Standard Model - Electroweak Interactions

Outline

Weak Neutral Interactions

Neutral Currents (NC)

Electroweak Theory

 W^{\pm} and Z^{0} and γ

Discovery of W^{\pm} and Z^{0} bosons

Experimental Tests

LEP

Z⁰ Boson

Mass and Width

Number of Neutrinos

W± Boson

W[±] Pair Production

Mass and Width

Higgs Boson

Mass, LHC

Supersymmetry SUSY

Unification

Standard Model

Summary

Weak Neutral Interactions

Weak Neutral Current (NC)

Z⁰ boson couples to all fermions:

neutrinos, charged leptons, quarks

Weak NC is flavour conserving

e.g $\mu\tau Z^0$ vertex does not exist

Coupling Strength

Proportional to weak neutral charge g'w

 \rightarrow For each Z^0 vertex add factor g'_W to matrix element How are g'_W and weak charge g_W related?

 $f = \nu, l, q$

Z⁰ Boson Propagator

Neutral Current mediated by exchange of virtual Z⁰ boson

→ Add propagator term $1/(q^2 - M_Z^2)$ to matrix element/amplitude

At small q^2 NC masked by electromagnetic interactions Are weak and electromagnetic force related?

Discovery of Neutral Currents

1973 Bubble chamber Gargamelle at CERN 3 events in elastic neutrino scattering

$$\overline{\nu}_{\mu} + e^- \rightarrow \overline{\nu}_{\mu} + e^-$$

Anti- v_{μ} beam Very low background

Standard Model **Electroweak Interactions**

Electroweak Unification

Developed in 1960s by Quantum Theory of weak charged (CC) and neutral currents (NC) and electromagnetic interactions (QED)

Glashow Weinberg Salam

Surprise - QED and weak interactions are a unified force

Electroweak Gauge Bosons

Initially four massless bosons W⁺, W⁰, W⁻ and B⁰ Neutral bosons mix \rightarrow Physical bosons W[±] and Z⁰ and γ

$$\begin{pmatrix} Z^{0} \\ \gamma \end{pmatrix} = \begin{pmatrix} \cos \theta_{W} & -\sin \theta_{W} \\ \sin \theta_{W} & \cos \theta_{W} \end{pmatrix} \quad \begin{pmatrix} W^{0} \\ B^{0} \end{pmatrix}$$

 θ_{W} weak mixing (Weinberg) angle

W[±] and Z⁰ acquire mass via Higgs Mechanism

Electroweak Coupling Constants

 g_W and g'_W are related to electric charge e

$$e = g_W \sin \theta_W = g'_W \cos \theta_W$$

Electroweak Theory

3 fundamental parameters, e.g. $\alpha_{em} = \frac{e^2}{4\pi}$, $\frac{G_F}{\sqrt{2}} = \frac{g_W^2}{8M_w^2}$, $\sin \theta_W$

Mass of W[±] and Z⁰ related $M_{z^0}^2 = M_W^2 / \cos^2 \theta_W$

Predicts coupling strengths of W^{\pm} and Z^{0} to quarks and leptons, self interaction couplings of W^{\pm} and Z^{0} and γ

W and Z Bosons

Virtual W[±] and Z⁰ Bosons

Mediate weak interaction in scattering and decay

of weakly interacting fermions

e.g. muon or meson decay,
$$\mu^- \to e^- \overline{\nu}_e \nu_\mu$$
 $D^0 \to K^- \mu^+ \nu_\mu$ v-e scattering $\nu_e + e^- \to \nu_e + e^- \quad \overline{\nu}_\mu + e^- \to \overline{\nu}_\mu + e^-$

Real W[±] and Z⁰ Bosons

Produced in collisions if sufficient energy available

$$\begin{aligned} u + \overline{d} &\to W^+ \to e^+ \nu_e, \, \mu^+ \nu_\mu \\ \overline{u} + d &\to W^- \to e^- \overline{\nu}_e, \, \mu^- \overline{\nu}_\mu \\ \frac{u + \overline{u}}{d + \overline{d}} \bigg\} &\to Z^0 \to e^+ e^-, \, \mu^+ \mu^- \end{aligned}$$

Discovery of W[±] and Z⁰ Bosons

at p-pbar collider at CERN in 1983

Energy E(p) = E(pbar) = 270 GeV

W event
UA1 experiment
CFRN

 $W^- \rightarrow e^- \nu_e$

Experimental Tests - LEP

LEP - Large Electron Positron Collider

Largest e+e- collider, 27 km circumference

Centre-of-mass energy $\sqrt{s} = 90 - 200 \text{ GeV}$

Operational from 1989 to 2000

Four experiments: Aleph, Delphi, L3, OPAL

Z⁰ Bosons at LEP

Resonance production at $\sqrt{s} = M_Z$ ~4 million e⁺ e⁻ \rightarrow Z⁰ events/expt

