QCD --- Quantum Chromodynamics

Outline

QCD Principles Quantum field theory, analogy with QED Vertex, coupling constant Colour "red", "green" or "blue" Gluons Quark and Gluon Interactions Confinement Asymptotic Freedom QCD potential QCD Experiments Experimental evidence for quarks, colour and gluons e+e- annihilations Charmonium Scattering, DIS Questions Why is strong interaction short range? Why are "free quarks" not observed? How do guarks and gluons fragment into hadronic jets? Nuclear and Particle Physics Franz Muheim

QCD vs QED

QED

Quantum theory of electromagnetic interactions mediated by exchange of photons Photon couples to electric charge e Coupling strength $\propto e \propto \sqrt{\alpha}$

QCD

Quantum theory of strong interactions mediated by exchange of gluons between quarks Gluon couples to colour charge of quark Coupling strength $\propto \sqrt{\alpha_s}$

Fundamental vertices

 $\alpha = e^2/4\pi \approx 1/137$

QCD

Coupling constant

Strong interaction probability $\propto \alpha_s > \alpha$ Coupling strength of QCD much larger than QED

Colour

What is Colour ?

Charge of QCD Conserved quantum number "Red", "green" or "blue"

<u>Quarks</u>

Come in three coloursr g bAnti-quarks have anti-colours $\overline{r} \ \overline{g} \ \overline{b}$

Leptons, other Gauge Bosons - γ, W[±], Z⁰ Don't carry colour, "zero colour charge" → Don't participate in strong interaction

Caveat

"... colour is not to be taken literally."

$$r = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ "red"}, \qquad \qquad g = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ "green"}, \qquad \qquad b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ "blue"}.$$

Interaction	QED	QCD
Conserved charge	electric charge e	colour charges r, g ,b
Coupling constant	$\alpha = e^2/4\pi$	$\alpha_{s} = g_{s}^{2}/4\pi$
Gauge boson	Photon	8 gluons
Charge carriers	fermions (q≠0)	quarks gluons

Gluon Properties

Gluons are massless spin-1 bosons → QCD propagator 1/q² Emission or absorption of gluons by quarks changes colour of quarks - Colour is conserved

→ Gluons carry colour charge themselves e.g. rg gluon changes red quark into green QCD very different from QED, q(photon) = 0 <u>Number of gluons</u>

Naively expect 9 gluons r5, rg, g5, gr, br, bg, rr, g3, b5 Symmetry -> 8 octet and 1 singlet states Octet $r\bar{b}$ $r\bar{g}$ $b\bar{g}$ $b\bar{r}$ $g\bar{r}$ $g\bar{b}$ $\frac{1}{\sqrt{2}}(r\bar{r} - g\bar{g})$ $\frac{1}{\sqrt{6}}(r\bar{r} + g\bar{g} - 2b\bar{b})$ Singlet $\frac{1}{\sqrt{3}}(r\bar{r} + g\bar{g} + b\bar{b})$

→ 8 gluons realised by Nature (colour octet)

Nuclear and Particle Physics

Quark & Gluon Interactions

Quark-Antiquark Scattering

describes a meson e.g. π^+ = (u-dbar) Single gluon exchange at short distance ≤ 0.1 fm

QCD Potential

 $V_{\rm QCD}(r) = -\frac{4}{3} \frac{\alpha_{\rm S}}{r}$

at short distance ~ 0.1 fm attractive - negative sign

QED-like apart from colour factor 4/3 More than one gluon -> colour factor

Gluon Self-Interactions

QED versus QCD Photons and gluons Bia difference

QED versus QCD - So far pretty similar

Photons and gluons - massless spin-1 bosons

Big difference- gluons carry colour charge

→ Gluons interact with each other

<u>3-gluon vertex</u>

<u>4-gluon vertex</u>

Origin of huge differences between QCD and QED

Confinement

Experimental Evidence

Do not observe free quarks Quarks confined within hadrons

Strong Interaction Dynamics

- Gluons attract each other self-interactions
- → Colour force lines pulled together in QCD

Colour Force

between 2 quarks at "long" distances O(1 fm) String with tension k -> Potential V(r) = kr Stored energy/unit length is constant Separation of quarks requires infinite amount of energy

Confinement

Direct consequence of gluon self-interactions Particles with colour - quarks and gluons confined inside QCD potential, must combine into hadrons with zero net colour charge

QCD Potential

Mesons

guark-antiguark pair colour wave fct. $|\psi\rangle = \frac{1}{\sqrt{3}} |r\bar{r} + g\bar{g} + b\bar{b}\rangle$ with zero net colour charge Single gluon exchange -> colour of individual $r\bar{r} \rightarrow r\bar{r}$ $r\bar{r} \rightarrow b\bar{b}$ g or anti-g can change QCD potential $V_{\rm QCD}(r) = -\frac{4}{3}\frac{\alpha_{\rm S}}{r} + kr$

QED-like at short distance $r \le 0.1$ fm Quarks are tightly bound $\alpha_s \approx 0.2 .. 0.3$ String tension -> Potential increases linearly at large distance $r \ge 1 \text{ fm}$

