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17.1 Introduction

So far we have concentrated on systems for which we could find exactly the eigenvalues and
eigenfunctions of the Hamiltonian, like e.g. the harmonic oscillator, the quantum rotator, or
the hydrogen atom.

However the vast majority of systems in Nature cannot be solved exactly, and we need
to develop appropriate tools to deal with them.

Perturbation theory is extremely successful in dealing with those cases that can be mod-
elled as a “small deformation” of a system that we can solve exactly.

Let us translate the above statement into a precise mathematical framework. We are
going to consider systems that have an Hamiltonian:

Ĥ = Ĥ0 + �V̂ , (17.1)

where Ĥ0 is the Hamiltonian of the unperturbed system, � is a small parameter, and V̂
is the potential describing the perturbation. We shall assume that the perturbation V is
independent of time.

Let us also assume that we can solve the time-independent Schrödinger equation for Ĥ0,
i.e. that we know its eigenvalues and eigenfunctions:

Ĥ0ψ
(n)(x) = E(n)ψ(n)(x) . (17.2)

For simplicity we start by considering the case where all the unperturbed levels E(n) are not
degenerate.

17.2 Perturbative solution

Let us discuss the solution of the time-independent Schrödinger equation for the full Hamil-
tonian H. The eigenvalue equation reads:

Ĥψ(x) = Eψ(x) . (17.3)

Since � is a small parameter, we shall expand the solution of Eq. (17.3) as a Taylor series
in �:

ψ(x) = ψ0(x) + �ψ1(x) + �2ψ2(x) + . . . , (17.4)

E = E0 + �E1 + �2E2 + . . . . (17.5)

Plugging Eqs. (17.4) and (17.5) into Eq. (17.3), we obtain:
�
Ĥ0 + �V̂

��
ψ0(x)+�ψ1(x) + �2ψ2(x) + . . .

�
=

�
E0 + �E1 + �2E2 + . . .

��
ψ0(x) + �ψ1(x) + �2ψ2(x) + . . .

�
. (17.6)

We can now solve Eq. (17.6) order by order in �.
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Order �0 At order �0 we find: �
H0 − E0

�
ψ0 = 0 , (17.7)

and therefore ψ0 has to be one of the unperturbed eigenfunctions ψ(n), and E0 must be the
corresponding unperturbed eigenvalue E(n). Since we assumed that the unperturbed levels
are nondegenerate the choice of ψ(n) is unique.

Order �1 At order � we have:

�
Ĥ0 − E0

�
ψ1 +

�
V̂ − E1

�
ψ0 = 0 . (17.8)

Taking the scalar product of Eq. (17.8) with ψ0 yields:

�ψ0|Ĥ0|ψ1�+ �ψ0|V̂ |ψ0� = E0�ψ0|ψ1�+ E1�ψ0|ψ0� . (17.9)

Since Ĥ0 is Hermitean, the first term on the LHS of Eq. (17.9) cancels with the first term on
the RHS, and we are left with:

E1 =
�ψ0|V̂ |ψ0�

�ψ0|ψ0�
. (17.10)

To first order in the perturbation parameter �, the shift of the n-th energy eigenvalue is given
by Eq. (17.10). Hence the eigenvalue of the Hamiltonian is:

E = E(n) + �
�ψ(n)|V̂ |ψ(n)�

�ψ(n)|ψ(n)�
+O(�2) . (17.11)

This is a very useful result, since it allows us to compute the perturbed energy levels starting
from the unperturbed ones.