Production at $\sqrt{s} \ge 2 M_W$

~8000 $e^+e^- \rightarrow W^+W^-$ events/expt

Mass and width of Z⁰ and W[±] bosons e

 Z^0 and W^{\pm} boson couplings to quarks and leptons

Weak decays of heavy mesons

QCD measurements

Precision tests of Standard Model of Particle Physics

Z⁰ Resonance

e⁺ e⁻ Annihilations → Hadrons at High Energies

 \sqrt{s} < 50 GeV exchange of γ dominates

At larger energies $\sqrt{s} \ge 50 \text{ GeV}$

 Z^0 and γ exchange diagram, also Z^0/γ interference

Z⁰ Boson Production

at energies $\sqrt{s} \approx M_Z$ production of real Z^0 boson diagram with Z^0 boson dominates

Z⁰ boson is Breit-Wigner Resonance

 Z^0 boson decays very fast, lifetime $\tau \sim 10^{-25} \ s$

Measure energy width of Z^0 resonance Γ_Z = \hbar/τ

Z⁰ Mass and Width

Breit-Wigner Resonance

Cross section for relativistic initial and final states

$$\sigma(e^{+}e^{-} \to Z^{0} \to f \bar{f}) = g \frac{4\pi}{s} \frac{\Gamma_{e\bar{e}}\Gamma_{f\bar{f}}}{\left[\left(\sqrt{s} - M_{Z}\right)^{2} + \Gamma_{Z}^{2} / 4\right]}$$
Position of some windths $\Gamma_{e\bar{e}} = \Gamma(Z^{0} \to f \bar{f})$

Partial decay widths $\Gamma_{f\bar{f}} = \Gamma(Z^0 \to f \bar{f})$

Spin: average initial states $g = \frac{2J_z + 1}{(2s_{e^-} + 1)(2s_{e^+} + 1)}$ & sum final states

Total Decay Width Γ_Z

Sum over all partial decay widths $\Gamma_{\rm ff}$

$$\begin{split} \Gamma_Z &= \Gamma_{q\bar{q}} + \Gamma_{e\bar{e}} + \Gamma_{\mu\bar{\mu}} + \Gamma_{\tau\bar{\tau}} + \Gamma_{\nu_e\bar{\nu}_e} + \Gamma_{\nu_\mu\bar{\nu}_\mu} + \Gamma_{\nu_\tau\bar{\nu}_\tau} \\ \text{Cross section at peak of resonance } \sqrt{s} &= M_Z \end{split}$$

$$\sigma_{f\bar{f}}^{0} = \sigma \left(e^{+}e^{-} \to Z^{0} \to f \; \bar{f} \right) = \frac{12\pi}{M_{Z}^{2}} \frac{\Gamma_{e\bar{e}}\Gamma_{f\bar{f}}}{\Gamma_{Z}^{2}}$$

Z⁰ Resonance

Measure $e^+e^- \rightarrow Hadrons$ at energies close to M_Z QED corrections

Shift: $e^+e^- \rightarrow \gamma$ hadrons

Mass and Width of Zo

 $M_Z = 91.1876(21)$ GeV $\Gamma_7 = 2.49529(23)$ GeV

Peak cross section

$$\sigma^0_{qq}$$
 = 41.5409(37) nb

Z⁰ Partial Decay Widths

Cross Sections

$$\sigma(e^+e^- \to Z^0 \to f \bar{f})$$

Measurements for all visible fermions

Obtain partial decay widths using

peak cross section σ^0_{qq} and M_Z , Γ_Z

Note --- all resonance curves have width Γ_7

$$\Gamma_z = 2495.2 \pm 2.3 \, \text{MeV}$$

$$\Gamma_{q\bar{q}} = 1744.4 \pm 2.0 \,\text{MeV}$$
 Evidence for $N_{\text{colour}} = 3$

$$\Gamma_{t\bar{t}} = \Gamma_{e\bar{e}} = \Gamma_{u\bar{u}} = \Gamma_{\tau\bar{\tau}} = 83.984 \pm 0.086 \text{ MeV}$$

Invisible Z⁰ Width

Decays $Z^0 o \nu_e \overline{\nu}_e, \nu_\mu \overline{\nu}_\mu, \nu_\tau \overline{\nu}_\tau$

Comparison of total and partial decay widths

$$\begin{split} &\Gamma_{Z} = \Gamma_{q\bar{q}} + \Gamma_{e\bar{e}} + \Gamma_{\mu\bar{\mu}} + \Gamma_{\tau\bar{\tau}} + N_{\nu}\Gamma_{\nu\bar{\nu}} \\ &\Gamma_{\nu\bar{\nu}} = \Gamma_{\nu_{e}\bar{\nu}_{e}} = \Gamma_{\nu_{\mu}\bar{\nu}_{\mu}} = \Gamma_{\nu_{\tau}\bar{\nu}_{\tau}} \end{split}$$