 $\alpha_{s} = 0.2$ k = 1 GeV/fm

Potential similar for quarks in baryons

Force

Between two guarks at large distance $F = |dV/dr| = k = 1.6 \ 10^{-10} \ J/ \ 10^{-15} \ m = 16000 \ N$ Equivalent to weight of large car

Nuclear and Particle Physics

Coupling Constant as

Properties

 α_s --- coupling strength of strong interaction
 Recall QED - coupling constant varies with distance - running α
 In QED - bare electron charge is screened by cloud of virtual e-e+ pairs
 In QCD - similar effects

QCD Quantum Fluctuations

Cloud of virtual q-anti-q pairs around a quark

→ Screening of colour charge

Colour charge decreases with distance

Cloud of virtual gluons --- no equivalent in QED due to gluon self-interactions Colour charge of gluons contributes to effective colour charge of quark → Anti-screening of colour charge Colour charge increases with distance

Running of α_{S}

Screening and Anti-screening

Anti-screening dominates Effective colour charge increases with distance At large distances / low energies $\alpha_s \sim 1$ - large Higher order diagrams -> α_s increasingly larger Summation of diagrams diverges Perturbation theory fails

Asymptotic Freedom

Coupling constant $\alpha_s = 0.12$ at $q^2 = (100 \text{ GeV})^2$ small at high energies

$$\alpha_{\rm S}(q^2) = \frac{\alpha_{\rm S}(\mu^2)}{\left(1 + \beta \,\alpha_{\rm S}(\mu^2) \ln \frac{q^2}{\mu^2}\right)}$$
$$\beta = \frac{11n - 2f}{12\pi}$$

Running of α_{s}

depends on q² and # of colours and flavours Energetic quarks are (almost) free particles Summation of all diagrams converges QCD Perturbation theory works

Nobel prize 2004 Gross, Politzer, Wilczek

Hadronisation & Jets

What happens when quarks separate?

Nuclear and Particle Physics

<u>Feynman Diagrams</u>

 $e^+e^- \rightarrow q\bar{q}$ and $e^+e^- \rightarrow \mu^-\mu^-$ Quark and muon masses are neglected Only difference in coupling of virtual photon to final state fermion pair is charge Q_f

Cross section

For a single quark flavour --- without colour expect cross section ratio

$$R_q = \frac{\sigma(e^+e^- \to q\overline{q})}{\sigma(e^+e^- \to \mu^+\mu^-)} = \frac{Q_q^2}{Q_\mu^2} = Q_q^2$$

With colour – each quarks has $N_c = 3$ final states Rule is to sum over all available final states

$$R_q = \frac{\sigma(e^+e^- \to q\overline{q})}{\sigma(e^+e^- \to \mu^+\mu^-)} = N_C Q_q^2 = 3Q_q^2$$

<u>Hadronisation</u>

Measure $e^+e^- \rightarrow hadrons$ not $e^+e^- \rightarrow q\overline{q}$ $q\overline{q}$ -pairs fragment and form hadronic jets Jets from different $q\overline{q}$ -pairs are similar at high energies compared to quark masses

e+e- Annihilation

<u>Ratio R</u>

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 3\sum_q Q_q^2$$

Sum is over all quark flavours (u, d, s, c, b, t) kinematically accessible at CoM energy, \sqrt{s} , of collider, and 3 colours (r,g,b) for each flavour

$$R\left(\sqrt{s} > 2m_s \sim 1 \,\text{GeV}\right) = 3\left(\left(\frac{2}{3}\right)^2 + \left(\frac{-1}{3}\right)^2 + \left(\frac{-1}{3}\right)^2\right) = 2 \qquad u,d,s$$

$$R\left(\sqrt{s} > 2m_c \sim 3 \,\text{GeV}\right) = 3\left(\left(\frac{2}{3}\right)^2 + \left(\frac{-1}{3}\right)^2 + \left(\frac{-1}{3}\right)^2 + \left(\frac{2}{3}\right)^2\right) = \frac{10}{3} \qquad u,d,s,c$$

$$R\left(\sqrt{s} > 2m_b \sim 10 \text{ GeV}\right) = 3\left(\left(\frac{2}{3}\right)^2 + \left(\frac{-1}{3}\right)^2 + \left(\frac{-1}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{-1}{3}\right)^2\right) = \frac{11}{3} \quad u, d, s, c, b$$

<u>Measurements</u>

Charmonium

Discovery of Charm Quark $p Be \rightarrow e^+e^-X$ 1974 Brookhaven and SLAC Narrow resonance at 3.1 GeV decays into e+e-, µ+µ-, hadrons. did not fit in existing schemes J/w Meson Mass $m_{J/\psi}$ = 3.1 GeV/c² 20 Narrow width, smaller than 3.0 M_{e*e}-, GeV 3 25 experimental resolution Total width Γ = 0.087 MeV Lifetime $\tau = \hbar/\Gamma = 7.6 \cdot 10^{-21} s$ $e^+e^- \rightarrow a\bar{a}$ = 1000 x expected for 1000 strong interaction process σ, nb **Branching Fraction** 100 J/ψ decays 10 many final states with 100 partial decay width Γ_i a, nb Total decay width 10 $\Gamma = \sum_{i} \Gamma_{i}$ Branching fraction 200 $B_i = \frac{\Gamma_i}{\Gamma}$ 10 σ, nb $B(J/\psi \rightarrow q\overline{q}) = (87.7 \pm 0.5)\%$ 20 3.090 3.100 3.110 3.120 3.130 $B(J/\psi \to \mu^+ \mu^-) = (5.88 \pm 0.10)\%$ Energy Ecms, GeV $B(J/\psi \rightarrow e^+e^-) = (5.93 \pm 0.10)\%$

