
EM 3 Section 8: Divergence and Curl of B; Gauss and Ampère’s laws

8. 1. Divergence of B and Gauss’ Law for Magnetic Fields

We can write the Biot-Savart Law for B due to a bulk current density using the expression
for ∇(1/r) as

B(r) =
µ0

4π

∫
V
J(r′)× ( ̂r − r′)

|r − r′|2
dV ′ = −µ0

4π

∫
V
J(r′)×∇

(
1

|r − r′|

)
dV ′ (1)

Now since ∇ is with respect to the r coordinates and J(r′) depends on r′ we find

∇ ·
(
J(r′)×∇

(
1

|r − r′|

))
= J(r′) ·

(
∇×∇

(
1

|r − r′|

))
= 0

where the last equality follows since ‘curlgrad =0’

Therefore

∇ ·B = 0 (2)

This remarkable result is the second fundamental law of electromag (Maxwell II)

A magnetic field has no divergence which is a mathematical statement that
there are no magnetic monopoles

This means that there are no point sources of magnetic field lines, instead the magnetic fields
form closed loops round conductors where current flows.

Now the divergence theorem states that∫
V
∇ ·B dV =

∮
A
B · dS

Thus the net magnetic flux through any closed surface A must be zero∮
A
B · dS = 0 (3)

which is sometimes referred to as Gauss’ law for magnetic fields.

8. 2. Magnetic Dipoles

Since there are no magnetic monoples we should identify what is the equivalent of an electric
dipole i.e. a magnetic dipole. It turns out this is a current loop. Consider a circular current
loop radius a carrying steady current I in the clockwise direction with axis in the ez direction

We consider the contribution to the magnetic field at r along the axis of the loop due to the
current element dI(r′) at r′ using the Biot-Savart law

dB(r) =
µ0

4π

dI(r′)× ( ̂r − r′)

|r − r′|2
(4)
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Figure 1: Simple current loop with axis along z axis

We choose coordinates so that r = zez , r′ = aeρ
′, dI = Idleφ

′ and |r − r′| = (z2 + a2)1/2.

Then
dI(r′)× (r − r′) = Idl(zeρ

′ + aez)

Now we see that the dB is not along ez but when we integrate around the current loop the
perpendicular components cancel. Therefore we consider

dBz =
µ0Iadl

4π(z2 + a2)3/2

Note that this does not depend on the angle φ′ around the ring therefore when we integrate
over dl we simply get a factor 2πa and

Bz =
µ0Ia

2

2(a2 + z2)3/2
(5)

At the centre of the loop (z = 0):

Bz =
µ0I

2a

At a large distance from the loop (z � a):

Bz '
µ0Ia

2

2z3

To extend this calculation to an arbitrary position r (at all angles θ relative to the axis of
the loop) is tedious, but it can be shown that the field of a loop is a magnetic dipole field
i.e. in the far field limit of r � a one finds

Bdip(r) =
µ0

4πr3
[3(m · r̂)r̂ −m] (6)

where the magnetic dipole moment, m, is the product of the current and the vector area of
the loop:

m = Iπa2ez = IAez (7)

In fact this result holds for a small current loop of any shape and with magnetic dipole
moment, m, defined as

m = IA = I
∫

dS (8)

where A is the vector area of the loop
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The (ideal) magnetic dipole field has the same form as the (ideal) electric dipole field:

Br = µ0
2m cos θ

4πr3
Bθ =

µ0m sin θ

4πr3
(9)

However the ‘physical’ versions of electric and magnetic dipole look a bit different

Figure 2: Sketch of ideal and physical magnetic dipole lines Griffiths fig 5.55

It can be shown (Griffiths 6.1) that: an external magnetic field creates a torque on a magnetic
dipole:

T = m×Bext (10)

and the potential energy of the dipole in the field is:

U = −m ·Bext (11)

So one can think of a compass needle (magnetic moment along the needle) aligning with the
Earth’s magnetic field.

One could think of a magnetic dipole being composed of two monopoles (the ‘Gilbert Model’)
and this gives the correct results for torque and energy (see Griffiths Chapter 6). However
this picture is basically wrong as the fundamental difference between a magnetic dipole and
an electric dipole is that it is impossible to separate the N and S poles of a bar magnet for
example.

8. 3. What has this got to do with everyday magnets?

You might wonder what current loops have got to do with ordinary bar or fridge magnets.
The point is that in most atoms the electrons orbiting an atomic nucleus act as current
loops, so atoms can have magnetic dipole moments. Moreover even an electron has ‘spin’
which generates a magnetic moment.

8. 4. Curl of B and Ampère’s Law

Consider again the Biot-Savart law in form (1) and take the curl

∇×B(r) = −µ0

4π

∫
V
∇×

(
J(r′)×∇

(
1

|r − r′|

))
dV ′ (12)
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where the curl is with respect r coordinates so can be taken inside the integral which is over
r′ coordinates. Now using a product rule from lecture 1 and remembering that J(r′) does
not depend on the co-ordinates of r

∇×
(
J(r′)×∇

(
1

|r − r′|

))
= ∇2

(
1

|r − r′|

)
J(r′)− (J(r′) · ∇)∇

(
1

|r − r′|

)

= −4πδ(r − r′)J(r′)− (J(r′) · ∇)∇
(

1

|r − r′|

)
(13)

where we have used the now familiar result ∇2
(

1

r

)
= −4πδ(r). When we insert (13) back

into the integral (12), the second term can be shown to give zero since it can be written as
a ‘boundary term’ at infinity which vanishes (see tutorial). The first term in (13) yields

∇×B = µ0J (14)

This is another fundamental law of electromagnetism i.e. Maxwell IV
The curl of a magnetic field around an axis is proportional to the component of the current
density along the axis.

To obtain an integral form of Ampère’s law we use Stokes’ theorem:∮
C
B · dl =

∫
S
(∇×B) · dS

Thus (14) becomes when we integrate over an open surface S bounded by closed loop C∫
S
(∇×B) · dS =

∮
C
B · dl = µ0

∫
S
J · dS

The integral of the magnetic field round a closed loop is related to the total
current flowing across the surface enclosed by the loop:

∮
C
B · dl = µ0I = µ0

∫
S
J · dS (15)

In a similar way to Gauss’ law in electrostatics, Ampère’s law is very useful for calculating
magnetic fields when there is a high degree of symmetry to the problem.

Example: An infinite wire of finitie radius a carries a uniform current density, J .
Outside the wire at radial distance ρ:

Bφ2πρ = µ0

∫
S
J · dS = µ0I

Bφ =
µ0I

2πρ
(16)

The field outside the wire drops off with distance as 1/ρ. This is a much easier derivation
than integrating the Biot-Savart law

Now consider the field inside the wire:

Bφ2πρ = µ0

∫
S
J · dS = µ0Jπρ

2 = µ0I
ρ2

a2

Bφ =
µ0Iρ

2πa2
(17)

The field inside the wire increases with radius.
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