
Quantum Mechanics

Problem Sheet 2 - Time evolution

Basics

1. Time evolution of the expectation value of a time-independent operator.

2. Same as above, but now the operator has a parametric dependence on t. In both
problems, use Schrödinger equation to find the time derivative of the expectation value.

3. Definition of the exponential of an operator. Useful to practice elementary manipula-
tions involving operators and wave functions.

4. Some properties of the momentum operator. Try to get familiar with the momentum
operator, and its action of wave functions. It will reappear very frequently in the rest
of the course!

5. Time-evolution of the two-state system.

6. Energy eigenstates for the infinite potential well. Properties of the eigenfunctions.

7. Action of the momentum and position operators in momentum space.

Further problems

1. A box partitioned in two, with a finite probability for tunnelling through the partition,
is described as a two-state system.

2. A simple quantum mechanical model for an ideal gas. The ideal gas law is derived by
combining the energy levels of the quantum system with some elementary thermody-
namics.

3. The Feynman-Hellmann theorem yields the variation of expectation values with respect
to external parameters.

4. Constant shift in the potential energy.

5. A first look at the probability current.



Basics

1. Consider an operator f̂ such that [
f̂ , Ĥ

]
= 0 , (1)

show that the expectation value 〈f̂〉 is a constant for any wave function Ψ(x, t).

Note that the operator does not have an explicit dependence on time, and therefore the
time dependence is entirely due to the fact that the wave function evolves according
to Schrödinger equation.

2. Let us consider an operator Ô(t) corresponding to some observable, where we have
considered now the possibility of having a parametric dependence on time t. The
expectation value of Ô(t) will evolve with time:

〈Ô(t)〉 = 〈Ψ(t)|Ô(t)|Ψ(t)〉 . (2)

The time evolution is due to both the parametric dependence on t, and the fact that
the wave function evolves in time.
Show that the expectation value in Eq. (2) evolves according to:

d

dt
〈Ô(t)〉 = 〈Ψ(t)|

(
∂

∂t
Ô(t) +

1

i~

[
Ô, Ĥ

])
|Ψ(t)〉 . (3)

3. The time-evolution operator Û(t) = exp
[
−iĤt/~

]
is defined via the Taylor expansion

of the exponential:

Û(t) =
∞∑
n=0

1

n!

(
−i
~

)n
Ĥntn . (4)

If |ψ〉 is an eigenstate of Ĥ with eigenvalue E, show that

Û(t)|ψ〉 = e−iEt/~|ψ〉 . (5)

4. Using the fact that P̂ = −i~ d
dx

, compute:

P̂ X̂nψ(x) (6)

X̂nP̂ψ(x) . (7)

Deduce that [
P̂ , X̂n

]
= −i~nX̂n−1 . (8)

The operator V̂ = V (X̂) is defined via the Taylor expansion of the function V

V̂ = V (X̂) =
∑
k

1

k!
V (k)(0)X̂k (9)

where V (k)(0) are the coefficients of the expansion, i.e. they are numbers computed by
evaluating the k-th derivative of the function V at x = 0. Show that[

P̂ , V̂
]

= −i~ d
dx
V (X̂) . (10)



5. Consider the two-state system described in B6 in problem sheet 1. At t = 0 the system
is in the state:

|ψ(0)〉 =
1√
2
|1〉+

i√
2
|2〉 . (11)

Determine the probability P1(t) that the system is found in the state |1〉 at time t.
Make a sketch of the function P1(t).

6. Consider a particle in an infinite potential well:

V (x) =

{
0, for|x| < a ,

∞, otherwise .
(12)

Figure 1: Infinite well potential described of size 2a.

Physically this potential confines the particle to the region |x| < a, and therefore its
wave function must vanish identically outside this region. Hence the solution of the
Schrödinger equation must satisfy the boundary condition:

ψ(−a) = ψ(a) = 0 . (13)

Verify that the wave function

ψ(x, t) =

{
A sin

[
πx
a

]
e−iEt/~ if −a < x < a ,

0 if |x| > a
(14)

is a solution to the Schrödinger equation. Calculate the energy of this first excited
state and the probability density P(x) to find the particle at a given x. Does P(x)
differ from the corresponding result in classical mechanics?

Find all the energy eigenstates for this system.

Check the number of nodes (i.e. zeroes of the wave function) for the first three energy
eigenstates.

7. The momentum space wave function can be defined as:

ψ̃(p) =

∫
dxe−ipx/~ψ(x) . (15)



A generic operator Ô acts on ψ(p) according:

Ôψ(p) =

∫
dxe−ipx/~Ôψ(x) . (16)

Find the action of the momentum operator P̂ , and the position operator X̂ on ψ̃(p).
Check that this new representation of X̂ and P̂ satisfies the canonical commutation
relation.



Further problems

1. A box containing a particle is divided into a left and a right compartment by a thin
partition. Suppose that the amplitude for particle being on the left side of the box
is Ψ1(x, t) and the amplitude for being on the right side of the box is Ψ2(x, t). We
will neglect the spatial dependence of the wave functions inside the two halves of the
box. Suppose that the particle can tunnel through the partition, and that the rate of
change of the amplitude on the right is K/(i~) times the amplitude on the left, where
K is real:

i~
d

dt
Ψ2(t) = KΨ1(t) . (17)

What is the equation of motion for Ψ1? Write the Hamiltonian for this system.

2. Consider now a gas of quantum particles in a box of size a. We can model this system
as a set of N particles in an infinite well. Note that compared to B6, here the size of
the well is a and not 2a!

The possible values for the energy levels are:

En =
~2

2m

(nπ
a

)2
= An2 , (18)

write down the expression for A.

Let us now compress the box, so that the size shrinks from a to a− δa. Show that the
energy variation is:

En(a− δa)− En(a) =
~π2n2

ma3
δa+O(δa2) . (19)

The pressure P exerted by the particle on the wall is defined as:

δEn = Pδa . (20)

Show that the pressure is: P = (2/a)En.

For a gas in equilibrium at temperature T , the energy distribution is given by the
Boltzmann distribution:

Pn ∝ e−En/kT , (21)

where k is the Boltzmann constant.

Write down the expression for the mean value of the energy.

Evalutate the mean value in the limits A/(kT )→ 0, and kT → 0.

If we neglect their interactions, the total energy of a gas of N particles is simply
U = N〈E〉. Compute the total energy in the two limits above, and the total pressure
in the box in the limit where A/(kT )→ 0.

3. Feynman-Hellman theorem. Let us consider a system where the potential depends on
an external parameter g, V̂ = V (X̂, g). Show that for the energy eigenvalues we have:

∂En
∂g

= 〈ψn|
∂V

∂g
|ψn〉 . (22)

Remember that the eigenfunctions also depend on g!



4. Show that the eigenfunctions of the time-independent Schrödinger are unchanged if the
potential is shifted by an arbitrary constant V0. What does happen to the eigenvalues?
What is the physical interpretation of this result? Does it have a classical analogue?

5. Show that for a stationary state, the current:

j(x) =
~

2mi

(
Ψ(x, t)∗

(
∂

∂x
Ψ(x, t)

)
−
(
∂

∂x
Ψ(x, t)∗

)
Ψ(x, t)

)
is independent of both x and t.
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