Nuclear and Particle Physics

Quark Model Explanation

 J/ψ is new quark (c-cbar) bound state

Strong decay for J/ψ (diagram b) is forbidden by energy conservation at $\sqrt{s} = m_{J/\psi} < 2m_D$ Allowed transition (diagram a) has three gluons Decay rate suppressed $\propto \alpha_s^6$ $J/\psi = \psi(1S)$ resonance established quarks

as real particles

Excited Charmonium states

Evidence for Gluons

additional factor $\sqrt{\alpha_s}$ in matrix element adds term with factor α_s in cross section

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 3\sum_q Q_q^2 \left(1 + \frac{\alpha_s}{\pi}\right)$$

e.g R(q² = (25 GeV)²) \approx 3.85 > 11/3 $\rightarrow \alpha_{s}$ = 0.15

Nuclear and Particle Physics

Running of α_S

<u>Measurements</u>

at many energies $\sqrt{s} = 1.5 \text{ GeV}$ to 200 GeV e+e- Annihilations Ratio R $\propto (1+\alpha_s/\pi)$ Ratio of 3 jet versus 2 jet events $\propto \alpha_s$ Event shapes - angular distributions Hadronic collisions Deep Inelastic scattering Charmonium and Upsilon Tau decays Lattice QCD calculations $\Rightarrow \alpha_s$ is running $\alpha_s (M_7) = 0.1187 \pm 0.002$

 $\Rightarrow \alpha_{s} \text{ is running} \\
\xrightarrow{P} \alpha_{s} \text{ is running} \\
\xrightarrow{$

Evidence for Colour

Discussed in previous slides

Δ^{++} Baryon

Strong interaction resonance - spin 3/2
Quark model explains ∆⁺⁺ as (uuu)
Wave function for (u↑u↑u↑) is symmetric
under interchange of identical quarks
Appears to violate Pauli Principle
→ Led to introduction of colour

1964 Greenberg

Antisymmetric colour wave function for baryons

$$(rgb - rbg + gbr - grb + brg - bgr)/\sqrt{6}$$

Same arguments for Δ^- (ddd) and Ω^- (sss)

Decay rate $\pi^0 \rightarrow \gamma \gamma$

$$\begin{split} &\Gamma(\pi^0 \to \gamma \gamma) \propto {\sf N^2}_{\sf colour} \\ & {\sf Measurement:} \qquad {\sf N}_{\sf colour} = 2.99 \pm 0.12 \end{split}$$

$e-p \rightarrow e-p$

Probe structure of proton with electron beam

Kinematics

Laboratory frame, proton at rest Energy and momentum transfer $v_{\cdot}\vec{a}$

$$v = E_1 - E_3 \qquad q^{\mu} = (v, \vec{q})$$

$$(q + p_2)^2 = p_4^2 \qquad p_2 \cdot q = (M, \vec{0}) \cdot (v, \vec{q}) = M$$

$$q^2 + M^2 + 2p_2 \cdot q = M^2 \qquad \Rightarrow \qquad q^2 = -2Mv < 0$$

 q^2 and v not independent, E_3 and scattering angle θ related, only need to measure E_1 and θ

Cross Section

Form factor F(q²) describes deviation from a point charge F(q²) is Fourier transform of charge distribution inside proton, see Nuclear Physics Nuclear and Particle Physics

v

$e-p \rightarrow e-X$ Scattering

At high $|q^2|$ proton breaks up into hadrons

 $W^{2} = q^{2} + M^{2} + 2p_{2} \cdot q \neq M^{2}$ $x = \frac{-q^2}{2M\nu}$

 q^2 and v independent, hadronic mass W define dimensionless variable x with 0 < x < 1 Form factor $F(q^2) \rightarrow$ Structure function $F_2(v, q^2)$

Experimental Results

Inelastic cross section independent of q^2 dependent on $x \rightarrow F_2(x)$ Evidence for point-like particles inside proton

<u>Partons</u>

Point-like constituents inside nucleons Feynman

electron scatters off "free" parton with mass m x is fraction of proton 4-momentum

Nuclear and Particle Physics

Parton Distribution Functions f_i(x)

Probability that parton i carries fraction x of particle momentum i = u,d,s (valence quarks), sea quarks, gluons

Require $\sum \int x f_i(x) dx = 1$

Quarks carry only 54% of proton momentum

Gluons carry remaining 46% → Partons are quarks and gluons

 $\sin^4 \theta/2$

Quark- Quark