Let us now consider the scalar product of Eq. (17.8) with ψ(m), for ψ(m) �= ψ0:

�ψ(m)
|Ĥ0|ψ1�+ �ψ(m)

|V̂ |ψ0� = E0�ψ
(m)

|ψ1�+ E1�ψ
(m)

|ψ0� . (17.12)

Using the fact that:
�ψ(m)

|ψ0� = 0 , (17.13)

we obtain:

�ψ(m)
|ψ1� =

�ψ(m)|V̂ |ψ0�

E0 − E(m)
. (17.14)

Hence at first order in � we have:

ψ(x) = ψ(n)(x) + �
�

m �=n

�ψ(m)|V̂ |ψ(n)�

E(n) − E(m)
ψ(m)(x) +O(�2) . (17.15)
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Using Dirac’s notation, we can rewrite the solution above as:

|ψ� = |ψ(n)
�+ �

�

m �=n

�ψ(m)|V̂ |ψ(n)�

E(n) − E(m)
|ψ(m)

�+O(�2) . (17.16)

Note that to first order in � the solution in Eq. (17.16) is already normalized:

�ψ|ψ� = �ψ(n)
|ψ(n)

�+ �
�

m �=n

�
�ψ(m)|V̂ |ψ(n)�

E(n) − E(m)
�ψ(n)

|ψ(m)
�+ c.c.

�
+O(�2) (17.17)

= 1 +O(�2) . (17.18)

Example A particle moves in the 1-dimensional potential

V (x) = ∞, |x| > a, V (x) = V0 cos(πx/2a), |x| ≤ a

Calculate the ground-state energy to first order in perturbation theory.
Here we take the unperturbed Hamiltonian, Ĥ0, to be that of the infinite square well, for

which we already know the eigenvalues and eigenfunctions:

E(n) =
π2�2n2

8ma2
, u(n) =

1
√
a

�
cos
sin

�
nπx

2a
; n

�
odd
even

�

The perturbation Ĥ � is V0 cos(πx/2a), which is small provided V0 � E(2) − E(1).
To first order, then,

∆E ≡ E1 = H �
11 =

� ∞

−∞
u(1)Ĥ �u(1) dx =

V0

a

� a

−a
cos3

πx

2a
dx

Evaluating the integral is straightforward and yields the result

∆E =
8V0

3π
= 0.85V0

Iterative solution At order �L the eigenvalue equation yields:

�
Ĥ0 − E0

�
ψL +

�
V̂ − E1

�
ψL−1 −

L�

K=2

EKψL−K = 0 . (17.19)

Taking the same scalar products described above, we find:

EL = �ψ0|V̂ |ψL−1� , (17.20)



17.3. DEGENERATE LEVELS 151

which yields the correction of order �L to the unperturbed energy level.
Following the computation above we also obtain:

�ψ(m)
|ψL� =

�ψ(m)|V |ψL−1�

E(n) − E(m)
−

1

E(n) − E(m)

L−1�

K=1

EK�ψ(m)
|ψL−K� . (17.21)

Using Eq. (17.21) for L = 2 we find the second-order correction to the n-th energy level:

E2 = �ψ0|V̂ |ψ1� =
�

m �=n

�ψ(n)|V̂ |ψ(m)��ψ(m)|V̂ |ψ(n)�

E(n) − E(m)
. (17.22)

17.3 Degenerate levels

Equation (17.15) shows that the correction to the energy eigenfunctions at first order in
perturbation theory is small only if

�ψ(m)|V̂ |ψ(n)�

E(n) − E(m)
� 1 . (17.23)

If the energy splitting between the unperturbed levels is small compared to the matrix element
in the numerator, then the perturbation becomes large, and the approximation breaks down.
In particular, if there are degenerate levels, the denominator is singular, and the solution is
not applicable.

Let us see how we can deal with a g0-fold degenerate level of the unperturbed Hamiltonian.
We shall denote P the projector onto such level, and Q the projector orthogonal to this level.

