong” phase even for (T,P) conditions beyond the phase
boundary (e.g. supercooled water). This is called “metastability” and the delayed onset of the transition
is called “hysteresis”. Hysteresis is normal in any first order transition between condensed phases.

Second order transition: Ising ferromagnet

The Ising Model is a simple example of a magnetic transi-
tion based on an energy relation U = ∑i, j εσiσ j. The spins
are σi = ±1, located on a square lattice, and ε is the ratio of
interaction energy to temperature. A ferromagnetic transition
involves long range order in the alignment of the spins. In fact,
the ordering depends on length scale, paramagnets have short
range order. Fig. 1 shows the change of magnetisation (M),
heat capacity (C) and susceptibility (χ) through the phase tran-
sition. There is a continuous change in the magnetisation, with
discontinuous slope at TC. The exceptionally high values of dM

dT
close to the transition mean that small fluctuations in T give rise
to massive fluctuations in M (above TC these are short ranged).
The critical exponent for the 2D Ising model is β = 0.125.

Examples of continuous phase transitions

Typically, a “continuous” phase transition can be viewed as coexistence of two intermingled phases
which, for some reason, cannot form an interface or boundary.
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Superfluid transition (Bose Condensate)

The superfluid transition occurs when a finite fraction of
the atoms “condense” into a single many-body quantum state.
This fraction of atoms has ZERO entropy. Superfluid liquid
helium (4He) occurs at Tλ = 2.2 K, on cooling – from nor-
mal liquid helium (He I) to “superfluid” (He II). The He II
phase may be thought of as two interpenetrating fluids, al-
though atoms are continually transferring between the normal
fluid and Bose condensate. The condensate has no viscosity,
and the viscosity of He II is a harmonic average of the compo-
nents (η−1 = η

−1
cond +η

−1
normal) – hence He II is a “superfluid”.

There is a marked feature in the otherwise slowly decreasing value of specific heat at temperature
Tλ . The plotted data (figure) has the shape of the Greek letter lambda – hence the name. Liquid He II
low-pressure/low-temperature corner of the phase diagram. Despite the peak, CP(T ) is continuous: the
fraction of superfluid in He II increases from zero at the transition to 100% at T=0.

In more detail: Experimentally, the phase transition is clear
since the two phases of liquid He4 have very different proper-
ties. Liquid helium can be very pure because any contaminants
(except 3He) freeze out, and the heat capacity can be measured
with exceptional precision. For temperatures above 2.5 K, the
heat capacity of He I behaves normally: decreasing as temper-
ature decreases, apparently towards cP(T = 0) = 0. Then the heat capacity increases and goes through
a maximum at Tλ (with a cusp at Tλ itself) and then decreases towards zero at T=0. The most accurate
measurements with a resolution of 10−8 K show, that the heat capacity is continuous at Tλ !

Superconducting transition
The superconducting transition occurs when a finite frac-

tion of the electrons are in a single many-body quantum state.
The figure shows the measured heat capacity of pure indium in
zero field as the temperature is changed crossing the supercon-
ducting critical temperature Tc = 3.4 K. Below this temperature
the electrical resistance drops sharply to zero. Although in de-
tail, very close to Tc the transition must again be continuous
with a sharp λ peak, the width of the critical region is very
very small and it makes a negligible contribution to the heat
transfer required to change the state of the sample, and is not visible in the data.

Statistics, the thermodynamic limit and fluctuations at phase transitions
The thermodynamic limit refers to infinite numbers of particles, where statistical probabilities become
exact. In this context Avogadro’s number is reassuringly large. Although the details are beyond the scope
of the course, its good to know about fluctuations.

We know that any quantity measured as an average of N readings has an uncertainty (error in the
mean) of N−1/2. Thermodynamic quantities are no different, e.g. the instantaneous value of the kinetic
energy varies, and so does the “Ideal gas temperature”. At the “thermodynamic limit” of Avogadro’s
number of independent particles, the error for an intensive quantity is proportional to N−1/2

A (effectively
nothing). But for small systems, or for correlated fluctuations, e.g. near a phase transition, these can
become noticable. The size and correlation of these fluctuations is also related to thermodynamic quan-
tities. If we measure correlation functions of fluctuations in a small piece of material, then e.g.
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