 N_{ν} - number of neutrino flavours

Number of Neutrino Flavours

Prediction Γ_{yy} = 167 MeV

Measurement

 $N_{\nu}\Gamma_{\nu\nu}$ = 499.0 ± 1.5 MeV

Number of light neutrinos

$$N_v = 2.994 \pm 0.012$$

(with mass $m_v < M_Z/2$)

Consistency also for e, μ , τ

Lepton universality holds

for
$$Z^0 \rightarrow ee$$
, $\mu\mu$, $\tau\tau$ couplings

W+W- Pair Production

Standard Model Diagrams

W[±] Boson Decays

CC Universality for leptons and weak quark eigenstates

$$\begin{split} \Gamma\!\!\left(W^- \to e^- \overline{\nu}_e\right) &= \Gamma\!\!\left(W^- \to \mu^- \overline{\nu}_\mu\right) = \Gamma\!\!\left(W^- \to \tau^- \overline{\nu}_\tau\right) = \frac{1}{3} \Gamma\!\!\left(W^\pm \to l \, \nu\right) \\ \Gamma\!\!\left(W^- \to d^+ \overline{u}\right) &= \Gamma\!\!\left(W^- \to s^+ \overline{c}\right) = N_c \Gamma\!\!\left(W^- \to e^- \overline{\nu}_e\right) \qquad \Gamma\!\!\left(W^- \to b^+ \overline{t}\right) = 0 \\ &\Rightarrow \Gamma\!\!\left(W^\pm \to q^+ \overline{q}\right) = 2\Gamma\!\!\left(W^\pm \to l \, \nu\right) \end{split}$$

$e^+e^- \rightarrow W^+W^-$ at LEP

Example L3 experiment $e^+e^- \rightarrow W^+W^- \rightarrow q\overline{q}e^-\overline{\nu}_e$

Mass and Width of W[±] Boson

 M_W = 80.425 ± 0.038 GeV Γ_W = 2.124 ±.0.041 GeV

Cross Section vs Energy

Agrees with SM prediction
Confirms existence of
W+ W- Z⁰ vertex

Higgs and Unification

Electroweak Theory

Precise measurements of $\alpha_{em},$ $\textit{G}_{F},$ $\textit{M}_{Z},$ \textit{M}_{W} and $sin^{2}\theta_{W}$ Only 3 independent parameters

Powerful constraints, corrections: higher order diagrams

Higgs Mechanism

Only missing particle in Standard Model Scalar, i.e Spin 0,

Non-zero vacuum -> All particles acquire mass by Higgs interaction

Peter Higgs

Higgs coupling ∞ mass $g_{Hff} = \sqrt{(\sqrt{2} G_F)} m_f$ Prof emeritus Direct Mass Limit $M_H > 114 \ GeV$ Univ of Edinburgh Require Large Hadron Collider (LHC) starts in 2007

Supersymmetry - SUSY

SUSY Partners: Fermion \leftrightarrow Boson fermion \leftrightarrow sfermion Unification of electroweak boson \leftrightarrow ...ino

and strong interaction

$$\alpha_1 = \alpha_{em}$$

$$\alpha_2 = \alpha_W$$

$$\alpha_3 = \alpha_5$$

Standard Model of Particle Physics

One-page Summary

Fermions

Quarks and Leptons

3 Generations of Leptons & Quarks			Charge [e]
v _e	ν_{μ}	$ u_{\tau}$	0
e-	μ-	τ-	-1
u	C	†	+2/3
Ъ	S	Ь	-1/3

Gauge Bosons

Mediate interactions

Inter- action	Gauge Goson	Charge [e]	Coupling Constant
Strong	9	0	α _s ≈ 0.2
Electro magnetic	γ	0	$\alpha_{\rm em} \approx 0.008$
Weak	Z ⁰ W [±]	0 ±1	α _W ≈ 0.03

Electromagnetic (QED)

 γ couples to charge e conserves q, I flavour

Strong (QCD)

g couple to colour quark flavour conserved

Weak Charged Current (CC)

 W^{\pm} couples to weak charge g_W Flavour changing for quarks

Neutral Current (NC)

 Z^0 couples to g'_W conserves q, I flavour

Feynman Diagrams

One-page Tutorial

Scattering, annihilation or decays
Only Standard Model vertices

Initial and final states

Write down quark/lepton/boson content for all initial and final state particles

Interactions

Try to find out which exchange bosons are responsible for reaction by checking conservation laws

Conservation Laws

For all interactions at each vertex

Energy-momentum

Electric charge, Baryon number

For strong and electromagnetic interactions

Quark and Lepton flavour, Parity, Isospin, Strangeness

For weak charged interactions (CC)

Overly flavour is not conserved. I

Quark flavour is not conserved, Lepton universality

For weak neutral interaction (NC)

Quark and lepton flavour are conserved

Useful Hints

Photon only interacts electromagnetically
Neutrinos and Z⁰ only interact weakly
Only Quarks and Gluons interact strongly
If more than 1 possibility, faster reaction wins
Keep it as simple as possible