The first-order equation:
�
Ĥ0 − E0

�
ψ1 +

�
V̂ − E1

�
ψ0 = 0 (17.24)

can be projected using P onto the space spun by the degenerate states:

P
�
V̂ − E1

�
ψ0 = 0 . (17.25)

Choosing a basis for the space of degenerate levels, we can write ψ0 as:

ψ0 =
g0�

i=1

ciφi , (17.26)

and then rewrite Eq. (17.25):
�φi|V̂ |φj�cj = E1ci , (17.27)

i.e. E1 is an eigenvalue of the matrix Vij = �φi|V̂ |φj�. This equation has g0 roots (not
necessarily distinct), and generalizes Eq. (17.10) to the case of degenerate levels. If the
eigenvalues are indeed all distinct, then the degeneracy is completed lifted. If some of the
eigenvalues are equal, the degeneracy is only partially lifted.
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Example A well-known example of degenerate perturbation theory is the Stark effect, i.e.
the separation of levels in the H atom due to the presence of an electric field. Let us consider
the n = 2 level, which has a 4-fold degeneracy:

|2s�, |2p, 0�, |2p,+1�, |2p,−1� . (17.28)

The electric field is chosen in the z-direction, hence the perturbation can be written as:

V = −ezE , (17.29)

where E is the magnitude of the electric field.
We need to compute the matrix Vij in the subspace of the unperturbed states of the H

atom with n = 2. This is a 4× 4 Hermitean matrix.
Note that the perturbation V is odd under parity, and therefore it has non-vanishing

matrix elements only between states of opposite parity. Since the eigenstates of the H atom
are eigenstates of L2 and Lz, we find that only the matrix elements between s and p states
can be different from zero.

Moreover, V commutes with Lz and therefore only matrix elements between states with
the same value of Lz are different from zero.

So we have proved that the only non-vanishing matrix elements are �2s|V̂ |2p, 0� and its
Hermitean conjugate. Hence the matrix V is given by:





0 3eEa0 0 0
3eEa0 0 0 0

0 0 0 0
0 0 0 0



 , (17.30)

where a0 is the Bohr radius. We see that the external field only removes the degeneracy
between the |2s�, and the |2p, 0� states; the states |2p,±1� are left unchanged.

The two other levels are split:

E = E2 ± 3ea0E . (17.31)

17.4 Applications

There are numerous applications of perturbation theory, which has proven to be a very
effective tool to gain quantitative information on the dynamics of a system whenever a small
expansion parameter can be identified.

Here we discuss briefly two examples.
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17.4.1 Ground state of Helium

We can now attempt to incorporate the effect of the inter-electron Coulomb repulsion by
treating it as a perturbation. We write the Hamiltonian as

Ĥ = Ĥ0 + Ĥ �

where

Ĥ0 = Ĥ1 + Ĥ2 and Ĥ � =
e2

4π�0|r1 − r2|

The ground state wavefunction that we wrote down earlier is an eigenfunction of the
unperturbed Hamiltonian, Ĥ0;

Ψ(ground state) = u100(r1)u100(r2)χ0,0.

To compute the first order correction to the ground state energy, we have to evaluate the
expectation value of the perturbation, Ĥ �, with respect to this wavefunction;

∆E1 =
e2

4π�0

�
u∗100(r1)u

∗
100(r2)χ

∗
0,0

1

r12
u100(r1)u100(r2)χ0,0 dτ1dτ2

The scalar product of χ0,0 with its conjugate = 1, since it is normalised. Putting in the
explicit form of the hydrogenic wavefunction from Lecture 10

u100(r) =
1
√
π
(Z/a0)

3/2 exp(−Zr/a0)

thus yields the expression

∆E1 =
e2

4π�0

�
Z3

πa30

�2 �
1

r12
exp{−2Z(r1 + r2)/a0} dτ1dτ2

Amazingly, this integral can be evaluated analytically. See, for example, Bransden and
Joachain, Introduction to Quantum Mechanics, pp 465-466. The result is

∆E1 =
5

4
Z Ry =

5

2
Ry = 34 eV

giving for the first-order estimate of the ground state energy

E1 = −108.8 + 34 eV = −74.8 eV = −5.5 Ry

to be compared with the experimentally-measured value of −78.957 eV .
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17.4.2 Spin-orbit effects in hydrogenic atoms

Classically, an electron of mass M and charge −e moving in an orbit with angular momentum
L would have a magnetic moment

µ = −
e

2M
L

suggesting that in the quantum case,

µ̂ = −
e

2M
L̂ and µ̂z = −

e

2M
L̂z

The eigenvalues of µ̂z are thus given by

−
e�
2M

m� ≡ −µB m�,

where the quantity µB is known as the Bohr magneton.
Similarly, there is a magnetic moment associated with the intrinsic spin of the electron;

µ̂z = −
gse

2M
Ŝz

where the constant, gs, cannot be determined from classical arguments, but is predicted to
be 2 by relativistic quantum theory and is found experimentally to be very close to 2.

The interaction between the orbital and spin magnetic moments of the electron introduces
an extra term into the Hamiltonian of the form

ĤS−O = f(r) L̂ · Ŝ

where

f(r) =
1

2M2c2r

dV (r)

dr

We can attempt to treat this extra term by the methods of perturbation theory, by taking
the unperturbed Hamiltonian to be

Ĥ0 =
p̂2

2M
+ V (r) =

p̂2

2M
−

Ze2

4π�0r

Cautionary Note In our derivation of the first-order formula for the shift in energy in-
duced by a perturbation, we assumed that there were no degeneracies in the energy eigenvalue
spectrum and noted that the method could break down in the presence of degeneracies.

• In general, when considering the effects of a perturbation on a degenerate level, it is
necessary to use degenerate state perturbation theory , which we briefly discussed above.
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• There are, however, important exceptions to this rule. In particular, if the perturbation

Ĥ �
, is diagonal with respect to the degenerate states, the non-degenerate theory can be

used to compute the energy shifts .

In the case of the spin-orbit interaction in the hydrogenic atom, we know that the de-
generacy of a level with given n and � is (2�+ 1)× 2, since, for a given �, there are (2�+ 1)
possible values of m� and 2 possible values of ms.

However, if we choose to work with states of the coupled basis |n, j,mj , �, s�, rather than
with the states of the uncoupled basis |n, �,m�, s,ms�, we can use non-degenerate theory.
Firstly, we note that we can rewrite the spin-orbit term as follows:

ĤS−O = f(r) L̂ · Ŝ =
1

2
f(r){Ĵ2

− L̂2
− Ŝ2

}

using the fact that Ĵ2 ≡ (L̂+ Ŝ)2 = L̂2 + Ŝ2 + 2L̂ · Ŝ.
Noting that

{Ĵ2
− L̂2

− Ŝ2
}|n, j,mj , �, s� = {j(j + 1)− �(�+ 1)− s(s+ 1)}�2|n, j,mj , �, s�

we see that the expectation value of Ĥ � in the unperturbed basis is

�n, j,mj , �, s|ĤS−O|n, j,mj , �, s� =
1

2
{j(j + 1)− �(�+ 1)− s(s+ 1)}�2�f(r)�

Since f(r) is independent of the angular variables θ,φ and of the spin, the expectation value
of f(r) may be written

�f(r)� =
Ze2

8π�0M2c2

� ∞

0

1

r3
|Rn�(r)|

2r2 dr

The integral can be evaluated exactly using the hydrogenic radial functions and gives:

�
1

r3
�n� =

Z3

a30

1

n3� (�+ 1
2)(�+ 1)

Now s = 1
2 for an electron, so that j can have two values for a given �, namely, j = (�+ 1

2)
and j = (�− 1

2), except in the case � = 0, which means that a state of given n and � separates
into a doublet when the spin-orbit interaction is present.

Term Notation There is yet another piece of notation used widely in the literature, the
so-called term notation. The states that arise in coupling orbital angular momentum � and
spin s to give total angular momentum j are denoted:

(2S+1)LJ

where L denotes the letter corresponding to the � value in the usual way, and the factor
(2S + 1) is the spin multiplicity i.e. the number of allowed values of ms.
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17.5 Summary

As usual, we summarize the main concepts introduced in this lecture.

• Perturbations of a system.

• Solution by perturbative expansion.

• Shifted energy levels and wave functions.

• Examples


